डीजल चक्र: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(11 intermediate revisions by 4 users not shown)
Line 2: Line 2:
{{thermodynamics|cTopic=प्रक्रियाएं और चक्र}}
{{thermodynamics|cTopic=प्रक्रियाएं और चक्र}}


डीजल चक्र प्रत्यागामी [[ आंतरिक दहन इंजन |आंतरिक दहन इंजन]] दहन की प्रक्रिया है। इसमें, दहन कक्ष में हवा के संपीड़न के की अवधि में उत्पन्न गर्मी से [[ ईंधन |ईंधन]] प्रज्वलित होता है, जिसमें ईंधन को इंजेक्ट किया जाता है। यह [[ ओटो चक्र |स्वत:चक्र]] ([[ फोर स्ट्रोक इंजन ]]|फोर-स्ट्रोक/पेट्रोल) इंजन की प्रकार [[ स्पार्क प्लग |स्पार्क प्लग]] के साथ ईंधन-हवा के मिश्रण को प्रज्वलित करने के विपरीत है। [[ डीजल इंजन |डीजल इंजन]] का उपयोग विमान_डीजल_इंजन, [[ ऑटोमोबाइल |ऑटोमोबाइल]], बिजली उत्पादन, डीजल-इलेक्ट्रिक ट्रांसमिशन| डीजल-इलेक्ट्रिक [[ लोकोमोटिव |लोकोमोटिव]] और सतह के जहाजों और पनडुब्बियों दोनों में किया जाता है।
'''डीजल चक्र''' प्रत्यागामी [[ आंतरिक दहन इंजन |आंतरिक दहन इंजन]] की प्रक्रिया है। इसमें दहन कक्ष में हवा के संपीड़न की अवधि में उत्पन्न गर्मी से [[ ईंधन |ईंधन]] प्रज्वलित होता है, जिसमें ईंधन को इंजेक्ट किया जाता है। यह [[ ओटो चक्र |स्वत चक्र]] ([[ फोर स्ट्रोक इंजन | फोर स्ट्रोक इंजन ,]] फोर-स्ट्रोक/पेट्रोल) इंजन की प्रकार [[ स्पार्क प्लग |स्पार्क प्लग]] के साथ ईंधन-हवा के मिश्रण को प्रज्वलित करने के विपरीत है। [[ डीजल इंजन |डीजल इंजन]] का उपयोग विमान_डीजल_इंजन, [[ ऑटोमोबाइल |ऑटोमोबाइल]], बिजली उत्पादन, डीजल-इलेक्ट्रिक हस्तांतरण ,डीजल-इलेक्ट्रिक [[ लोकोमोटिव |लोकोमोटिव]] और सतह के जहाजों और पनडुब्बियों दोनों में किया जाता है।


दहन चरण के प्रारंभिक भाग के की अवधि में डीजल चक्र को निरंतर दबाव माना जाता है (<math>V_2</math> को <math>V_3</math> आरेख में, नीचे)। यह आदर्श गणितीय मॉडल है: वास्तविक भौतिक डीजल में इस अवधि के की अवधि में दबाव में वृद्धि होती है, किन्तु यह स्वत: चक्र की तुलना में कम स्पष्ट है। इसके विपरीत चार-स्ट्रोक चक्र का आदर्श स्वत:चक्र उस चरण की अवधि में निरंतर मात्रा प्रक्रिया का अनुमान लगाता है।
दहन चरण के प्रारंभिक भाग की अवधि में डीजल चक्र को निरंतर दबाव माना जाता है <math>V_2</math> को <math>V_3</math>आरेख में नीचे। यह आदर्श गणितीय मॉडल है। वास्तविक भौतिक डीजल में इस अवधि के दबाव में वृद्धि होती है, किन्तु यह स्वत चक्र की तुलना में कम स्पष्ट है। इसके विपरीत चार-स्ट्रोक चक्र का आदर्श स्वत चक्र उस चरण की अवधि में निरंतर मात्रा प्रक्रिया का अनुमान लगाता है।


== आदर्श डीजल चक्र ==
== आदर्श डीजल चक्र ==
[[Image:DieselCycle PV.svg|thumb|upright=1.2|आदर्श डीजल चक्र के लिए p-V आरेख। चक्र घड़ी की दिशा में 1-4 संख्याओं का अनुसरण करता है।]]छवि आदर्श डीजल चक्र के लिए p-V आरेख दिखाती है; जहां पे <math>p</math> [[ दबाव |दबाव]] है और <math>v</math> मात्रा या <math>v</math> विशिष्ट मात्रा यदि प्रक्रिया को इकाई द्रव्यमान के आधार पर रखा जाता है। आदर्श डीजल चक्र [[ आदर्श गैस |आदर्श गैस]] मानता है और [[ दहन |दहन]] रसायन, [[ निकास गैस |निकास गैस]] | निकास- और रिचार्ज प्रक्रियाओं की उपेक्षा करता है और बस चार अलग-अलग प्रक्रियाओं का पालन करता है:
[[Image:DieselCycle PV.svg|thumb|upright=1.2|आदर्श डीजल चक्र के लिए p-V आरेख। चक्र घड़ी की दिशा में 1-4 संख्याओं का अनुसरण करता है।]]छवि आदर्श डीजल चक्र के लिए p-V आरेख दिखाती है, जहां पे <math>p</math> [[ दबाव |दबाव]] है और <math>v</math> मात्रा या <math>v</math> विशिष्ट मात्रा इस प्रक्रिया को इकाई द्रव्यमान के आधार पर रखा जाता है। आदर्श डीजल चक्र [[ आदर्श गैस |आदर्श गैस]] मानता है और [[ दहन |दहन]] रसायन [[ निकास गैस |निकास गैस]] निकास और रिचार्ज प्रक्रियाओं की उपेक्षा करता है और बस चार अलग-अलग प्रक्रियाओं का पालन करता है।


