ऊर्जा मांग प्रबंधन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{short description|Modification of consumer energy usage during peak hours}}
{{short description|Modification of consumer energy usage during peak hours}}
ऊर्जा मांग प्रबंधन, जिसे मांग-पक्ष प्रबंधन (डीएसएम) या मांग-पक्ष प्रतिक्रिया (डीएसआर) के रूप में भी जाना जाता है,<ref>{{cite web|url=https://www.ofgem.gov.uk/electricity/retail-market/market-review-and-reform/smarter-markets-programme/electricity-system-flexibility|title=Electricity system flexibility|website=Ofgem|publisher=Government of United Kingdom|access-date=7 September 2016|date=2013-06-17|archive-date=2020-06-19|archive-url=https://web.archive.org/web/20200619043508/https://www.ofgem.gov.uk/electricity/retail-market/market-review-and-reform/smarter-markets-programme/electricity-system-flexibility|url-status=dead}}</ref> वित्तीय प्रोत्साहन और शिक्षा के माध्यम से व्यवहार परिवर्तन जैसे विभिन्न विधियों के माध्यम से उपभोक्ता [[ऊर्जा की मांग]] में संशोधन है।<ref>{{cite journal |doi=10.1109/TSG.2012.2216554 |title=Energy Imbalance Management Using a Robust Pricing Scheme |journal=IEEE Transactions on Smart Grid |volume=4 |issue=2 |pages=896–904 |year=2013 |last1=Chiu |first1=Wei-Yu |last2=Sun |first2=Hongjian |last3=Poor |first3=H. Vincent |arxiv=1705.02135 |s2cid=5752292 }}</ref>  
'''ऊर्जा मांग प्रबंधन''', जिसे मांग-पक्ष प्रबंधन (डीएसएम) या मांग-पक्ष प्रतिक्रिया (डीएसआर) के रूप में भी जाना जाता है,<ref>{{cite web|url=https://www.ofgem.gov.uk/electricity/retail-market/market-review-and-reform/smarter-markets-programme/electricity-system-flexibility|title=Electricity system flexibility|website=Ofgem|publisher=Government of United Kingdom|access-date=7 September 2016|date=2013-06-17|archive-date=2020-06-19|archive-url=https://web.archive.org/web/20200619043508/https://www.ofgem.gov.uk/electricity/retail-market/market-review-and-reform/smarter-markets-programme/electricity-system-flexibility|url-status=dead}}</ref> वित्तीय प्रोत्साहन और शिक्षा के माध्यम से व्यवहार परिवर्तन जैसे विभिन्न विधियों के माध्यम से उपभोक्ता [[ऊर्जा की मांग]] में संशोधन है।<ref>{{cite journal |doi=10.1109/TSG.2012.2216554 |title=Energy Imbalance Management Using a Robust Pricing Scheme |journal=IEEE Transactions on Smart Grid |volume=4 |issue=2 |pages=896–904 |year=2013 |last1=Chiu |first1=Wei-Yu |last2=Sun |first2=Hongjian |last3=Poor |first3=H. Vincent |arxiv=1705.02135 |s2cid=5752292 }}</ref>  


सामान्यतः, मांग-पक्ष प्रबंधन का लक्ष्य उपभोक्ताओं को पीक आवर्स के समय कम ऊर्जा का उपयोग करने के लिए प्रोत्साहित करना है, या रात के समय और सप्ताहांत जैसे ऑफ-पीक समय में ऊर्जा उपयोग के समय को स्थानांतरित करना है।<ref>{{cite web|url=http://www.energy.wa.gov.au/2/3203/64/demand_management.pm|title=Demand Management|website=Office of Energy|publisher=Government of Western Australia|access-date=30 November 2010|archive-url=https://web.archive.org/web/20120320214513/http://www.energy.wa.gov.au/2/3203/64/demand_management.pm|archive-date=20 March 2012|url-status=dead}}</ref> पीक डिमांड मैनेजमेंट आवश्यक रूप से कुल [[घरेलू ऊर्जा खपत|घरेलू ऊर्जा उपभोग]] को कम नहीं करता है, लेकिन पीक डिमांड को पूरा करने के लिए नेटवर्क और/या बिजली उत्पादन संयंत्रों में निवेश की आवश्यकता को कम करने की आशा की जा सकती है। एक उदाहरण ऑफ-पीक आवर्स के समय एनर्जी स्टोर करने और पीक आवर्स के समय डिस्चार्ज करने के लिए एनर्जी स्टोरेज यूनिट्स का उपयोग है।<ref>{{cite book|author1=Wei-Yu Chiu|author2=Hongjian Sun|author3=H.V. Poor|title=Demand-side energy storage system management in smart grid|journal= 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)|pages=73, 78, 5–8|date=November 2012|doi=10.1109/SmartGridComm.2012.6485962|isbn=978-1-4673-0910-3|s2cid=15881783 |url=http://dro.dur.ac.uk/11756/1/11756.pdf}}</ref>  
सामान्यतः, मांग-पक्ष प्रबंधन का लक्ष्य उपभोक्ताओं को पीक आवर्स के समय कम ऊर्जा का उपयोग करने के लिए प्रोत्साहित करना है, या रात के समय और सप्ताहांत जैसे ऑफ-पीक समय में ऊर्जा उपयोग के समय को स्थानांतरित करना है।<ref>{{cite web|url=http://www.energy.wa.gov.au/2/3203/64/demand_management.pm|title=Demand Management|website=Office of Energy|publisher=Government of Western Australia|access-date=30 November 2010|archive-url=https://web.archive.org/web/20120320214513/http://www.energy.wa.gov.au/2/3203/64/demand_management.pm|archive-date=20 March 2012|url-status=dead}}</ref> पीक डिमांड मैनेजमेंट आवश्यक रूप से कुल [[घरेलू ऊर्जा खपत|घरेलू ऊर्जा उपभोग]] को कम नहीं करता है, लेकिन पीक डिमांड को पूरा करने के लिए नेटवर्क और/या बिजली उत्पादन संयंत्रों में निवेश की आवश्यकता को कम करने की आशा की जा सकती है। एक उदाहरण ऑफ-पीक आवर्स के समय एनर्जी स्टोर करने और पीक आवर्स के समय डिस्चार्ज करने के लिए एनर्जी स्टोरेज यूनिट्स का उपयोग है।<ref>{{cite book|author1=Wei-Yu Chiu|author2=Hongjian Sun|author3=H.V. Poor|title=Demand-side energy storage system management in smart grid|journal= 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)|pages=73, 78, 5–8|date=November 2012|doi=10.1109/SmartGridComm.2012.6485962|isbn=978-1-4673-0910-3|s2cid=15881783 |url=http://dro.dur.ac.uk/11756/1/11756.pdf}}</ref>  
Line 6: Line 6:
डीएसएम के लिए एक नया आवेदन ग्रिड ऑपरेटरों को पवन और सौर इकाइयों से [[परिवर्तनीय नवीकरणीय ऊर्जा]] को संतुलित करने में सहायता करना है, विशेष रूप से जब डक वक्र अक्षय उत्पादन के साथ मेल नहीं खाता है। पीक डिमांड अवधि के समय लाइन पर लाए गए जेनरेटर अधिकांश जीवाश्म ईंधन इकाइयां होते हैं। उनके उपयोग को कम करने से कार्बन डाइऑक्साइड और अन्य प्रदूषकों के उत्सर्जन में कमी आती है।<ref>{{cite journal|author1=Jeffery Greenblatt|author2=Jane Long|title=California's Energy Future: Portraits of Energy Systems for Meeting Greenhouse Gas Reduction Targets|publisher=California Council on Science and Technology|pages=46–47|date=September 2012|url=http://ccst.us/publications/2012/2012ghg.pdf}}</ref><ref name="lund-etal-2015">{{cite journal |doi=10.1016/j.rser.2015.01.057 |title=Review of energy system flexibility measures to enable high levels of variable renewable electricity |journal=Renewable and Sustainable Energy Reviews |volume=45 |pages=785–807 |year=2015 |last1=Lund |first1=Peter D |last2=Lindgren |first2=Juuso |last3=Mikkola |first3=Jani |last4=Salpakari |first4=Jyri |url=https://aaltodoc.aalto.fi/handle/123456789/26558 }}</ref>
डीएसएम के लिए एक नया आवेदन ग्रिड ऑपरेटरों को पवन और सौर इकाइयों से [[परिवर्तनीय नवीकरणीय ऊर्जा]] को संतुलित करने में सहायता करना है, विशेष रूप से जब डक वक्र अक्षय उत्पादन के साथ मेल नहीं खाता है। पीक डिमांड अवधि के समय लाइन पर लाए गए जेनरेटर अधिकांश जीवाश्म ईंधन इकाइयां होते हैं। उनके उपयोग को कम करने से कार्बन डाइऑक्साइड और अन्य प्रदूषकों के उत्सर्जन में कमी आती है।<ref>{{cite journal|author1=Jeffery Greenblatt|author2=Jane Long|title=California's Energy Future: Portraits of Energy Systems for Meeting Greenhouse Gas Reduction Targets|publisher=California Council on Science and Technology|pages=46–47|date=September 2012|url=http://ccst.us/publications/2012/2012ghg.pdf}}</ref><ref name="lund-etal-2015">{{cite journal |doi=10.1016/j.rser.2015.01.057 |title=Review of energy system flexibility measures to enable high levels of variable renewable electricity |journal=Renewable and Sustainable Energy Reviews |volume=45 |pages=785–807 |year=2015 |last1=Lund |first1=Peter D |last2=Lindgren |first2=Juuso |last3=Mikkola |first3=Jani |last4=Salpakari |first4=Jyri |url=https://aaltodoc.aalto.fi/handle/123456789/26558 }}</ref>