* 1→2: तरल पदार्थ का [[ आइसेंट्रोपिक |आइसेंट्रोपिक]] संपीड़न (नीला)
* 1→2 तरल पदार्थ का [[ आइसेंट्रोपिक |आइसेंट्रोपिक]] संपीड़न (नीला)
* 2→3: निरंतर दबाव ताप (लाल)
* 2→3 निरंतर दबाव ताप (लाल)
* 3→4: आइसेंट्रोपिक विस्तार (पीला)
* 3→4 आइसेंट्रोपिक विस्तार (पीला)
* 4→1: स्थिर आयतन शीतलन (हरा)<ref>Eastop & McConkey 1993, ''Applied Thermodynamics for Engineering Technologists'', Pearson Education Limited, Fifth Edition, p.137</ref>
* 4→1 स्थिर आयतन शीतलन (हरा)<ref>Eastop & McConkey 1993, ''Applied Thermodynamics for Engineering Technologists'', Pearson Education Limited, Fifth Edition, p.137</ref>
डीजल इंजन ऊष्मा इंजन है: यह ऊष्मा को [[ कार्य (थर्मोडायनामिक्स) |कार्य (ऊष्मप्रवैगिकी)]] में परिवर्तित करता है। नीचे की आइसेंट्रोपिक प्रक्रियाओं (नीला) के की अवधि में, ऊर्जा को कार्य के रूप में प्रणाली में स्थानांतरित किया जाता है <math>W_{in}</math>, किन्तुपरिभाषा के अनुसार (आइसेंट्रोपिक) गर्मी के रूप में प्रणाली में या बाहर कोई ऊर्जा स्थानांतरित नहीं की जाती है। निरंतर दबाव (लाल, आइसोबैरिक प्रक्रिया) प्रक्रिया के की अवधि में ऊर्जा प्रणाली में गर्मी के रूप में प्रवेश करती है <math>Q_{in}</math>. शीर्ष आइसेंट्रोपिक प्रक्रियाओं (पीला) के की अवधि में, ऊर्जा को प्रणाली से बाहर स्थानांतरित किया जाता है <math>W_{out}</math>, किन्तुपरिभाषा के अनुसार (आइसेंट्रोपिक) गर्मी के रूप में प्रणाली में या बाहर कोई ऊर्जा स्थानांतरित नहीं की जाती है। निरंतर आयतन (हरा [[ आइसोकोरिक प्रक्रिया |आइसोकोरिक प्रक्रिया]] ) प्रक्रिया के की अवधि में, कुछ ऊर्जा सही अवसादन प्रक्रिया के माध्यम से गर्मी के रूप में प्रणाली से बाहर निकलती है। <math>Q_{out}</math>. प्रणाली को छोड़ने वाला कार्य प्रणाली में प्रवेश करने वाले कार्य के बराबर होता है और प्रणाली में जोड़ी गई गर्मी और प्रणाली से निकलने वाली गर्मी के बीच का अंतर होता है; दूसरे शब्दों में काम का शुद्ध लाभ प्रणाली में जोड़ी गई गर्मी और प्रणाली को छोड़ने वाली गर्मी के बीच के अंतर के बराबर है।
डीजल इंजन ऊष्मा इंजन है। यह ऊष्मा को [[ कार्य (थर्मोडायनामिक्स) |कार्य (ऊष्मप्रवैगिकी)]] में परिवर्तित करता है। नीचे की आइसेंट्रोपिक प्रक्रियाओं (नीला) की अवधि में ऊर्जा को कार्य के रूप में प्रणाली में स्थानांतरित किया जाता है <math>W_{in}</math>, किन्तु परिभाषा के अनुसार (आइसेंट्रोपिक) गर्मी के रूप में प्रणाली में या बाहर कोई ऊर्जा स्थानांतरित नहीं की जाती है। निरंतर दबाव (लाल, आइसोबैरिक प्रक्रिया) प्रक्रिया की अवधि में ऊर्जा प्रणाली में गर्मी के रूप में प्रवेश करती है <math>Q_{in}</math>. शीर्ष आइसेंट्रोपिक प्रक्रियाओं (पीला) की अवधि में ऊर्जा को प्रणाली से बाहर स्थानांतरित किया जाता है <math>W_{out}</math>, किन्तु परिभाषा के अनुसार (आइसेंट्रोपिक) गर्मी के रूप में प्रणाली में या बाहर कोई ऊर्जा स्थानांतरित नहीं की जाती है। निरंतर आयतन (हरा [[ आइसोकोरिक प्रक्रिया |आइसोकोरिक प्रक्रिया]] ) प्रक्रिया की अवधि में कुछ ऊर्जा सही अवसादन प्रक्रिया के माध्यम से गर्मी के रूप में प्रणाली से बाहर निकलती है। <math>Q_{out}</math>. प्रणाली को छोड़ने वाला कार्य प्रणाली में प्रवेश करने वाले कार्य के बराबर होता है और प्रणाली में जोड़ी गई गर्मी और प्रणाली से निकलने वाली गर्मी के बीच का अंतर होता है, दूसरे शब्दों में काम का शुद्ध लाभ प्रणाली में जोड़ी गई गर्मी और प्रणाली को छोड़ने वाली गर्मी के बीच के अंतर के बराबर है।


* में काम (<math>W_{in}</math>) पिस्टन द्वारा हवा (प्रणाली) को कंप्रेस करके किया जाता है
* में काम (<math>W_{in}</math>) पिस्टन द्वारा हवा (प्रणाली) को संक्षेप करना करके किया जाता है
* गरम करें (<math>Q_{in}</math>) ईंधन के दहन द्वारा किया जाता है
* गरम करें (<math>Q_{in}</math>) ईंधन के दहन द्वारा किया जाता है
* व्यायाम (<math>W_{out}</math>) पिस्टन को फैलाने और धकेलने वाले कार्यशील द्रव द्वारा किया जाता है (यह प्रयोग करने योग्य कार्य उत्पन्न करता है)
* व्यायाम (<math>W_{out}</math>) पिस्टन को फैलाने और धकेलने वाले कार्यशील द्रव द्वारा किया जाता है (यह प्रयोग करने योग्य कार्य उत्पन्न करता है)
* गर्म करना (<math>Q_{out}</math>) हवा निकाल कर किया जाता है
* गर्म करना (<math>Q_{out}</math>) हवा निकाल कर किया जाता है
* शुद्ध कार्य का उत्पादन = <math>Q_{in}</math> - <math>Q_{out}</math>
* शुद्ध कार्य का उत्पादन = <math>Q_{in}</math> - <math>Q_{out}</math>
उत्पादित शुद्ध कार्य को पी-वी आरेख पर चक्र द्वारा परिबद्ध क्षेत्र द्वारा भी दर्शाया गया है। शुद्ध कार्य प्रति चक्र उत्पन्न होता है और इसे उपयोगी कार्य भी कहा जाता है, क्योंकि इसे अन्य उपयोगी प्रकार की ऊर्जा में बदल दिया जा सकता है और वाहन ([[ गतिज ऊर्जा ]]) को प्रेरित किया जा सकता है या विद्युत ऊर्जा का उत्पादन किया जा सकता है। प्रति इकाई समय में ऐसे अनेक चक्रों के योग को विकसित शक्ति कहते हैं। <math>W_{out}</math> h> को सकल कार्य भी कहा जाता है, जिनमें से कुछ का उपयोग इंजन के अगले चक्र में वायु के अगले आवेश को संपीडित करने के लिए किया जाता है
उत्पादित शुद्ध कार्य को p-V आरेख पर चक्र द्वारा परिबद्ध क्षेत्र द्वारा भी दर्शाया गया है। शुद्ध कार्य प्रति चक्र उत्पन्न होता है और इसे उपयोगी कार्य भी कहा जाता है, क्योंकि इसे अन्य उपयोगी प्रकार की ऊर्जा में बदल दिया जाता है और वाहन [[ गतिज ऊर्जा |गतिज ऊर्जा]] को प्रेरित किया जा सकता है तथा विद्युत ऊर्जा को उत्पादन किया जा सकता है। प्रति इकाई समय में ऐसे अनेक चक्रों के योग को विकसित शक्ति कहते हैं। <math>W_{out}</math> h> को सकल कार्य भी कहा जाता है, जिनमें से कुछ का उपयोग इंजन के अगले चक्र में वायु के अगले आवेश को संपीडित करने के लिए किया जाता है






=== अधिकतम थर्मल दक्षता ===
=== अधिकतम थर्मल दक्षता ===
डीजल चक्र की अधिकतम तापीय दक्षता संपीड़न अनुपात और कट-ऑफ अनुपात पर निर्भर करती है। ठंडे मानक राज्य विश्लेषण के अनुसार इसका निम्न सूत्र है:
डीजल चक्र की अधिकतम तापीय दक्षता संपीड़न अनुपात और कट-ऑफ अनुपात पर निर्भर करती है। ठंडे मानक राज्य विश्लेषण के अनुसार इसका निम्न सूत्र है।