डीएसएम शब्द 1973 के ऊर्जा संकट और 1979 के ऊर्जा संकट के समय के बाद निर्मित किया गया था।<ref>{{cite book|author=Torriti, Jacopo |year=2016|title=Peak energy demand and Demand Side Response|publisher=Routledge|url=https://www.routledge.com/products/9781138016255|isbn=9781138016255}}{{page needed|date=December 2017}}</ref> कई देशों की सरकारों ने मांग प्रबंधन के लिए विभिन्न कार्यक्रमों के प्रदर्शन को अनिवार्य कर दिया है। एक प्रारंभिक उदाहरण संयुक्त राज्य अमेरिका में 1978 का [[राष्ट्रीय ऊर्जा संरक्षण नीति अधिनियम]] है। जो., [[कैलिफोर्निया]] और [[विस्कॉन्सिन]] में इसी तरह की कार्रवाइयों से पहले हुआ था। 1980 के दशक में [[इलेक्ट्रिक पावर रिसर्च इंस्टीट्यूट]] (ईपीआरआई) द्वारा डिमांड-साइड मैनेजमेंट को सार्वजनिक रूप से प्रस्तुत किया गया था।<ref>{{cite book |doi=10.1109/ISET-India.2011.6145388 |chapter=Review of demand response under smart grid paradigm |title=ISGT2011-India |pages=236–43 |year=2011 |last1=Murthy Balijepalli |first1=V. S. K |last2=Pradhan |first2=Vedanta |last3=Khaparde |first3=S. A |last4=Shereef |first4=R. M |isbn=978-1-4673-0315-6 |s2cid=45654558 }}</ref> आजकल, डीएसएम प्रौद्योगिकियां सूचना और संचार प्रौद्योगिकी और बिजली व्यवस्था के एकीकरण, एकीकृत मांग-पक्ष प्रबंधन (आईडीएसएम), या [[समार्ट ग्रिड]] जैसी नई शर्तों के कारण तेजी से व्यवहार्य हो गई हैं।{{citation needed|date=December 2017}}
डीएसएम शब्द 1973 के ऊर्जा संकट और 1979 के ऊर्जा संकट के समय के बाद निर्मित किया गया था।<ref>{{cite book|author=Torriti, Jacopo |year=2016|title=Peak energy demand and Demand Side Response|publisher=Routledge|url=https://www.routledge.com/products/9781138016255|isbn=9781138016255}}{{page needed|date=December 2017}}</ref> कई देशों की सरकारों ने मांग प्रबंधन के लिए विभिन्न कार्यक्रमों के प्रदर्शन को अनिवार्य कर दिया है। एक प्रारंभिक उदाहरण संयुक्त राज्य अमेरिका में 1978 का [[राष्ट्रीय ऊर्जा संरक्षण नीति अधिनियम]] है। जो., [[कैलिफोर्निया]] और [[विस्कॉन्सिन]] में इसी तरह की कार्रवाइयों से पहले हुआ था। 1980 के दशक में [[इलेक्ट्रिक पावर रिसर्च इंस्टीट्यूट]] (ईपीआरआई) द्वारा डिमांड-साइड मैनेजमेंट को सार्वजनिक रूप से प्रस्तुत किया गया था।<ref>{{cite book |doi=10.1109/ISET-India.2011.6145388 |chapter=Review of demand response under smart grid paradigm |title=ISGT2011-India |pages=236–43 |year=2011 |last1=Murthy Balijepalli |first1=V. S. K |last2=Pradhan |first2=Vedanta |last3=Khaparde |first3=S. A |last4=Shereef |first4=R. M |isbn=978-1-4673-0315-6 |s2cid=45654558 }}</ref> आजकल, डीएसएम प्रौद्योगिकियां सूचना और संचार प्रौद्योगिकी और बिजली व्यवस्था के एकीकरण, एकीकृत मांग-पक्ष प्रबंधन (आईडीएसएम), या [[समार्ट ग्रिड]] जैसी नई शर्तों के कारण तेजी से व्यवहार्य हो गई हैं।
 




Line 13: Line 14:
अमेरिकी इलेक्ट्रिक पावर उद्योग मूल रूप से विदेशी ऊर्जा आयात पर बहुत अधिक निर्भर करता था, चाहे वह उपभोज्य बिजली या जीवाश्म ईंधन के रूप में हो, जो तब बिजली का उत्पादन करने के लिए उपयोग किया जाता था। 1970 के दशक में ऊर्जा संकट के समय, संघीय सरकार ने विदेशी तेल पर निर्भरता कम करने और [[कुशल ऊर्जा उपयोग]] और वैकल्पिक ऊर्जा स्रोतों को बढ़ावा देने की आशा में [[सार्वजनिक उपयोगिता नियामक नीतियां अधिनियम]] (पीयूआरपीए) पारित किया। इस अधिनियम ने यूटिलिटीज को स्वतंत्र बिजली उत्पादकों से सबसे सस्ती संभव बिजली प्राप्त करने के लिए विवश किया, जिसने बदले में नवीकरणीय ऊर्जा को बढ़ावा दिया और उपयोगिता को उनकी जरूरत की बिजली की मात्रा को कम करने के लिए प्रोत्साहित किया, इसलिए ऊर्जा दक्षता और मांग प्रबंधन के लिए आगे के एजेंडे को आगे बढ़ाया।<ref>{{cite web |title=Public Utility Regulatory Policy Act (PURPA) |url=http://www.ucsusa.org/clean_energy/smart-energy-solutions/strengthen-policy/public-utility-regulatory.html |access-date=3 December 2016 |website=UCSUSA |publisher=UCSUSA}}</ref>
अमेरिकी इलेक्ट्रिक पावर उद्योग मूल रूप से विदेशी ऊर्जा आयात पर बहुत अधिक निर्भर करता था, चाहे वह उपभोज्य बिजली या जीवाश्म ईंधन के रूप में हो, जो तब बिजली का उत्पादन करने के लिए उपयोग किया जाता था। 1970 के दशक में ऊर्जा संकट के समय, संघीय सरकार ने विदेशी तेल पर निर्भरता कम करने और [[कुशल ऊर्जा उपयोग]] और वैकल्पिक ऊर्जा स्रोतों को बढ़ावा देने की आशा में [[सार्वजनिक उपयोगिता नियामक नीतियां अधिनियम]] (पीयूआरपीए) पारित किया। इस अधिनियम ने यूटिलिटीज को स्वतंत्र बिजली उत्पादकों से सबसे सस्ती संभव बिजली प्राप्त करने के लिए विवश किया, जिसने बदले में नवीकरणीय ऊर्जा को बढ़ावा दिया और उपयोगिता को उनकी जरूरत की बिजली की मात्रा को कम करने के लिए प्रोत्साहित किया, इसलिए ऊर्जा दक्षता और मांग प्रबंधन के लिए आगे के एजेंडे को आगे बढ़ाया।<ref>{{cite web |title=Public Utility Regulatory Policy Act (PURPA) |url=http://www.ucsusa.org/clean_energy/smart-energy-solutions/strengthen-policy/public-utility-regulatory.html |access-date=3 December 2016 |website=UCSUSA |publisher=UCSUSA}}</ref>


वर्तमान मौसम पैटर्न के आधार पर बिजली का उपयोग कम और मध्यम समय सीमा में नाटकीय रूप से भिन्न हो सकता है। सामान्यतः थोक बिजली प्रणाली अतिरिक्त या कम उत्पादन भेजकर बदलती मांग को समायोजित करती है। चूंकि, पीक अवधि के समय, अतिरिक्त पीढ़ी की आपूर्ति सामान्यतः कम कुशल (पीकिंग) स्रोतों द्वारा की जाती है। दुर्भाग्य से, इन चरम स्रोतों का उपयोग करने की तात्कालिक वित्तीय और पर्यावरणीय लागत आवश्यक रूप से खुदरा मूल्य निर्धारण प्रणाली में परिलक्षित नहीं होती है। इसके अतिरिक्त, बिजली उपभोक्ताओं की मांग ([[मांग की लोच]]) को बदलकर मूल्य संकेतों को समायोजित करने की क्षमता या इच्छा विशेष रूप से कम समय के फ्रेम में कम हो सकती है। कई बाजारों में, उपभोक्ताओं (विशेष रूप से खुदरा ग्राहकों) को वास्तविक समय मूल्य निर्धारण का सामना नहीं करना पड़ता है, लेकिन औसत वार्षिक लागत या अन्य निर्मित कीमतों के आधार पर दरों का भुगतान करते हैं।{{citation needed|date=December 2017}}
वर्तमान मौसम पैटर्न के आधार पर बिजली का उपयोग कम और मध्यम समय सीमा में नाटकीय रूप से भिन्न हो सकता है। सामान्यतः थोक बिजली प्रणाली अतिरिक्त या कम उत्पादन भेजकर बदलती मांग को समायोजित करती है। चूंकि, पीक अवधि के समय, अतिरिक्त पीढ़ी की आपूर्ति सामान्यतः कम कुशल (पीकिंग) स्रोतों द्वारा की जाती है। दुर्भाग्य से, इन चरम स्रोतों का उपयोग करने की तात्कालिक वित्तीय और पर्यावरणीय लागत आवश्यक रूप से खुदरा मूल्य निर्धारण प्रणाली में परिलक्षित नहीं होती है। इसके अतिरिक्त, बिजली उपभोक्ताओं की मांग ([[मांग की लोच]]) को बदलकर मूल्य संकेतों को समायोजित करने की क्षमता या इच्छा विशेष रूप से कम समय के फ्रेम में कम हो सकती है। कई बाजारों में, उपभोक्ताओं (विशेष रूप से खुदरा ग्राहकों) को वास्तविक समय मूल्य निर्धारण का सामना नहीं करना पड़ता है, लेकिन औसत वार्षिक लागत या अन्य निर्मित कीमतों के आधार पर दरों का भुगतान करते हैं।


ऊर्जा मांग प्रबंधन गतिविधियाँ बिजली की मांग और आपूर्ति को एक कथित इष्टतम के निकट लाने का प्रयास करती हैं, और बिजली के अंतिम उपयोगकर्ताओं को उनकी मांग को कम करने के लिए लाभ देने में सहायता करती हैं। आधुनिक प्रणाली में, मांग-पक्ष प्रबंधन के लिए एकीकृत दृष्टिकोण उत्तरोत्तर सामान्य होता जा रहा है। आईडीएसएम स्वचालित रूप से सिस्टम की स्थितियों के आधार पर लोड शेड करने के लिए एंड-यूज़ सिस्टम को सिग्नल भेजता है। यह मांग की बहुत त्रुटिहीन ट्यूनिंग की अनुमति देता है जिससे यह सुनिश्चित किया जा सके कि यह हर समय आपूर्ति से मेल खाता है, और उपयोगिता के लिए पूंजीगत व्यय को कम करता है। महत्वपूर्ण प्रणाली की स्थिति चरम समय हो सकती है, या चर नवीकरणीय ऊर्जा के स्तर वाले क्षेत्रों में, ऐसे समय के समय जब मांग को ऊपर की ओर समायोजित किया जाना चाहिए जिससे अति-पीढ़ी से बचा जा सके या रैंप की जरूरतों को पूरा करने में सहायता मिल सके।{{citation needed|date=December 2017}}
ऊर्जा मांग प्रबंधन गतिविधियाँ बिजली की मांग और आपूर्ति को एक कथित इष्टतम के निकट लाने का प्रयास करती हैं, और बिजली के अंतिम उपयोगकर्ताओं को उनकी मांग को कम करने के लिए लाभ देने में सहायता करती हैं। आधुनिक प्रणाली में, मांग-पक्ष प्रबंधन के लिए एकीकृत दृष्टिकोण उत्तरोत्तर सामान्य होता जा रहा है। आईडीएसएम स्वचालित रूप से सिस्टम की स्थितियों के आधार पर लोड शेड करने के लिए एंड-यूज़ सिस्टम को सिग्नल भेजता है। यह मांग की बहुत त्रुटिहीन ट्यूनिंग की अनुमति देता है जिससे यह सुनिश्चित किया जा सके कि यह हर समय आपूर्ति से मेल खाता है, और उपयोगिता के लिए पूंजीगत व्यय को कम करता है। महत्वपूर्ण प्रणाली की स्थिति चरम समय हो सकती है, या चर नवीकरणीय ऊर्जा के स्तर वाले क्षेत्रों में, ऐसे समय के समय जब मांग को ऊपर की ओर समायोजित किया जाना चाहिए जिससे अति-पीढ़ी से बचा जा सके या रैंप की जरूरतों को पूरा करने में सहायता मिल सके।