  <math>\eta_{th}=1-\frac{1}{r^{\gamma-1}}\left ( \frac{\alpha^{\gamma}-1}{\gamma(\alpha-1)} \right )</math>
  <math>\eta_{th}=1-\frac{1}{r^{\gamma-1}}\left ( \frac{\alpha^{\gamma}-1}{\gamma(\alpha-1)} \right )</math>
Line 32: Line 32:
:<math>\alpha</math> कट-ऑफ अनुपात है <math>\frac{V_3}{V_2}</math> (दहन चरण के अंत और प्रारंभ मात्रा के बीच का अनुपात)
:<math>\alpha</math> कट-ऑफ अनुपात है <math>\frac{V_3}{V_2}</math> (दहन चरण के अंत और प्रारंभ मात्रा के बीच का अनुपात)
:{{math|r}} संपीड़न अनुपात है <math>\frac{V_1}{V_2}</math>
:{{math|r}} संपीड़न अनुपात है <math>\frac{V_1}{V_2}</math>
:<math>\gamma </math> विशिष्ट ताप क्षमता का अनुपात है (C<sub>p</sub>/सी<sub>v</sub>)<ref>{{cite web| url = http://230nsc1.phy-astr.gsu.edu/hbase/thermo/diesel.html| title = The Diesel Engine}}</ref>
:<math>\gamma </math> विशिष्ट ताप क्षमता का अनुपात है (C<sub>p</sub>/C<sub>v</sub>)<ref>{{cite web| url = http://230nsc1.phy-astr.gsu.edu/hbase/thermo/diesel.html| title = The Diesel Engine}}</ref>
कट-ऑफ अनुपात को तापमान के रूप में व्यक्त किया जा सकता है जैसा कि नीचे दिखाया गया है:
कट-ऑफ अनुपात को तापमान के रूप में व्यक्त किया जा सकता है जैसा कि नीचे दिखाया गया है।
:<math>\frac{T_2}{T_1} ={\left(\frac{V_1}{V_2}\right)^{\gamma-1}} = r^{\gamma-1}</math>
:<math>\frac{T_2}{T_1} ={\left(\frac{V_1}{V_2}\right)^{\gamma-1}} = r^{\gamma-1}</math>
:<math> \displaystyle {T_2} ={T_1} r^{\gamma-1} </math>
:<math> \displaystyle {T_2} ={T_1} r^{\gamma-1} </math>
Line 39: Line 39:
:<math>\alpha = \left(\frac{T_3}{T_1}\right)\left(\frac{1}{r^{\gamma-1}}\right)</math>
:<math>\alpha = \left(\frac{T_3}{T_1}\right)\left(\frac{1}{r^{\gamma-1}}\right)</math>


<math>T_3</math> उपयोग किए गए ईंधन के लौ तापमान का अनुमान लगाया जा सकता है। ज्वाला तापमान को ईंधन के रुद्धोष्म ज्वाला तापमान के अनुरूप वायु-से-ईंधन अनुपात और संपीड़न दबाव के साथ अनुमानित किया जा सकता है, <math>p_3</math>.
<math>T_3</math> उपयोग किए गए ईंधन के लौ तापमान का अनुमान लगाया जा सकता है। ज्वाला तापमान को ईंधन के रुद्धोष्म ज्वाला तापमान के अनुरूप वायु-से-ईंधन अनुपात और संपीड़न दबाव के साथ अनुमानित किया जा सकता है, <math>p_3</math>.<math>T_1</math> इनलेट हवा के तापमान का अनुमान लगाया जा सकता है।
<math>T_1</math> इनलेट हवा के तापमान का अनुमान लगाया जा सकता है।


यह सूत्र केवल आदर्श तापीय दक्षता देता है। गर्मी और घर्षण के नुकसान के कारण वास्तविक तापीय दक्षता अधिक कम हो जाएगी। सूत्र स्वत:चक्र (पेट्रोल/गैसोलीन इंजन) संबंध से अधिक जटिल है जिसमें निम्न सूत्र हैं:
यह सूत्र केवल आदर्श तापीय दक्षता देता है। गर्मी और घर्षण के नुकसान के कारण वास्तविक तापीय दक्षता अधिक कम हो जाएगी। सूत्र स्वत।चक्र (पेट्रोल/गैसोलीन इंजन) संबंध से अधिक जटिल है जिसमें निम्न सूत्र हैं।


<math>\eta_{otto,th}=1-\frac{1}{r^{\gamma-1}}</math>
<math>\eta_{otto,th}=1-\frac{1}{r^{\gamma-1}}</math>
डीज़ल सूत्र के लिए अतिरिक्त जटिलता चारों ओर आती है क्योंकि ताप वृद्धि निरंतर दबाव पर होती है और ऊष्मा अस्वीकृति निरंतर आयतन पर होती है। तुलनात्मक रूप से स्वत:चक्र में निरंतर आयतन पर ऊष्मा का जोड़ और अस्वीकृति दोनों हैं।
डीज़ल सूत्र के लिए अतिरिक्त जटिलता चारों ओर आती है क्योंकि ताप वृद्धि निरंतर दबाव पर होती है और ऊष्मा अस्वीकृति निरंतर आयतन पर होती है। तुलनात्मक रूप से स्वत।चक्र में निरंतर आयतन पर ऊष्मा का जोड़ और अस्वीकृति दोनों हैं।


=== स्वत:चक्र की दक्षता की तुलना ===
=== स्वत चक्र की दक्षता की तुलना ===
दो सूत्रों की तुलना करने पर यह देखा जा सकता है कि दिए गए संपीड़न अनुपात के लिए ({{math|r}}), आदर्श स्वत:चक्र अधिक कुशल होगा। चूँकि/यद्यपि, वास्तविक डीजल इंजन समग्र रूप से अधिक कुशल होगा क्योंकि इसमें उच्च संपीड़न अनुपात पर काम करने की क्षमता होगी। यदि पेट्रोल इंजन में समान संपीड़न अनुपात होता है, तो खटखटाना (स्व-प्रज्वलन) होगा और यह दक्षता को गंभीर रूप से कम कर देगा, जबकि डीजल इंजन में स्व-प्रज्वलन वांछित व्यवहार है। इसके अतिरिक्त, ये दोनों चक्र केवल आदर्शीकरण हैं, और वास्तविक व्यवहार स्पष्ट रूप से या तेजी से विभाजित नहीं होता है। इसके अतिरिक्त, ऊपर वर्णित आदर्श स्वत:चक्र सूत्र में थ्रॉटलिंग नुकसान सम्मलित नहीं है, जो डीजल इंजनों पर लागू नहीं होता है।
दो सूत्रों की तुलना करने पर यह देखा जा सकता है कि दिए गए संपीड़न अनुपात के लिए ({{math|r}}), आदर्श स्वत।चक्र अधिक कुशल होगा। चूँकि,यद्यपि वास्तविक डीजल इंजन समग्र रूप से अधिक कुशल होगा क्योंकि इसमें उच्च संपीड़न अनुपात पर काम करने की क्षमता होगी। यदि पेट्रोल इंजन में समान संपीड़न अनुपात होता है, तो खटखटाना स्व-प्रज्वलन होगा और यह दक्षता को गंभीर रूप से कम कर देगा, जबकि डीजल इंजन में स्व-प्रज्वलन वांछित व्यवहार है। इसके अतिरिक्त, ये दोनों चक्र केवल आदर्शीकरण हैं और वास्तविक व्यवहार स्पष्ट रूप से या तेजी से विभाजित नहीं होता है। इसके अतिरिक्त, ऊपर वर्णित आदर्श स्वत।चक्र सूत्र में थ्रॉटलिंग नुकसान सम्मलित नहीं है, जो डीजल इंजनों पर लागू नहीं होता है।


== अनुप्रयोग ==
== अनुप्रयोग ==
Line 55: Line 54:
{{Main|डीजल इंजन}}
{{Main|डीजल इंजन}}


डीजल इंजनों में किसी भी बड़े आंतरिक दहन इंजन की तुलना में सबसे कम विशिष्ट ईंधन खपत (शाफ्ट इंजन) होता है, जो एकल चक्र को नियोजित करता है, बहुत बड़े समुद्री इंजनों के लिए 0.26 lb/hp·h (0.16 kg/kWh) (संयुक्त चक्र बिजली संयंत्र अधिक कुशल होते हैं, किन्तु के अतिरिक्त दो इंजन लगाएं)। उच्च दबाव असहाय प्रेरण के साथ दो-स्ट्रोक डीजल, विशेष रूप से [[ टर्बोचार्जिंग |टर्बोचार्जिंग]], सबसे बड़े डीजल इंजनों का बड़ा प्रतिशत बनाते हैं।
डीजल इंजनों में किसी भी बड़े आंतरिक दहन इंजन की तुलना में सबसे कम विशिष्ट ईंधन खपत (शाफ्ट इंजन) होता है, जो एकल चक्र को नियोजित करता है। बहुत बड़े समुद्री इंजनों के लिए 0.26 lb/hp·h (0.16 kg/kWh) संयुक्त चक्र बिजली संयंत्र अधिक कुशल होते हैं, किन्तु इस के अतिरिक्त दो इंजन लगाएं। उच्च दबाव असहाय प्रेरण के साथ दो-स्ट्रोक डीजल विशेष रूप से [[ टर्बोचार्जिंग |टर्बोचार्जिंग]] सबसे बड़े डीजल इंजनों का बड़ा प्रतिशत बनाते हैं।


[[ उत्तरी अमेरिका | उत्तरी अमेरिका]] में, डीजल इंजन मुख्य रूप से बड़े ट्रकों में उपयोग किए जाते हैं, जहां कम-तनाव, उच्च-दक्षता चक्र से इंजन का जीवन लंबा होता है और परिचालन लागत कम होती है। ये फायदे डीजल इंजन को भारी-भरकम रेलमार्ग और अर्थमूविंग वातावरण में उपयोग के लिए आदर्श बनाते हैं।
[[ उत्तरी अमेरिका | उत्तरी अमेरिका]] में डीजल इंजन मुख्य रूप से बड़े ट्रकों में उपयोग किए जाते हैं, जहां कम-तनाव उच्च-दक्षता चक्र से इंजन का जीवन लंबा होता है और परिचालन लागत कम होती है। ये फायदे डीजल इंजन को भारी-भरकम रेलमार्ग और अर्थमूविंग वातावरण में उपयोग के लिए आदर्श बनाते हैं।