सामान्य तौर पर, मूल्य संकेतों की प्रतिक्रियाओं के माध्यम से मांग में समायोजन विभिन्न विधियों से हो सकता है:  जैसे कि शाम और दिन के समय के लिए स्थायी अंतर दर या कभी-कभी उच्च मूल्य वाले उपयोग के दिन, [[घर का नेटवर्क]] के माध्यम से प्राप्त व्यवहार परिवर्तन, स्वचालित नियंत्रण जैसे दूर से नियंत्रित हवा के साथ -कंडीशनर, या ऊर्जा कुशल उपकरणों के साथ स्थायी लोड समायोजन के साथ।{{citation needed|date=December 2017}}
सामान्य तौर पर, मूल्य संकेतों की प्रतिक्रियाओं के माध्यम से मांग में समायोजन विभिन्न विधियों से हो सकता है:  जैसे कि शाम और दिन के समय के लिए स्थायी अंतर दर या कभी-कभी उच्च मूल्य वाले उपयोग के दिन, [[घर का नेटवर्क]] के माध्यम से प्राप्त व्यवहार परिवर्तन, स्वचालित नियंत्रण जैसे दूर से नियंत्रित हवा के साथ -कंडीशनर, या ऊर्जा कुशल उपकरणों के साथ स्थायी लोड समायोजन के साथ।


== तार्किक नींव ==
== तार्किक नींव ==
बाजार के खिलाड़ियों और सरकार ([[विनियमन]] और कराधान) के कार्यों से किसी भी वस्तु की मांग को संशोधित किया जा सकता है। ऊर्जा मांग प्रबंधन का अर्थ उन कार्यों से है जो ऊर्जा की मांग को प्रभावित करते हैं। डीएसएम मूल रूप से बिजली में अपनाया गया था, लेकिन आज यह पानी और गैस सहित उपयोगिताओं के लिए व्यापक रूप से प्रायुक्त होता है।{{citation needed|date=December 2017}}
बाजार के खिलाड़ियों और सरकार ([[विनियमन]] और कराधान) के कार्यों से किसी भी वस्तु की मांग को संशोधित किया जा सकता है। ऊर्जा मांग प्रबंधन का अर्थ उन कार्यों से है जो ऊर्जा की मांग को प्रभावित करते हैं। डीएसएम मूल रूप से बिजली में अपनाया गया था, लेकिन आज यह पानी और गैस सहित उपयोगिताओं के लिए व्यापक रूप से प्रायुक्त होता है।


ऊर्जा की मांग को कम करना आधुनिक औद्योगिक इतिहास के अधिकांश समय में ऊर्जा आपूर्तिकर्ताओं और सरकारों दोनों के विपरीत है। जबकि अधिकांश औद्योगिक युग के समय विभिन्न ऊर्जा रूपों की वास्तविक कीमतें घट रही हैं, और पैमाने और प्रौद्योगिकी की अर्थव्यवस्थाओं के कारण, इसके भविष्य की अपेक्षा विपरीत है। पहले, ऊर्जा के उपयोग को बढ़ावा देना अनुचित नहीं था क्योंकि भविष्य में अधिक प्रचुर और सस्ते ऊर्जा स्रोतों का अनुमान लगाया जा सकता था या आपूर्तिकर्ता ने अतिरिक्त क्षमता स्थापित की थी जिसे उपभोग बढ़ने से अधिक लाभदायक बनाया जाएगा।{{citation needed|date=December 2017}}
ऊर्जा की मांग को कम करना आधुनिक औद्योगिक इतिहास के अधिकांश समय में ऊर्जा आपूर्तिकर्ताओं और सरकारों दोनों के विपरीत है। जबकि अधिकांश औद्योगिक युग के समय विभिन्न ऊर्जा रूपों की वास्तविक कीमतें घट रही हैं, और पैमाने और प्रौद्योगिकी की अर्थव्यवस्थाओं के कारण, इसके भविष्य की अपेक्षा विपरीत है। पहले, ऊर्जा के उपयोग को बढ़ावा देना अनुचित नहीं था क्योंकि भविष्य में अधिक प्रचुर और सस्ते ऊर्जा स्रोतों का अनुमान लगाया जा सकता था या आपूर्तिकर्ता ने अतिरिक्त क्षमता स्थापित की थी जिसे उपभोग बढ़ने से अधिक लाभदायक बनाया जाएगा।


नियोजित अर्थव्यवस्था में सब्सिडी ऊर्जा मुख्य आर्थिक विकास उपकरणों में से एक थी। कुछ देशों में ऊर्जा आपूर्ति उद्योग को सब्सिडी अभी भी सामान्य है।{{citation needed|date=December 2017}}
नियोजित अर्थव्यवस्था में सब्सिडी ऊर्जा मुख्य आर्थिक विकास उपकरणों में से एक थी। कुछ देशों में ऊर्जा आपूर्ति उद्योग को सब्सिडी अभी भी सामान्य है।
 
ऐतिहासिक स्थिति के विपरीत, ऊर्जा की कीमतों और उपलब्धता में गिरावट की संभावना है। सरकारें और अन्य सार्वजनिक अभिनेता, यदि स्वयं ऊर्जा आपूर्तिकर्ता नहीं हैं, तो ऊर्जा की मांग के उपायों को नियोजित करने के लिए प्रवृत्त हैं जो ऊर्जा उपभोग की दक्षता में वृद्धि करेंगे।


ऐतिहासिक स्थिति के विपरीत, ऊर्जा की कीमतों और उपलब्धता में गिरावट की संभावना है। सरकारें और अन्य सार्वजनिक अभिनेता, यदि स्वयं ऊर्जा आपूर्तिकर्ता नहीं हैं, तो ऊर्जा की मांग के उपायों को नियोजित करने के लिए प्रवृत्त हैं जो ऊर्जा उपभोग की दक्षता में वृद्धि करेंगे।{{citation needed|date=December 2017}}