=== स्पार्क प्लग के बिना अन्य आंतरिक दहन इंजन ===
=== स्पार्क प्लग के बिना अन्य आंतरिक दहन इंजन ===
कई [[ मॉडल हवाई जहाज |मॉडल हवाई जहाज]] बहुत ही साधारण चमक और डीजल इंजन का उपयोग करते हैं। ग्लो इंजन [[ चमकने वाला प्लग |चमकने वाला प्लग]] का उपयोग करते हैं। डीजल मॉडल के हवाई जहाज के इंजन में परिवर्तनशील संपीड़न अनुपात होते हैं। दोनों प्रकार के विशेष ईंधन पर निर्भर करते हैं।
कई [[ मॉडल हवाई जहाज |मॉडल हवाई जहाज]] बहुत ही साधारण चमक और डीजल इंजन का उपयोग करते हैं। चमक इंजन [[ चमकने वाला प्लग |चमकने वाला प्लग]] का उपयोग करते हैं। डीजल मॉडल के हवाई जहाज के इंजन में परिवर्तनशील संपीड़न अनुपात होते हैं। दोनों प्रकार के विशेष ईंधन पर निर्भर करते हैं।


कुछ 19वीं सदी या इससे पहले के प्रायोगिक इंजनों में प्रज्वलन के लिए बाल्बो द्वारा उजागर बाहरी लपटों का उपयोग किया गया था, किन्तु बढ़ते दबाव के साथ यह कम आकर्षक हो जाता है। (निकोलस लेओनार्ड साडी कार्नाट का शोध था जिसने संपीड़न के ऊष्मप्रवैगिकी मूल्य की स्थापना की।) इसका ऐतिहासिक निहितार्थ यह है कि डीजल इंजन का आविष्कार बिजली की सहायता के बिना किया जा सकता था।<br />ऐतिहासिक महत्व के लिए [[ गर्म बल्ब इंजन |गर्म बल्ब इंजन]] का विकास और [[ अप्रत्यक्ष इंजेक्शन |अप्रत्यक्ष इंजेक्शन]] देखें।
कुछ 19वीं सदी या इससे पहले के प्रायोगिक इंजनों में प्रज्वलन के लिए बाल्बो द्वारा उजागर बाहरी लपटों का उपयोग किया गया था, किन्तु बढ़ते दबाव के साथ यह कम आकर्षक हो जाता है। निकोलस लेओनार्ड साडी कार्नाट का शोध था जिसने संपीड़न के ऊष्मप्रवैगिकी मूल्य की स्थापना की। इसका ऐतिहासिक निहितार्थ यह है कि डीजल इंजन का आविष्कार बिजली की सहायता के बिना किया जा सकता था।<br />ऐतिहासिक महत्व के लिए [[ गर्म बल्ब इंजन |गर्म बल्ब इंजन]] का विकास और [[ अप्रत्यक्ष इंजेक्शन |अप्रत्यक्ष इंजेक्शन]] देखें।


== संदर्भ ==
== संदर्भ ==
Line 73: Line 72:
* मिश्रित/दोहरी चक्र
* मिश्रित/दोहरी चक्र
* आंशिक रूप से पूर्व-मिश्रित दहन
* आंशिक रूप से पूर्व-मिश्रित दहन
{{Thermodynamic cycles|state=uncollapsed}}
{{DEFAULTSORT:Diesel Cycle}}
{{DEFAULTSORT:Diesel Cycle}}


श्रेणी:ऊष्मप्रवैगिकी चक्र
श्रेणी।ऊष्मप्रवैगिकी चक्र
 


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Diesel Cycle]]
[[Category:Created On 19/01/2023]]
[[Category:Chemistry sidebar templates|Diesel Cycle]]
[[Category:Created On 19/01/2023|Diesel Cycle]]
[[Category:Machine Translated Page|Diesel Cycle]]
[[Category:Mechanics templates|Diesel Cycle]]
[[Category:Pages with script errors|Diesel Cycle]]
[[Category:Physics sidebar templates|Diesel Cycle]]
[[Category:Sidebars with styles needing conversion|Diesel Cycle]]
[[Category:Templates Vigyan Ready|Diesel Cycle]]

Latest revision as of 16:57, 3 February 2023

डीजल चक्र प्रत्यागामी आंतरिक दहन इंजन की प्रक्रिया है। इसमें दहन कक्ष में हवा के संपीड़न की अवधि में उत्पन्न गर्मी से ईंधन प्रज्वलित होता है, जिसमें ईंधन को इंजेक्ट किया जाता है। यह स्वत चक्र ( फोर स्ट्रोक इंजन , फोर-स्ट्रोक/पेट्रोल) इंजन की प्रकार स्पार्क प्लग के साथ ईंधन-हवा के मिश्रण को प्रज्वलित करने के विपरीत है। डीजल इंजन का उपयोग विमान_डीजल_इंजन, ऑटोमोबाइल, बिजली उत्पादन, डीजल-इलेक्ट्रिक हस्तांतरण ,डीजल-इलेक्ट्रिक लोकोमोटिव और सतह के जहाजों और पनडुब्बियों दोनों में किया जाता है।

दहन चरण के प्रारंभिक भाग की अवधि में डीजल चक्र को निरंतर दबाव माना जाता है को आरेख में नीचे। यह आदर्श गणितीय मॉडल है। वास्तविक भौतिक डीजल में इस अवधि के दबाव में वृद्धि होती है, किन्तु यह स्वत चक्र की तुलना में कम स्पष्ट है। इसके विपरीत चार-स्ट्रोक चक्र का आदर्श स्वत चक्र उस चरण की अवधि में निरंतर मात्रा प्रक्रिया का अनुमान लगाता है।