Line 32: Line 34:
== प्रकार ==
== प्रकार ==


*कुशल ऊर्जा उपयोग: समान कार्यों को करने के लिए कम शक्ति का उपयोग करना। इसमें वॉटर हीटर, रेफ्रिजरेटर, या वाशिंग मशीन जैसे अधिक कुशल भार-गहन उपकरणों का उपयोग करके मांग में स्थायी कमी सम्मिलित है।<ref>{{cite web|url=http://www.ucsusa.org/clean_energy/smart-energy-solutions/strengthen-policy/public-utility-regulatory.html|website=ACEEE|publisher=ACEEE|access-date=3 December 2016|title=Public Utility Regulatory Policy Act (PURPA)}}</ref>{{Not in cited source|date=January 2023|reason=does not say energy efficiency part of demand management}}
*कुशल ऊर्जा उपयोग: समान कार्यों को करने के लिए कम शक्ति का उपयोग करना। इसमें वॉटर हीटर, रेफ्रिजरेटर, या वाशिंग मशीन जैसे अधिक कुशल भार-गहन उपकरणों का उपयोग करके मांग में स्थायी कमी सम्मिलित है।<ref>{{cite web|url=http://www.ucsusa.org/clean_energy/smart-energy-solutions/strengthen-policy/public-utility-regulatory.html|website=ACEEE|publisher=ACEEE|access-date=3 December 2016|title=Public Utility Regulatory Policy Act (PURPA)}}</ref>
*मांग प्रतिक्रिया: मांग को कम करने, समतल करने या स्थानांतरित करने के लिए कोई भी प्रतिक्रियाशील या निवारक विधि। ऐतिहासिक रूप से, मांग प्रतिक्रिया कार्यक्रमों ने उत्पादन क्षमता के निर्माण की उच्च लागत को टालने के लिए चरम कमी पर ध्यान केंद्रित किया है। चूंकि, मांग प्रतिक्रिया कार्यक्रमों को अब परिवर्तनीय अक्षय ऊर्जा के एकीकरण में सहायता के लिए नेट लोड आकार को बदलने के साथ-साथ लोड माइनस सौर और पवन उत्पादन में सहायता के लिए देखा जा रहा है।<ref>Sila Kiliccote; Pamela Sporborg; Imran Sheikh; Erich Huffaker; and Mary Ann Piette; "Integrating Renewable Resources in California and the Role of Automated Demand Response," Lawrence Berkeley National Lab (Environmental Energy Technologies Division), Nov. 2010</ref> मांग प्रतिक्रिया में अंतिम उपयोगकर्ता ग्राहकों की बिजली की उपभोग पैटर्न के सभी जानबूझकर संशोधन सम्मिलित हैं जो समय, तात्कालिक मांग के स्तर या कुल बिजली उपभोग को बदलने का इरादा रखते हैं।<ref>{{cite book |doi=10.1109/PES.2007.385728 |chapter=Demand Response in Electricity Markets: An Overview |title=2007 IEEE Power Engineering Society General Meeting |pages=1–5 |year=2007 |last1=Albadi |first1=M. H |last2=El-Saadany |first2=E. F |isbn=978-1-4244-1296-9 |s2cid=38985063 }}</ref> डिमांड रिस्पोंस का अर्थ उन व्यापक कार्रवाईयों से है, जिन्हें बिजली मीटर के ग्राहक की ओर से बिजली व्यवस्था के अन्दर विशेष परिस्थितियों (जैसे पीक पीरियड नेटवर्क कंजेशन या उच्च कीमतों) के उत्तर में लिया जा सकता है, जिसमें उपरोक्त आईडीएसएम भी सम्मिलित है।<ref>{{cite journal |doi=10.1016/j.energy.2009.05.021 |title=Demand response experience in Europe: Policies, programmes and implementation |journal=Energy |volume=35 |issue=4 |pages=1575–83 |year=2010 |last1=Torriti |first1=Jacopo |last2=Hassan |first2=Mohamed G |last3=Leach |first3=Matthew |url=http://epubs.surrey.ac.uk/749580/1/DR%20experience%20in%20Europe.pdf }}</ref>
*मांग प्रतिक्रिया: मांग को कम करने, समतल करने या स्थानांतरित करने के लिए कोई भी प्रतिक्रियाशील या निवारक विधि। ऐतिहासिक रूप से, मांग प्रतिक्रिया कार्यक्रमों ने उत्पादन क्षमता के निर्माण की उच्च लागत को टालने के लिए चरम कमी पर ध्यान केंद्रित किया है। चूंकि, मांग प्रतिक्रिया कार्यक्रमों को अब परिवर्तनीय अक्षय ऊर्जा के एकीकरण में सहायता के लिए नेट लोड आकार को बदलने के साथ-साथ लोड माइनस सौर और पवन उत्पादन में सहायता के लिए देखा जा रहा है।<ref>Sila Kiliccote; Pamela Sporborg; Imran Sheikh; Erich Huffaker; and Mary Ann Piette; "Integrating Renewable Resources in California and the Role of Automated Demand Response," Lawrence Berkeley National Lab (Environmental Energy Technologies Division), Nov. 2010</ref> मांग प्रतिक्रिया में अंतिम उपयोगकर्ता ग्राहकों की बिजली की उपभोग पैटर्न के सभी जानबूझकर संशोधन सम्मिलित हैं जो समय, तात्कालिक मांग के स्तर या कुल बिजली उपभोग को बदलने का इरादा रखते हैं।<ref>{{cite book |doi=10.1109/PES.2007.385728 |chapter=Demand Response in Electricity Markets: An Overview |title=2007 IEEE Power Engineering Society General Meeting |pages=1–5 |year=2007 |last1=Albadi |first1=M. H |last2=El-Saadany |first2=E. F |isbn=978-1-4244-1296-9 |s2cid=38985063 }}</ref> डिमांड रिस्पोंस का अर्थ उन व्यापक कार्रवाईयों से है, जिन्हें बिजली मीटर के ग्राहक की ओर से बिजली व्यवस्था के अन्दर विशेष परिस्थितियों (जैसे पीक पीरियड नेटवर्क कंजेशन या उच्च कीमतों) के उत्तर में लिया जा सकता है, जिसमें उपरोक्त आईडीएसएम भी सम्मिलित है।<ref>{{cite journal |doi=10.1016/j.energy.2009.05.021 |title=Demand response experience in Europe: Policies, programmes and implementation |journal=Energy |volume=35 |issue=4 |pages=1575–83 |year=2010 |last1=Torriti |first1=Jacopo |last2=Hassan |first2=Mohamed G |last3=Leach |first3=Matthew |url=http://epubs.surrey.ac.uk/749580/1/DR%20experience%20in%20Europe.pdf }}</ref>
*डायनेमिक डिमांड (इलेक्ट्रिक पावर): लोड के सेट के विविधता कारक को बढ़ाने के लिए कुछ सेकंड के लिए एप्लायंस ऑपरेटिंग साइकिल को एडवांस या डिले करें। अवधारणा यह है कि पावर ग्रिड के [[शक्ति तत्व]] की निगरानी के साथ-साथ अपने स्वयं के नियंत्रण पैरामीटर, अलग-अलग, आंतरायिक भार उत्पादन के साथ समग्र सिस्टम लोड को संतुलित करने के लिए इष्टतम क्षणों पर चालू या बंद हो जाएंगे, जिससे महत्वपूर्ण शक्ति बेमेल को कम किया जा सकेगा। चूंकि यह स्विचिंग केवल कुछ सेकंड के लिए उपकरण संचालन चक्र को आगे या देरी करेगा, यह अंतिम उपयोगकर्ता के लिए ध्यान देने योग्य नहीं होगा। संयुक्त राज्य अमेरिका में, 1982 में, इस विचार के लिए (अब व्यपगत) पेटेंट पावर सिस्टम इंजीनियर फ्रेड श्वेपे को जारी किया गया था।<ref>{{Cite patent|number=4317049|title=Frequency adaptive, power-energy re-scheduler|gdate=1982-02-23|invent1=Schweppe|inventor1-first=Fred C.|url=https://www.freepatentsonline.com/4317049.html}}</ref> इस प्रकार के डायनेमिक डिमांड कंट्रोल का उपयोग अधिकांश एयर-कंडीशनर के लिए किया जाता है। इसका एक उदाहरण कैलिफोर्निया में स्मार्टएसी कार्यक्रम के माध्यम से है।<ref>{{cite web|url=https://www.pge.com/en_US/residential/save-energy-money/savings-solutions-and-rebates/smart-ac/smart-ac.page|website=PG&E|access-date=17 February 2021|title=PG&E Smart AC information|archive-url=https://web.archive.org/web/20201125055425/https://www.pge.com/en_US/residential/save-energy-money/savings-solutions-and-rebates/smart-ac/smart-ac.page|archive-date=2020-11-25|url-status=live}}</ref>
*डायनेमिक डिमांड (इलेक्ट्रिक पावर): लोड के सेट के विविधता कारक को बढ़ाने के लिए कुछ सेकंड के लिए एप्लायंस ऑपरेटिंग साइकिल को एडवांस या डिले करें। अवधारणा यह है कि पावर ग्रिड के [[शक्ति तत्व]] की निगरानी के साथ-साथ अपने स्वयं के नियंत्रण पैरामीटर, अलग-अलग, आंतरायिक भार उत्पादन के साथ समग्र सिस्टम लोड को संतुलित करने के लिए इष्टतम क्षणों पर चालू या बंद हो जाएंगे, जिससे महत्वपूर्ण शक्ति बेमेल को कम किया जा सकेगा। चूंकि यह स्विचिंग केवल कुछ सेकंड के लिए उपकरण संचालन चक्र को आगे या देरी करेगा, यह अंतिम उपयोगकर्ता के लिए ध्यान देने योग्य नहीं होगा। संयुक्त राज्य अमेरिका में, 1982 में, इस विचार के लिए (अब व्यपगत) पेटेंट पावर सिस्टम इंजीनियर फ्रेड श्वेपे को जारी किया गया था।<ref>{{Cite patent|number=4317049|title=Frequency adaptive, power-energy re-scheduler|gdate=1982-02-23|invent1=Schweppe|inventor1-first=Fred C.|url=https://www.freepatentsonline.com/4317049.html}}</ref> इस प्रकार के डायनेमिक डिमांड कंट्रोल का उपयोग अधिकांश एयर-कंडीशनर के लिए किया जाता है। इसका एक उदाहरण कैलिफोर्निया में स्मार्टएसी कार्यक्रम के माध्यम से है।<ref>{{cite web|url=https://www.pge.com/en_US/residential/save-energy-money/savings-solutions-and-rebates/smart-ac/smart-ac.page|website=PG&E|access-date=17 February 2021|title=PG&E Smart AC information|archive-url=https://web.archive.org/web/20201125055425/https://www.pge.com/en_US/residential/save-energy-money/savings-solutions-and-rebates/smart-ac/smart-ac.page|archive-date=2020-11-25|url-status=live}}</ref>
*[[वितरित ऊर्जा संसाधन]]:{{Cn|date=January 2023}} वितरित उत्पादन, साथ ही वितरित ऊर्जा, ऑन-साइट उत्पादन (ओएसजी) या जिला/विकेंद्रीकृत ऊर्जा विद्युत उत्पादन और भंडारण है जो विभिन्न प्रकार के छोटे, ग्रिड से जुड़े उपकरणों द्वारा किया जाता है जिसे वितरित ऊर्जा संसाधन (डीईआर) कहा जाता है। पारंपरिक बिजली स्टेशन, जैसे कोयले से चलने वाले, गैस और परमाणु ऊर्जा से चलने वाले संयंत्र, साथ ही पनबिजली बांध और बड़े पैमाने पर सौर ऊर्जा स्टेशन, केंद्रीकृत होते हैं और अधिकांश लंबी दूरी पर संचारित होने के लिए विद्युत ऊर्जा की आवश्यकता होती है। इसके विपरीत, डीईआर सिस्टम विकेन्द्रीकृत, मॉड्यूलर और अधिक लचीली प्रौद्योगिकियां हैं, जो कि केवल 10 मेगावाट (मेगावाट) या उससे कम की क्षमता वाले होने के अतिरिक्त वे लोड के निकट स्थित हैं। इन प्रणालियों में कई पीढ़ी और भंडारण घटक सम्मिलित हो सकते हैं; इस उदाहरण में उन्हें हाइब्रिड पावर सिस्टम के रूप में जाना जाता है। डीईआर सिस्टम सामान्यतः अक्षय ऊर्जा स्रोतों का उपयोग करते हैं, जिनमें छोटे हाइड्रो, बायोमास, बायोगैस, सौर ऊर्जा, पवन ऊर्जा और भू-तापीय शक्ति सम्मिलित हैं, और तेजी से बिजली वितरण प्रणाली के लिए एक महत्वपूर्ण भूमिका निभाते हैं। बिजली भंडारण के लिए ग्रिड से जुड़े उपकरण को भी डीईआर प्रणाली के रूप में वर्गीकृत किया जा सकता है, और इसे अधिकांश वितरित ऊर्जा भंडारण प्रणाली (डीईएसएस) कहा जाता है। एक इंटरफेस के माध्यम से, डीईआर सिस्टम को स्मार्ट ग्रिड के अन्दर प्रबंधित और समन्वित किया जा सकता है। वितरित उत्पादन और भंडारण कई स्रोतों से ऊर्जा के संग्रह को सक्षम बनाता है और पर्यावरणीय प्रभावों को कम कर सकता है और आपूर्ति की सुरक्षा में सुधार कर सकता है।
*[[वितरित ऊर्जा संसाधन]]: वितरित उत्पादन, साथ ही वितरित ऊर्जा, ऑन-साइट उत्पादन (ओएसजी) या जिला/विकेंद्रीकृत ऊर्जा विद्युत उत्पादन और भंडारण है जो विभिन्न प्रकार के छोटे, ग्रिड से जुड़े उपकरणों द्वारा किया जाता है जिसे वितरित ऊर्जा संसाधन (डीईआर) कहा जाता है। पारंपरिक बिजली स्टेशन, जैसे कोयले से चलने वाले, गैस और परमाणु ऊर्जा से चलने वाले संयंत्र, साथ ही पनबिजली बांध और बड़े पैमाने पर सौर ऊर्जा स्टेशन, केंद्रीकृत होते हैं और अधिकांश लंबी दूरी पर संचारित होने के लिए विद्युत ऊर्जा की आवश्यकता होती है। इसके विपरीत, डीईआर सिस्टम विकेन्द्रीकृत, मॉड्यूलर और अधिक लचीली प्रौद्योगिकियां हैं, जो कि केवल 10 मेगावाट (मेगावाट) या उससे कम की क्षमता वाले होने के अतिरिक्त वे लोड के निकट स्थित हैं। इन प्रणालियों में कई पीढ़ी और भंडारण घटक सम्मिलित हो सकते हैं; इस उदाहरण में उन्हें हाइब्रिड पावर सिस्टम के रूप में जाना जाता है। डीईआर सिस्टम सामान्यतः अक्षय ऊर्जा स्रोतों का उपयोग करते हैं, जिनमें छोटे हाइड्रो, बायोमास, बायोगैस, सौर ऊर्जा, पवन ऊर्जा और भू-तापीय शक्ति सम्मिलित हैं, और तेजी से बिजली वितरण प्रणाली के लिए एक महत्वपूर्ण भूमिका निभाते हैं। बिजली भंडारण के लिए ग्रिड से जुड़े उपकरण को भी डीईआर प्रणाली के रूप में वर्गीकृत किया जा सकता है, और इसे अधिकांश वितरित ऊर्जा भंडारण प्रणाली (डीईएसएस) कहा जाता है। एक इंटरफेस के माध्यम से, डीईआर सिस्टम को स्मार्ट ग्रिड के अन्दर प्रबंधित और समन्वित किया जा सकता है। वितरित उत्पादन और भंडारण कई स्रोतों से ऊर्जा के संग्रह को सक्षम बनाता है और पर्यावरणीय प्रभावों को कम कर सकता है और आपूर्ति की सुरक्षा में सुधार कर सकता है।


== पैमाना ==
== पैमाना ==
Line 78: Line 80:
ब्राजील की स्थिति में, ब्राजील में अक्षय ऊर्जा के उत्पादन के अतिरिक्त  [[पनबिजली]] पावर उत्पादन प्रणाली में व्यावहारिक संतुलन प्राप्त करने के लिए कुल 80% से अधिक के अनुरूप है, हाइड्रोइलेक्ट्रिक संयंत्रों द्वारा उत्पन्न ऊर्जा चरम मांग के नीचे उपभोग की आपूर्ति करती है। पीक पीढ़ी की आपूर्ति जीवाश्म-ईंधन बिजली संयंत्रों के उपयोग से की जाती है। 2008 में, ब्राजील के उपभोक्ताओं ने U$1 बिलियन से अधिक का भुगतान किया<ref>{{cite journal|author=CCEE|year=2008|title=Relatório de Informações ao Público|journal=Análise Anual|url=http://www.ccee.org.br/StaticFile/Arquivo/biblioteca_virtual/Relatorios_Publico/Anual/relatorio_anual_2008.pdf|url-status=dead|archive-url=https://web.archive.org/web/20101214162214/http://www.ccee.org.br/StaticFile/Arquivo/biblioteca_virtual/Relatorios_Publico/Anual/relatorio_anual_2008.pdf|archive-date=2010-12-14}}</ref> पूरक थर्मोइलेक्ट्रिक उत्पादन के लिए पहले प्रोग्राम नहीं किया गया।
ब्राजील की स्थिति में, ब्राजील में अक्षय ऊर्जा के उत्पादन के अतिरिक्त  [[पनबिजली]] पावर उत्पादन प्रणाली में व्यावहारिक संतुलन प्राप्त करने के लिए कुल 80% से अधिक के अनुरूप है, हाइड्रोइलेक्ट्रिक संयंत्रों द्वारा उत्पन्न ऊर्जा चरम मांग के नीचे उपभोग की आपूर्ति करती है। पीक पीढ़ी की आपूर्ति जीवाश्म-ईंधन बिजली संयंत्रों के उपयोग से की जाती है। 2008 में, ब्राजील के उपभोक्ताओं ने U$1 बिलियन से अधिक का भुगतान किया<ref>{{cite journal|author=CCEE|year=2008|title=Relatório de Informações ao Público|journal=Análise Anual|url=http://www.ccee.org.br/StaticFile/Arquivo/biblioteca_virtual/Relatorios_Publico/Anual/relatorio_anual_2008.pdf|url-status=dead|archive-url=https://web.archive.org/web/20101214162214/http://www.ccee.org.br/StaticFile/Arquivo/biblioteca_virtual/Relatorios_Publico/Anual/relatorio_anual_2008.pdf|archive-date=2010-12-14}}</ref> पूरक थर्मोइलेक्ट्रिक उत्पादन के लिए पहले प्रोग्राम नहीं किया गया।


ब्राजील में, उपभोक्ता ऊर्जा प्रदान करने के लिए सभी निवेशों का भुगतान करता है, चाहे कोई संयंत्र व्यर्थ बैठा हो। अधिकांश जीवाश्म-ईंधन ताप संयंत्रों के लिए, उपभोक्ता ईंधन और अन्य संचालन लागतों का भुगतान तभी करते हैं जब ये संयंत्र ऊर्जा उत्पन्न करते हैं। ऊर्जा, प्रति यूनिट उत्पन्न, पनबिजली की तुलना में तापीय संयंत्रों से अधिक महंगी है। ब्राजील के केवल कुछ थर्मोइलेक्ट्रिक संयंत्र [[प्राकृतिक गैस]] का उपयोग करते हैं, इसलिए वे जलविद्युत संयंत्रों की तुलना में बहुत अधिक [[प्रदूषण]] करते हैं। चरम मांग को पूरा करने के लिए उत्पन्न बिजली की उच्च लागत होती है - निवेश और परिचालन लागत दोनों - और प्रदूषण की एक महत्वपूर्ण पर्यावरणीय लागत होती है और संभावित रूप से इसके उपयोग के लिए वित्तीय और सामाजिक दायित्व होता है। इस प्रकार, वर्तमान प्रणाली का विस्तार और संचालन उतना कुशल नहीं है जितना कि यह मांग पक्ष प्रबंधन का उपयोग कर सकता है। इस अक्षमता का परिणाम उपभोक्ताओं पर डाले जाने वाले ऊर्जा शुल्कों में वृद्धि है।{{citation needed|date=December 2017}}
ब्राजील में, उपभोक्ता ऊर्जा प्रदान करने के लिए सभी निवेशों का भुगतान करता है, चाहे कोई संयंत्र व्यर्थ बैठा हो। अधिकांश जीवाश्म-ईंधन ताप संयंत्रों के लिए, उपभोक्ता ईंधन और अन्य संचालन लागतों का भुगतान तभी करते हैं जब ये संयंत्र ऊर्जा उत्पन्न करते हैं। ऊर्जा, प्रति यूनिट उत्पन्न, पनबिजली की तुलना में तापीय संयंत्रों से अधिक महंगी है। ब्राजील के केवल कुछ थर्मोइलेक्ट्रिक संयंत्र [[प्राकृतिक गैस]] का उपयोग करते हैं, इसलिए वे जलविद्युत संयंत्रों की तुलना में बहुत अधिक [[प्रदूषण]] करते हैं। चरम मांग को पूरा करने के लिए उत्पन्न बिजली की उच्च लागत होती है - निवेश और परिचालन लागत दोनों - और प्रदूषण की एक महत्वपूर्ण पर्यावरणीय लागत होती है और संभावित रूप से इसके उपयोग के लिए वित्तीय और सामाजिक दायित्व होता है। इस प्रकार, वर्तमान प्रणाली का विस्तार और संचालन उतना कुशल नहीं है जितना कि यह मांग पक्ष प्रबंधन का उपयोग कर सकता है। इस अक्षमता का परिणाम उपभोक्ताओं पर डाले जाने वाले ऊर्जा शुल्कों में वृद्धि है।
 
इसके अतिरिक्त, क्योंकि [[विद्युत ऊर्जा]] लगभग तुरंत उत्पन्न और उपभोग होती है, ट्रांसमिशन लाइनों और वितरण जाल के रूप में सभी सुविधाएं, अधिकतम उपभोग के लिए बनाई जाती हैं। गैर-पीक अवधि के समय उनकी पूरी क्षमता का उपयोग नहीं किया जाता है।


इसके अतिरिक्त, क्योंकि [[विद्युत ऊर्जा]] लगभग तुरंत उत्पन्न और उपभोग होती है, ट्रांसमिशन लाइनों और वितरण जाल के रूप में सभी सुविधाएं, अधिकतम उपभोग के लिए बनाई जाती हैं। गैर-पीक अवधि के समय उनकी पूरी क्षमता का उपयोग नहीं किया जाता है।{{citation needed|date=December 2017}}
चोटी की उपभोग में कमी से ब्राजीलियाई प्रणाली की तरह, विभिन्न विधियों से बिजली प्रणालियों की दक्षता को फायदा हो सकता है: वितरण और पारेषण नेटवर्क में नए निवेश को स्थगित करना, और चरम अवधि के समय पूरक थर्मल पावर संचालन की आवश्यकता को कम करना, जो दोनों को कम कर सकता है नए बिजली संयंत्रों में निवेश के लिए भुगतान केवल चरम अवधि के समय आपूर्ति करने के लिए और [[ग्रीनहाउस गैस उत्सर्जन]] से जुड़े पर्यावरणीय प्रभाव।


चोटी की उपभोग में कमी से ब्राजीलियाई प्रणाली की तरह, विभिन्न विधियों से बिजली प्रणालियों की दक्षता को फायदा हो सकता है: वितरण और पारेषण नेटवर्क में नए निवेश को स्थगित करना, और चरम अवधि के समय पूरक थर्मल पावर संचालन की आवश्यकता को कम करना, जो दोनों को कम कर सकता है नए बिजली संयंत्रों में निवेश के लिए भुगतान केवल चरम अवधि के समय आपूर्ति करने के लिए और [[ग्रीनहाउस गैस उत्सर्जन]] से जुड़े पर्यावरणीय प्रभाव।{{citation needed|date=December 2017}}




Line 89: Line 92:
कुछ लोगों का तर्क है कि मांग-पक्ष प्रबंधन अप्रभावी रहा है क्योंकि इसके परिणामस्वरूप अधिकांश उपभोक्ताओं के लिए उच्च उपयोगिता लागत और उपयोगिताओं के लिए कम लाभ होता है।<ref>{{cite journal |doi=10.1016/0165-0572(92)90025-C |title=Demand-side management |journal=Resources and Energy |volume=14 |issue=1–2 |pages=187–203 |year=1992 |last1=Katz |first1=Myron B }}</ref>
कुछ लोगों का तर्क है कि मांग-पक्ष प्रबंधन अप्रभावी रहा है क्योंकि इसके परिणामस्वरूप अधिकांश उपभोक्ताओं के लिए उच्च उपयोगिता लागत और उपयोगिताओं के लिए कम लाभ होता है।<ref>{{cite journal |doi=10.1016/0165-0572(92)90025-C |title=Demand-side management |journal=Resources and Energy |volume=14 |issue=1–2 |pages=187–203 |year=1992 |last1=Katz |first1=Myron B }}</ref>


मांग पक्ष प्रबंधन के मुख्य लक्ष्यों में से एक उस समय उपयोगिताओं की सही कीमत के आधार पर उपभोक्ता को चार्ज करने में सक्षम होना है। यदि उपभोक्ताओं से ऑफ-पीक आवर्स के समय बिजली का उपयोग करने के लिए कम और पीक आवर्स के समय अधिक चार्ज किया जा सकता है, तो [[आपूर्ति और मांग]] सैद्धांतिक रूप से उपभोक्ता को पीक आवर्स के समय कम बिजली का उपयोग करने के लिए प्रोत्साहित करेगी, इस प्रकार मांग पक्ष प्रबंधन का मुख्य लक्ष्य प्राप्त होगा।{{citation needed|date=December 2017}}
मांग पक्ष प्रबंधन के मुख्य लक्ष्यों में से एक उस समय उपयोगिताओं की सही कीमत के आधार पर उपभोक्ता को चार्ज करने में सक्षम होना है। यदि उपभोक्ताओं से ऑफ-पीक आवर्स के समय बिजली का उपयोग करने के लिए कम और पीक आवर्स के समय अधिक चार्ज किया जा सकता है, तो [[आपूर्ति और मांग]] सैद्धांतिक रूप से उपभोक्ता को पीक आवर्स के समय कम बिजली का उपयोग करने के लिए प्रोत्साहित करेगी, इस प्रकार मांग पक्ष प्रबंधन का मुख्य लक्ष्य प्राप्त होगा।
 




Line 142: Line 146:


{{Electricity generation}}
{{Electricity generation}}
[[Category: बाज़ार की असफलता]] [[Category: विद्युत शक्ति वितरण]] [[Category: ऊर्जा अर्थशास्त्र]] [[Category: मांग प्रबन्धन]]


[[Category: Machine Translated Page]]
[[Category:All articles with failed verification]]
[[Category:All articles with unsourced statements]]
[[Category:Articles with failed verification from January 2023]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with unsourced statements from December 2017]]
[[Category:Articles with unsourced statements from January 2023]]
[[Category:CS1 errors]]
[[Category:Collapse templates]]
[[Category:Created On 30/01/2023]]
[[Category:Created On 30/01/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Multi-column templates]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal templates with redlinked portals]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Webarchive template wayback links]]
[[Category:Wikipedia articles needing page number citations from December 2017]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:Wikipedia metatemplates]]
[[Category:ऊर्जा अर्थशास्त्र]]
[[Category:बाज़ार की असफलता]]
[[Category:मांग प्रबन्धन]]
[[Category:विद्युत शक्ति वितरण]]