आदर्श डीजल चक्र

आदर्श डीजल चक्र के लिए p-V आरेख। चक्र घड़ी की दिशा में 1-4 संख्याओं का अनुसरण करता है।

छवि आदर्श डीजल चक्र के लिए p-V आरेख दिखाती है, जहां पे दबाव है और मात्रा या विशिष्ट मात्रा इस प्रक्रिया को इकाई द्रव्यमान के आधार पर रखा जाता है। आदर्श डीजल चक्र आदर्श गैस मानता है और दहन रसायन निकास गैस निकास और रिचार्ज प्रक्रियाओं की उपेक्षा करता है और बस चार अलग-अलग प्रक्रियाओं का पालन करता है।

  • 1→2 तरल पदार्थ का आइसेंट्रोपिक संपीड़न (नीला)
  • 2→3 निरंतर दबाव ताप (लाल)
  • 3→4 आइसेंट्रोपिक विस्तार (पीला)
  • 4→1 स्थिर आयतन शीतलन (हरा)[1]

डीजल इंजन ऊष्मा इंजन है। यह ऊष्मा को कार्य (ऊष्मप्रवैगिकी) में परिवर्तित करता है। नीचे की आइसेंट्रोपिक प्रक्रियाओं (नीला) की अवधि में ऊर्जा को कार्य के रूप में प्रणाली में स्थानांतरित किया जाता है , किन्तु परिभाषा के अनुसार (आइसेंट्रोपिक) गर्मी के रूप में प्रणाली में या बाहर कोई ऊर्जा स्थानांतरित नहीं की जाती है। निरंतर दबाव (लाल, आइसोबैरिक प्रक्रिया) प्रक्रिया की अवधि में ऊर्जा प्रणाली में गर्मी के रूप में प्रवेश करती है . शीर्ष आइसेंट्रोपिक प्रक्रियाओं (पीला) की अवधि में ऊर्जा को प्रणाली से बाहर स्थानांतरित किया जाता है , किन्तु परिभाषा के अनुसार (आइसेंट्रोपिक) गर्मी के रूप में प्रणाली में या बाहर कोई ऊर्जा स्थानांतरित नहीं की जाती है। निरंतर आयतन (हरा आइसोकोरिक प्रक्रिया ) प्रक्रिया की अवधि में कुछ ऊर्जा सही अवसादन प्रक्रिया के माध्यम से गर्मी के रूप में प्रणाली से बाहर निकलती है। . प्रणाली को छोड़ने वाला कार्य प्रणाली में प्रवेश करने वाले कार्य के बराबर होता है और प्रणाली में जोड़ी गई गर्मी और प्रणाली से निकलने वाली गर्मी के बीच का अंतर होता है, दूसरे शब्दों में काम का शुद्ध लाभ प्रणाली में जोड़ी गई गर्मी और प्रणाली को छोड़ने वाली गर्मी के बीच के अंतर के बराबर है।

  • में काम () पिस्टन द्वारा हवा (प्रणाली) को संक्षेप करना करके किया जाता है
  • गरम करें () ईंधन के दहन द्वारा किया जाता है
  • व्यायाम () पिस्टन को फैलाने और धकेलने वाले कार्यशील द्रव द्वारा किया जाता है (यह प्रयोग करने योग्य कार्य उत्पन्न करता है)
  • गर्म करना () हवा निकाल कर किया जाता है
  • शुद्ध कार्य का उत्पादन = -

उत्पादित शुद्ध कार्य को p-V आरेख पर चक्र द्वारा परिबद्ध क्षेत्र द्वारा भी दर्शाया गया है। शुद्ध कार्य प्रति चक्र उत्पन्न होता है और इसे उपयोगी कार्य भी कहा जाता है, क्योंकि इसे अन्य उपयोगी प्रकार की ऊर्जा में बदल दिया जाता है और वाहन गतिज ऊर्जा को प्रेरित किया जा सकता है तथा विद्युत ऊर्जा को उत्पादन किया जा सकता है। प्रति इकाई समय में ऐसे अनेक चक्रों के योग को विकसित शक्ति कहते हैं। h> को सकल कार्य भी कहा जाता है, जिनमें से कुछ का उपयोग इंजन के अगले चक्र में वायु के अगले आवेश को संपीडित करने के लिए किया जाता है


अधिकतम थर्मल दक्षता

डीजल चक्र की अधिकतम तापीय दक्षता संपीड़न अनुपात और कट-ऑफ अनुपात पर निर्भर करती है। ठंडे मानक राज्य विश्लेषण के अनुसार इसका निम्न सूत्र है।


जहाँ पे

तापीय दक्षता है
कट-ऑफ अनुपात है (दहन चरण के अंत और प्रारंभ मात्रा के बीच का अनुपात)
r संपीड़न अनुपात है
विशिष्ट ताप क्षमता का अनुपात है (Cp/Cv)[2]

कट-ऑफ अनुपात को तापमान के रूप में व्यक्त किया जा सकता है जैसा कि नीचे दिखाया गया है।