Latest revision as of 12:13, 18 September 2023

ऊर्जा मांग प्रबंधन, जिसे मांग-पक्ष प्रबंधन (डीएसएम) या मांग-पक्ष प्रतिक्रिया (डीएसआर) के रूप में भी जाना जाता है,[1] वित्तीय प्रोत्साहन और शिक्षा के माध्यम से व्यवहार परिवर्तन जैसे विभिन्न विधियों के माध्यम से उपभोक्ता ऊर्जा की मांग में संशोधन है।[2]

सामान्यतः, मांग-पक्ष प्रबंधन का लक्ष्य उपभोक्ताओं को पीक आवर्स के समय कम ऊर्जा का उपयोग करने के लिए प्रोत्साहित करना है, या रात के समय और सप्ताहांत जैसे ऑफ-पीक समय में ऊर्जा उपयोग के समय को स्थानांतरित करना है।[3] पीक डिमांड मैनेजमेंट आवश्यक रूप से कुल घरेलू ऊर्जा उपभोग को कम नहीं करता है, लेकिन पीक डिमांड को पूरा करने के लिए नेटवर्क और/या बिजली उत्पादन संयंत्रों में निवेश की आवश्यकता को कम करने की आशा की जा सकती है। एक उदाहरण ऑफ-पीक आवर्स के समय एनर्जी स्टोर करने और पीक आवर्स के समय डिस्चार्ज करने के लिए एनर्जी स्टोरेज यूनिट्स का उपयोग है।[4]

डीएसएम के लिए एक नया आवेदन ग्रिड ऑपरेटरों को पवन और सौर इकाइयों से परिवर्तनीय नवीकरणीय ऊर्जा को संतुलित करने में सहायता करना है, विशेष रूप से जब डक वक्र अक्षय उत्पादन के साथ मेल नहीं खाता है। पीक डिमांड अवधि के समय लाइन पर लाए गए जेनरेटर अधिकांश जीवाश्म ईंधन इकाइयां होते हैं। उनके उपयोग को कम करने से कार्बन डाइऑक्साइड और अन्य प्रदूषकों के उत्सर्जन में कमी आती है।[5][6]

डीएसएम शब्द 1973 के ऊर्जा संकट और 1979 के ऊर्जा संकट के समय के बाद निर्मित किया गया था।[7] कई देशों की सरकारों ने मांग प्रबंधन के लिए विभिन्न कार्यक्रमों के प्रदर्शन को अनिवार्य कर दिया है। एक प्रारंभिक उदाहरण संयुक्त राज्य अमेरिका में 1978 का राष्ट्रीय ऊर्जा संरक्षण नीति अधिनियम है। जो., कैलिफोर्निया और विस्कॉन्सिन में इसी तरह की कार्रवाइयों से पहले हुआ था। 1980 के दशक में इलेक्ट्रिक पावर रिसर्च इंस्टीट्यूट (ईपीआरआई) द्वारा डिमांड-साइड मैनेजमेंट को सार्वजनिक रूप से प्रस्तुत किया गया था।[8] आजकल, डीएसएम प्रौद्योगिकियां सूचना और संचार प्रौद्योगिकी और बिजली व्यवस्था के एकीकरण, एकीकृत मांग-पक्ष प्रबंधन (आईडीएसएम), या समार्ट ग्रिड जैसी नई शर्तों के कारण तेजी से व्यवहार्य हो गई हैं।



ऑपरेशन

अमेरिकी इलेक्ट्रिक पावर उद्योग मूल रूप से विदेशी ऊर्जा आयात पर बहुत अधिक निर्भर करता था, चाहे वह उपभोज्य बिजली या जीवाश्म ईंधन के रूप में हो, जो तब बिजली का उत्पादन करने के लिए उपयोग किया जाता था। 1970 के दशक में ऊर्जा संकट के समय, संघीय सरकार ने विदेशी तेल पर निर्भरता कम करने और कुशल ऊर्जा उपयोग और वैकल्पिक ऊर्जा स्रोतों को बढ़ावा देने की आशा में सार्वजनिक उपयोगिता नियामक नीतियां अधिनियम (पीयूआरपीए) पारित किया। इस अधिनियम ने यूटिलिटीज को स्वतंत्र बिजली उत्पादकों से सबसे सस्ती संभव बिजली प्राप्त करने के लिए विवश किया, जिसने बदले में नवीकरणीय ऊर्जा को बढ़ावा दिया और उपयोगिता को उनकी जरूरत की बिजली की मात्रा को कम करने के लिए प्रोत्साहित किया, इसलिए ऊर्जा दक्षता और मांग प्रबंधन के लिए आगे के एजेंडे को आगे बढ़ाया।[9]

वर्तमान मौसम पैटर्न के आधार पर बिजली का उपयोग कम और मध्यम समय सीमा में नाटकीय रूप से भिन्न हो सकता है। सामान्यतः थोक बिजली प्रणाली अतिरिक्त या कम उत्पादन भेजकर बदलती मांग को समायोजित करती है। चूंकि, पीक अवधि के समय, अतिरिक्त पीढ़ी की आपूर्ति सामान्यतः कम कुशल (पीकिंग) स्रोतों द्वारा की जाती है। दुर्भाग्य से, इन चरम स्रोतों का उपयोग करने की तात्कालिक वित्तीय और पर्यावरणीय लागत आवश्यक रूप से खुदरा मूल्य निर्धारण प्रणाली में परिलक्षित नहीं होती है। इसके अतिरिक्त, बिजली उपभोक्ताओं की मांग (मांग की लोच) को बदलकर मूल्य संकेतों को समायोजित करने की क्षमता या इच्छा विशेष रूप से कम समय के फ्रेम में कम हो सकती है। कई बाजारों में, उपभोक्ताओं (विशेष रूप से खुदरा ग्राहकों) को वास्तविक समय मूल्य निर्धारण का सामना नहीं करना पड़ता है, लेकिन औसत वार्षिक लागत या अन्य निर्मित कीमतों के आधार पर दरों का भुगतान करते हैं।

ऊर्जा मांग प्रबंधन गतिविधियाँ बिजली की मांग और आपूर्ति को एक कथित इष्टतम के निकट लाने का प्रयास करती हैं, और बिजली के अंतिम उपयोगकर्ताओं को उनकी मांग को कम करने के लिए लाभ देने में सहायता करती हैं। आधुनिक प्रणाली में, मांग-पक्ष प्रबंधन के लिए एकीकृत दृष्टिकोण उत्तरोत्तर सामान्य होता जा रहा है। आईडीएसएम स्वचालित रूप से सिस्टम की स्थितियों के आधार पर लोड शेड करने के लिए एंड-यूज़ सिस्टम को सिग्नल भेजता है। यह मांग की बहुत त्रुटिहीन ट्यूनिंग की अनुमति देता है जिससे यह सुनिश्चित किया जा सके कि यह हर समय आपूर्ति से मेल खाता है, और उपयोगिता के लिए पूंजीगत व्यय को कम करता है। महत्वपूर्ण प्रणाली की स्थिति चरम समय हो सकती है, या चर नवीकरणीय ऊर्जा के स्तर वाले क्षेत्रों में, ऐसे समय के समय जब मांग को ऊपर की ओर समायोजित किया जाना चाहिए जिससे अति-पीढ़ी से बचा जा सके या रैंप की जरूरतों को पूरा करने में सहायता मिल सके।

सामान्य तौर पर, मूल्य संकेतों की प्रतिक्रियाओं के माध्यम से मांग में समायोजन विभिन्न विधियों से हो सकता है: जैसे कि शाम और दिन के समय के लिए स्थायी अंतर दर या कभी-कभी उच्च मूल्य वाले उपयोग के दिन, घर का नेटवर्क के माध्यम से प्राप्त व्यवहार परिवर्तन, स्वचालित नियंत्रण जैसे दूर से नियंत्रित हवा के साथ -कंडीशनर, या ऊर्जा कुशल उपकरणों के साथ स्थायी लोड समायोजन के साथ।

तार्किक नींव

बाजार के खिलाड़ियों और सरकार (विनियमन और कराधान) के कार्यों से किसी भी वस्तु की मांग को संशोधित किया जा सकता है। ऊर्जा मांग प्रबंधन का अर्थ उन कार्यों से है जो ऊर्जा की मांग को प्रभावित करते हैं। डीएसएम मूल रूप से बिजली में अपनाया गया था, लेकिन आज यह पानी और गैस सहित उपयोगिताओं के लिए व्यापक रूप से प्रायुक्त होता है।

ऊर्जा की मांग को कम करना आधुनिक औद्योगिक इतिहास के अधिकांश समय में ऊर्जा आपूर्तिकर्ताओं और सरकारों दोनों के विपरीत है। जबकि अधिकांश औद्योगिक युग के समय विभिन्न ऊर्जा रूपों की वास्तविक कीमतें घट रही हैं, और पैमाने और प्रौद्योगिकी की अर्थव्यवस्थाओं के कारण, इसके भविष्य की अपेक्षा विपरीत है। पहले, ऊर्जा के उपयोग को बढ़ावा देना अनुचित नहीं था क्योंकि भविष्य में अधिक प्रचुर और सस्ते ऊर्जा स्रोतों का अनुमान लगाया जा सकता था या आपूर्तिकर्ता ने अतिरिक्त क्षमता स्थापित की थी जिसे उपभोग बढ़ने से अधिक लाभदायक बनाया जाएगा।

नियोजित अर्थव्यवस्था में सब्सिडी ऊर्जा मुख्य आर्थिक विकास उपकरणों में से एक थी। कुछ देशों में ऊर्जा आपूर्ति उद्योग को सब्सिडी अभी भी सामान्य है।

ऐतिहासिक स्थिति के विपरीत, ऊर्जा की कीमतों और उपलब्धता में गिरावट की संभावना है। सरकारें और अन्य सार्वजनिक अभिनेता, यदि स्वयं ऊर्जा आपूर्तिकर्ता नहीं हैं, तो ऊर्जा की मांग के उपायों को नियोजित करने के लिए प्रवृत्त हैं जो ऊर्जा उपभोग की दक्षता में वृद्धि करेंगे।