उपयोग किए गए ईंधन के लौ तापमान का अनुमान लगाया जा सकता है। ज्वाला तापमान को ईंधन के रुद्धोष्म ज्वाला तापमान के अनुरूप वायु-से-ईंधन अनुपात और संपीड़न दबाव के साथ अनुमानित किया जा सकता है, . इनलेट हवा के तापमान का अनुमान लगाया जा सकता है।

यह सूत्र केवल आदर्श तापीय दक्षता देता है। गर्मी और घर्षण के नुकसान के कारण वास्तविक तापीय दक्षता अधिक कम हो जाएगी। सूत्र स्वत।चक्र (पेट्रोल/गैसोलीन इंजन) संबंध से अधिक जटिल है जिसमें निम्न सूत्र हैं।

डीज़ल सूत्र के लिए अतिरिक्त जटिलता चारों ओर आती है क्योंकि ताप वृद्धि निरंतर दबाव पर होती है और ऊष्मा अस्वीकृति निरंतर आयतन पर होती है। तुलनात्मक रूप से स्वत।चक्र में निरंतर आयतन पर ऊष्मा का जोड़ और अस्वीकृति दोनों हैं।

स्वत चक्र की दक्षता की तुलना

दो सूत्रों की तुलना करने पर यह देखा जा सकता है कि दिए गए संपीड़न अनुपात के लिए (r), आदर्श स्वत।चक्र अधिक कुशल होगा। चूँकि,यद्यपि वास्तविक डीजल इंजन समग्र रूप से अधिक कुशल होगा क्योंकि इसमें उच्च संपीड़न अनुपात पर काम करने की क्षमता होगी। यदि पेट्रोल इंजन में समान संपीड़न अनुपात होता है, तो खटखटाना स्व-प्रज्वलन होगा और यह दक्षता को गंभीर रूप से कम कर देगा, जबकि डीजल इंजन में स्व-प्रज्वलन वांछित व्यवहार है। इसके अतिरिक्त, ये दोनों चक्र केवल आदर्शीकरण हैं और वास्तविक व्यवहार स्पष्ट रूप से या तेजी से विभाजित नहीं होता है। इसके अतिरिक्त, ऊपर वर्णित आदर्श स्वत।चक्र सूत्र में थ्रॉटलिंग नुकसान सम्मलित नहीं है, जो डीजल इंजनों पर लागू नहीं होता है।

अनुप्रयोग

डीजल इंजन

डीजल इंजनों में किसी भी बड़े आंतरिक दहन इंजन की तुलना में सबसे कम विशिष्ट ईंधन खपत (शाफ्ट इंजन) होता है, जो एकल चक्र को नियोजित करता है। बहुत बड़े समुद्री इंजनों के लिए 0.26 lb/hp·h (0.16 kg/kWh) संयुक्त चक्र बिजली संयंत्र अधिक कुशल होते हैं, किन्तु इस के अतिरिक्त दो इंजन लगाएं। उच्च दबाव असहाय प्रेरण के साथ दो-स्ट्रोक डीजल विशेष रूप से टर्बोचार्जिंग सबसे बड़े डीजल इंजनों का बड़ा प्रतिशत बनाते हैं।

उत्तरी अमेरिका में डीजल इंजन मुख्य रूप से बड़े ट्रकों में उपयोग किए जाते हैं, जहां कम-तनाव उच्च-दक्षता चक्र से इंजन का जीवन लंबा होता है और परिचालन लागत कम होती है। ये फायदे डीजल इंजन को भारी-भरकम रेलमार्ग और अर्थमूविंग वातावरण में उपयोग के लिए आदर्श बनाते हैं।

स्पार्क प्लग के बिना अन्य आंतरिक दहन इंजन

कई मॉडल हवाई जहाज बहुत ही साधारण चमक और डीजल इंजन का उपयोग करते हैं। चमक इंजन चमकने वाला प्लग का उपयोग करते हैं। डीजल मॉडल के हवाई जहाज के इंजन में परिवर्तनशील संपीड़न अनुपात होते हैं। दोनों प्रकार के विशेष ईंधन पर निर्भर करते हैं।

कुछ 19वीं सदी या इससे पहले के प्रायोगिक इंजनों में प्रज्वलन के लिए बाल्बो द्वारा उजागर बाहरी लपटों का उपयोग किया गया था, किन्तु बढ़ते दबाव के साथ यह कम आकर्षक हो जाता है। निकोलस लेओनार्ड साडी कार्नाट का शोध था जिसने संपीड़न के ऊष्मप्रवैगिकी मूल्य की स्थापना की। इसका ऐतिहासिक निहितार्थ यह है कि डीजल इंजन का आविष्कार बिजली की सहायता के बिना किया जा सकता था।
ऐतिहासिक महत्व के लिए गर्म बल्ब इंजन का विकास और अप्रत्यक्ष इंजेक्शन देखें।

संदर्भ

  1. Eastop & McConkey 1993, Applied Thermodynamics for Engineering Technologists, Pearson Education Limited, Fifth Edition, p.137
  2. "The Diesel Engine".


यह भी देखें

  • डीजल इंजन
  • हॉट बल्ब इंजन
  • मिश्रित/दोहरी चक्र
  • आंशिक रूप से पूर्व-मिश्रित दहन


श्रेणी।ऊष्मप्रवैगिकी चक्र