प्रकार

  • कुशल ऊर्जा उपयोग: समान कार्यों को करने के लिए कम शक्ति का उपयोग करना। इसमें वॉटर हीटर, रेफ्रिजरेटर, या वाशिंग मशीन जैसे अधिक कुशल भार-गहन उपकरणों का उपयोग करके मांग में स्थायी कमी सम्मिलित है।[10]
  • मांग प्रतिक्रिया: मांग को कम करने, समतल करने या स्थानांतरित करने के लिए कोई भी प्रतिक्रियाशील या निवारक विधि। ऐतिहासिक रूप से, मांग प्रतिक्रिया कार्यक्रमों ने उत्पादन क्षमता के निर्माण की उच्च लागत को टालने के लिए चरम कमी पर ध्यान केंद्रित किया है। चूंकि, मांग प्रतिक्रिया कार्यक्रमों को अब परिवर्तनीय अक्षय ऊर्जा के एकीकरण में सहायता के लिए नेट लोड आकार को बदलने के साथ-साथ लोड माइनस सौर और पवन उत्पादन में सहायता के लिए देखा जा रहा है।[11] मांग प्रतिक्रिया में अंतिम उपयोगकर्ता ग्राहकों की बिजली की उपभोग पैटर्न के सभी जानबूझकर संशोधन सम्मिलित हैं जो समय, तात्कालिक मांग के स्तर या कुल बिजली उपभोग को बदलने का इरादा रखते हैं।[12] डिमांड रिस्पोंस का अर्थ उन व्यापक कार्रवाईयों से है, जिन्हें बिजली मीटर के ग्राहक की ओर से बिजली व्यवस्था के अन्दर विशेष परिस्थितियों (जैसे पीक पीरियड नेटवर्क कंजेशन या उच्च कीमतों) के उत्तर में लिया जा सकता है, जिसमें उपरोक्त आईडीएसएम भी सम्मिलित है।[13]
  • डायनेमिक डिमांड (इलेक्ट्रिक पावर): लोड के सेट के विविधता कारक को बढ़ाने के लिए कुछ सेकंड के लिए एप्लायंस ऑपरेटिंग साइकिल को एडवांस या डिले करें। अवधारणा यह है कि पावर ग्रिड के शक्ति तत्व की निगरानी के साथ-साथ अपने स्वयं के नियंत्रण पैरामीटर, अलग-अलग, आंतरायिक भार उत्पादन के साथ समग्र सिस्टम लोड को संतुलित करने के लिए इष्टतम क्षणों पर चालू या बंद हो जाएंगे, जिससे महत्वपूर्ण शक्ति बेमेल को कम किया जा सकेगा। चूंकि यह स्विचिंग केवल कुछ सेकंड के लिए उपकरण संचालन चक्र को आगे या देरी करेगा, यह अंतिम उपयोगकर्ता के लिए ध्यान देने योग्य नहीं होगा। संयुक्त राज्य अमेरिका में, 1982 में, इस विचार के लिए (अब व्यपगत) पेटेंट पावर सिस्टम इंजीनियर फ्रेड श्वेपे को जारी किया गया था।[14] इस प्रकार के डायनेमिक डिमांड कंट्रोल का उपयोग अधिकांश एयर-कंडीशनर के लिए किया जाता है। इसका एक उदाहरण कैलिफोर्निया में स्मार्टएसी कार्यक्रम के माध्यम से है।[15]
  • वितरित ऊर्जा संसाधन: वितरित उत्पादन, साथ ही वितरित ऊर्जा, ऑन-साइट उत्पादन (ओएसजी) या जिला/विकेंद्रीकृत ऊर्जा विद्युत उत्पादन और भंडारण है जो विभिन्न प्रकार के छोटे, ग्रिड से जुड़े उपकरणों द्वारा किया जाता है जिसे वितरित ऊर्जा संसाधन (डीईआर) कहा जाता है। पारंपरिक बिजली स्टेशन, जैसे कोयले से चलने वाले, गैस और परमाणु ऊर्जा से चलने वाले संयंत्र, साथ ही पनबिजली बांध और बड़े पैमाने पर सौर ऊर्जा स्टेशन, केंद्रीकृत होते हैं और अधिकांश लंबी दूरी पर संचारित होने के लिए विद्युत ऊर्जा की आवश्यकता होती है। इसके विपरीत, डीईआर सिस्टम विकेन्द्रीकृत, मॉड्यूलर और अधिक लचीली प्रौद्योगिकियां हैं, जो कि केवल 10 मेगावाट (मेगावाट) या उससे कम की क्षमता वाले होने के अतिरिक्त वे लोड के निकट स्थित हैं। इन प्रणालियों में कई पीढ़ी और भंडारण घटक सम्मिलित हो सकते हैं; इस उदाहरण में उन्हें हाइब्रिड पावर सिस्टम के रूप में जाना जाता है। डीईआर सिस्टम सामान्यतः अक्षय ऊर्जा स्रोतों का उपयोग करते हैं, जिनमें छोटे हाइड्रो, बायोमास, बायोगैस, सौर ऊर्जा, पवन ऊर्जा और भू-तापीय शक्ति सम्मिलित हैं, और तेजी से बिजली वितरण प्रणाली के लिए एक महत्वपूर्ण भूमिका निभाते हैं। बिजली भंडारण के लिए ग्रिड से जुड़े उपकरण को भी डीईआर प्रणाली के रूप में वर्गीकृत किया जा सकता है, और इसे अधिकांश वितरित ऊर्जा भंडारण प्रणाली (डीईएसएस) कहा जाता है। एक इंटरफेस के माध्यम से, डीईआर सिस्टम को स्मार्ट ग्रिड के अन्दर प्रबंधित और समन्वित किया जा सकता है। वितरित उत्पादन और भंडारण कई स्रोतों से ऊर्जा के संग्रह को सक्षम बनाता है और पर्यावरणीय प्रभावों को कम कर सकता है और आपूर्ति की सुरक्षा में सुधार कर सकता है।

पैमाना

सामान्यतः, मांग पक्ष प्रबंधन को चार श्रेणियों: राष्ट्रीय पैमाना, उपयोगिता पैमाना, सामुदायिक पैमाना और व्यक्तिगत घरेलू पैमाना में वर्गीकृत किया जा सकता है।

राष्ट्रीय पैमाने

ऊर्जा दक्षता सुधार सबसे महत्वपूर्ण मांग पक्ष प्रबंधन रणनीतियों में से एक है।[16] आवास, भवन, उपकरण, परिवहन, मशीनों आदि में कानून और मानकों के माध्यम से दक्षता में सुधार राष्ट्रीय स्तर पर प्रायुक्त किया जा सकता है।

उपयोगिता का पैमाना

पीक डिमांड टाइम के समय, यूटिलिटीज पीक डिमांड को कम करने के लिए बड़े क्षेत्रों में स्टोरेज वॉटर हीटर, पूल पंप और एयर कंडीशनर को नियंत्रित करने में सक्षम हैं, उदा। ऑस्ट्रेलिया और स्विट्जरलैंड। सामान्य तकनीकों में से एक तरंग नियंत्रण है: उपकरणों को चालू या बंद करने के लिए उच्च आवृत्ति संकेत (जैसे 1000 Hz) को सामान्य बिजली (50 या 60 Hz) पर आरोपित किया जाता है।[17] अधिक सेवा-आधारित अर्थव्यवस्थाओं में, जैसे कि ऑस्ट्रेलिया, बिजली नेटवर्क की चरम मांग अधिकांश देर दोपहर से शाम (शाम 4 बजे से रात 8 बजे) तक होती है। आवासीय और व्यावसायिक मांग इस प्रकार की चरम मांग का सबसे महत्वपूर्ण हिस्सा है।[18] इसलिए, यह उपयोगिताओं (बिजली नेटवर्क वितरकों) के लिए आवासीय भंडारण वॉटर हीटर, पूल पंप और एयर कंडीशनर का प्रबंधन करने के लिए बहुत मायने रखता है।

समुदाय का पैमाना

इसका अन्य नाम पड़ोस, परिसर, या जिला हो सकता हैं। ठंडे सर्दियों के क्षेत्रों में कई दशकों से सामुदायिक केंद्रीय हीटिंग सिस्टम उपस्थित हैं। इसी तरह, गर्मी के चरम क्षेत्रों में पीक डिमांड को प्रबंधित करने की आवश्यकता है, उदा। अमेरिका में टेक्सास और फ्लोरिडा, ऑस्ट्रेलिया में क्वींसलैंड और न्यू साउथ वेल्स। हीटिंग या कूलिंग के लिए पीक डिमांड को कम करने के लिए डिमांड साइड मैनेजमेंट को कम्युनिटी स्केल में प्रायुक्त किया जा सकता है।[19][20] एक अन्य पहलू शुद्ध शून्य-ऊर्जा निर्माण या समुदाय को प्राप्त करना है।[21]

सामूहिक क्रय शक्ति, सौदेबाजी की शक्ति, ऊर्जा दक्षता या भंडारण में अधिक विकल्प अलग-अलग समय पर ऊर्जा उत्पन्न करने और उपभोग करने में अधिक लचीलापन और विविधता, के कारण सामुदायिक स्तर पर ऊर्जा, चरम मांग और बिलों का प्रबंधन अधिक व्यवहार्य और व्यवहार्य हो सकता है,[22] उदा। दिन के समय की उपभोग या ऊर्जा भंडारण के लिए पीवी का उपयोग करना।

घरेलू पैमाना

ऑस्ट्रेलिया के क्षेत्रों में, 30% से अधिक (2016) घरों में छत पर फोटो-वोल्टाइक सिस्टम हैं। ग्रिड से ऊर्जा आयात को कम करने के लिए सूर्य से मुक्त ऊर्जा का उपयोग करना उनके लिए उपयोगी है। इसके अतिरिक्त, मांग पक्ष प्रबंधन सहायक हो सकता है जब एक व्यवस्थित दृष्टिकोण: फोटोवोल्टिक, एयर कंडीशनर, बैटरी ऊर्जा भंडारण प्रणालियों, भंडारण वॉटर हीटर, भवन प्रदर्शन और ऊर्जा दक्षता उपायों का संचालन पर विचार किया जाता है।[23]


उदाहरण

क्वींसलैंड, ऑस्ट्रेलिया

क्वींसलैंड, ऑस्ट्रेलिया राज्य में यूटिलिटी कंपनियों के पास कुछ घरेलू उपकरणों जैसे एयर कंडीशनर या घरेलू मीटर में वॉटर हीटर, पूल पंप आदि को नियंत्रित करने के लिए उपकरण लगे हैं। उनकी योजना में ऊर्जा-उपयोग करने वाली वस्तुओं की दक्षता में सुधार करना और उन उपभोक्ताओं को वित्तीय प्रोत्साहन देना भी सम्मिलित है जो ऑफ-पीक घंटों के समय बिजली का उपयोग करते हैं, जब ऊर्जा कंपनियों के उत्पादन के लिए यह कम खर्चीला होता है।[24]

एक अन्य उदाहरण यह है कि मांग पक्ष प्रबंधन के साथ, दक्षिण पूर्व क्वींसलैंड के घर छत पर फोटो-वोल्टाइक प्रणाली से पानी गर्म करने के लिए बिजली का उपयोग कर सकते हैं।[25]


टोरंटो, कनाडा

2008 में, ओंटारियो के एकाधिकार ऊर्जा वितरक टोरंटो हाइड्रो ने 40,000 से अधिक लोगों को एयर कंडीशनर से जुड़े रिमोट उपकरणों के लिए साइन अप किया था, जो ऊर्जा कंपनियां मांग में स्पाइक्स को ऑफसेट करने के लिए उपयोग करती हैं। प्रवक्ता तान्या ब्रुकमुएलर का कहना है कि यह कार्यक्रम आपातकालीन स्थितियों के समय 40 मेगावाट की मांग को कम कर सकता है।[26]


इंडियाना, यूएस

अल्को वारिक ऑपरेशन मिसों में एक योग्य मांग प्रतिक्रिया संसाधन के रूप में भाग ले रहा है, जिसका अर्थ है कि यह ऊर्जा, स्पिनिंग रिजर्व और विनियमन सेवा के संदर्भ में मांग प्रतिक्रिया प्रदान कर रहा है।[27][28]


ब्राज़िल

डिमांड-साइड प्रबंधन थर्मल पावर प्लांट या उन प्रणालियों पर आधारित बिजली प्रणाली पर प्रायुक्त हो सकता है जहां नवीकरणीय ऊर्जा, जलविद्युत के रूप में प्रमुख है, लेकिन एक पूरक ताप विद्युत के साथ, उदाहरण के लिए, ब्राजील में।

ब्राजील की स्थिति में, ब्राजील में अक्षय ऊर्जा के उत्पादन के अतिरिक्त पनबिजली पावर उत्पादन प्रणाली में व्यावहारिक संतुलन प्राप्त करने के लिए कुल 80% से अधिक के अनुरूप है, हाइड्रोइलेक्ट्रिक संयंत्रों द्वारा उत्पन्न ऊर्जा चरम मांग के नीचे उपभोग की आपूर्ति करती है। पीक पीढ़ी की आपूर्ति जीवाश्म-ईंधन बिजली संयंत्रों के उपयोग से की जाती है। 2008 में, ब्राजील के उपभोक्ताओं ने U$1 बिलियन से अधिक का भुगतान किया[29] पूरक थर्मोइलेक्ट्रिक उत्पादन के लिए पहले प्रोग्राम नहीं किया गया।

ब्राजील में, उपभोक्ता ऊर्जा प्रदान करने के लिए सभी निवेशों का भुगतान करता है, चाहे कोई संयंत्र व्यर्थ बैठा हो। अधिकांश जीवाश्म-ईंधन ताप संयंत्रों के लिए, उपभोक्ता ईंधन और अन्य संचालन लागतों का भुगतान तभी करते हैं जब ये संयंत्र ऊर्जा उत्पन्न करते हैं। ऊर्जा, प्रति यूनिट उत्पन्न, पनबिजली की तुलना में तापीय संयंत्रों से अधिक महंगी है। ब्राजील के केवल कुछ थर्मोइलेक्ट्रिक संयंत्र प्राकृतिक गैस का उपयोग करते हैं, इसलिए वे जलविद्युत संयंत्रों की तुलना में बहुत अधिक प्रदूषण करते हैं। चरम मांग को पूरा करने के लिए उत्पन्न बिजली की उच्च लागत होती है - निवेश और परिचालन लागत दोनों - और प्रदूषण की एक महत्वपूर्ण पर्यावरणीय लागत होती है और संभावित रूप से इसके उपयोग के लिए वित्तीय और सामाजिक दायित्व होता है। इस प्रकार, वर्तमान प्रणाली का विस्तार और संचालन उतना कुशल नहीं है जितना कि यह मांग पक्ष प्रबंधन का उपयोग कर सकता है। इस अक्षमता का परिणाम उपभोक्ताओं पर डाले जाने वाले ऊर्जा शुल्कों में वृद्धि है।

इसके अतिरिक्त, क्योंकि विद्युत ऊर्जा लगभग तुरंत उत्पन्न और उपभोग होती है, ट्रांसमिशन लाइनों और वितरण जाल के रूप में सभी सुविधाएं, अधिकतम उपभोग के लिए बनाई जाती हैं। गैर-पीक अवधि के समय उनकी पूरी क्षमता का उपयोग नहीं किया जाता है।

चोटी की उपभोग में कमी से ब्राजीलियाई प्रणाली की तरह, विभिन्न विधियों से बिजली प्रणालियों की दक्षता को फायदा हो सकता है: वितरण और पारेषण नेटवर्क में नए निवेश को स्थगित करना, और चरम अवधि के समय पूरक थर्मल पावर संचालन की आवश्यकता को कम करना, जो दोनों को कम कर सकता है नए बिजली संयंत्रों में निवेश के लिए भुगतान केवल चरम अवधि के समय आपूर्ति करने के लिए और ग्रीनहाउस गैस उत्सर्जन से जुड़े पर्यावरणीय प्रभाव।



मुद्दे

कुछ लोगों का तर्क है कि मांग-पक्ष प्रबंधन अप्रभावी रहा है क्योंकि इसके परिणामस्वरूप अधिकांश उपभोक्ताओं के लिए उच्च उपयोगिता लागत और उपयोगिताओं के लिए कम लाभ होता है।[30]

मांग पक्ष प्रबंधन के मुख्य लक्ष्यों में से एक उस समय उपयोगिताओं की सही कीमत के आधार पर उपभोक्ता को चार्ज करने में सक्षम होना है। यदि उपभोक्ताओं से ऑफ-पीक आवर्स के समय बिजली का उपयोग करने के लिए कम और पीक आवर्स के समय अधिक चार्ज किया जा सकता है, तो आपूर्ति और मांग सैद्धांतिक रूप से उपभोक्ता को पीक आवर्स के समय कम बिजली का उपयोग करने के लिए प्रोत्साहित करेगी, इस प्रकार मांग पक्ष प्रबंधन का मुख्य लक्ष्य प्राप्त होगा।



यह भी देखें


टिप्पणियाँ

  1. "Electricity system flexibility". Ofgem. Government of United Kingdom. 2013-06-17. Archived from the original on 2020-06-19. Retrieved 7 September 2016.
  2. Chiu, Wei-Yu; Sun, Hongjian; Poor, H. Vincent (2013). "Energy Imbalance Management Using a Robust Pricing Scheme". IEEE Transactions on Smart Grid. 4 (2): 896–904. arXiv:1705.02135. doi:10.1109/TSG.2012.2216554. S2CID 5752292.
  3. "Demand Management". Office of Energy. Government of Western Australia. Archived from the original on 20 March 2012. Retrieved 30 November 2010.
  4. Wei-Yu Chiu; Hongjian Sun; H.V. Poor (November 2012). Demand-side energy storage system management in smart grid (PDF). pp. 73, 78, 5–8. doi:10.1109/SmartGridComm.2012.6485962. ISBN 978-1-4673-0910-3. S2CID 15881783. {{cite book}}: |journal= ignored (help)
  5. Jeffery Greenblatt; Jane Long (September 2012). "California's Energy Future: Portraits of Energy Systems for Meeting Greenhouse Gas Reduction Targets" (PDF). California Council on Science and Technology: 46–47. {{cite journal}}: Cite journal requires |journal= (help)
  6. Lund, Peter D; Lindgren, Juuso; Mikkola, Jani; Salpakari, Jyri (2015). "Review of energy system flexibility measures to enable high levels of variable renewable electricity". Renewable and Sustainable Energy Reviews. 45: 785–807. doi:10.1016/j.rser.2015.01.057.
  7. Torriti, Jacopo (2016). Peak energy demand and Demand Side Response. Routledge. ISBN 9781138016255.[page needed]
  8. Murthy Balijepalli, V. S. K; Pradhan, Vedanta; Khaparde, S. A; Shereef, R. M (2011). "Review of demand response under smart grid paradigm". ISGT2011-India. pp. 236–43. doi:10.1109/ISET-India.2011.6145388. ISBN 978-1-4673-0315-6. S2CID 45654558.
  9. "Public Utility Regulatory Policy Act (PURPA)". UCSUSA. UCSUSA. Retrieved 3 December 2016.
  10. "Public Utility Regulatory Policy Act (PURPA)". ACEEE. ACEEE. Retrieved 3 December 2016.
  11. Sila Kiliccote; Pamela Sporborg; Imran Sheikh; Erich Huffaker; and Mary Ann Piette; "Integrating Renewable Resources in California and the Role of Automated Demand Response," Lawrence Berkeley National Lab (Environmental Energy Technologies Division), Nov. 2010
  12. Albadi, M. H; El-Saadany, E. F (2007). "Demand Response in Electricity Markets: An Overview". 2007 IEEE Power Engineering Society General Meeting. pp. 1–5. doi:10.1109/PES.2007.385728. ISBN 978-1-4244-1296-9. S2CID 38985063.
  13. Torriti, Jacopo; Hassan, Mohamed G; Leach, Matthew (2010). "Demand response experience in Europe: Policies, programmes and implementation" (PDF). Energy. 35 (4): 1575–83. doi:10.1016/j.energy.2009.05.021.
  14. 4317049, Schweppe, Fred C., "Frequency adaptive, power-energy re-scheduler", issued 1982-02-23 
  15. "PG&E Smart AC information". PG&E. Archived from the original on 2020-11-25. Retrieved 17 February 2021.
  16. Palensky, Peter; Dietrich, Dietmar (2011). "Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads". IEEE Transactions on Industrial Informatics. 7 (3): 381–8. doi:10.1109/TII.2011.2158841. S2CID 10263033.
  17. Kidd, W.L (1975). "Development, design and use of ripple control". Proceedings of the Institution of Electrical Engineers. 122 (10R): 993. doi:10.1049/piee.1975.0260.
  18. L. Liu, M. Shafiei, G. Ledwich, W. Miller, and G. Nourbakhsh, "Correlation Study of Residential Community Demand with High PV Penetration," 2017 Australasian Universities Power Engineering Conference (AUPEC)
  19. Liu, Aaron Lei; Ledwich, Gerard; Miller, Wendy (2016). "Demand side management with stepped model predictive control" (PDF). 2016 Australasian Universities Power Engineering Conference (AUPEC). pp. 1–6. doi:10.1109/AUPEC.2016.7749301. ISBN 978-1-5090-1405-7. S2CID 45705187.
  20. Liu, L., Miller, W., & Ledwich, G. (2016). Community centre improvement to reduce air conditioning peak demand. Paper presented at the Healthy Housing 2016: Proceedings of the 7th International Conference on Energy and Environment of Residential Buildings, Queensland University of Technology, Brisbane, Qld. http://eprints.qut.edu.au/101161/
  21. Miller, Wendy; Liu, Lei Aaron; Amin, Zakaria; Gray, Matthew (2018). "Involving occupants in net-zero-energy solar housing retrofits: An Australian sub-tropical case study". Solar Energy. 159: 390–404. Bibcode:2018SoEn..159..390M. doi:10.1016/j.solener.2017.10.008.
  22. L. Liu, W. Miller, and G. Ledwich. (2017) Solutions for reducing electricity costs for communal facilities. Australian Ageing Agenda. 39-40. Available: https://eprints.qut.edu.au/112305/ https://www.australianageingagenda.com.au/2017/10/27/solutions-reducing-facility-electricity-costs/ Archived 2019-05-20 at the Wayback Machine
  23. Wang, Dongxiao; Wu, Runji; Li, Xuecong; Lai, Chun Sing; Wu, Xueqing; Wei, Jinxiao; Xu, Yi; Wu, Wanli; Lai, Loi Lei (December 2019). "Two-stage optimal scheduling of air conditioning resources with high photovoltaic penetrations". Journal of Cleaner Production. 241: 118407. doi:10.1016/j.jclepro.2019.118407. S2CID 203472864.
  24. "Energy Conservation and Demand Management Program" (PDF). Queensland Government. Queensland Government. Archived from the original (PDF) on 19 February 2011. Retrieved 2 December 2010.
  25. Liu, Aaron Lei; Ledwich, Gerard; Miller, Wendy (2015). "Single household domestic water heater design and control utilising PV energy: The untapped energy storage solution" (PDF). 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). pp. 1–5. doi:10.1109/APPEEC.2015.7381047. ISBN 978-1-4673-8132-1. S2CID 24692180.
  26. Bradbury, Danny (5 November 2007). "Volatile energy prices demand new form of management". businessGreen. Association of Online Publishers. Retrieved 2 December 2010.
  27. "Providing Reliability Services through Demand Response: A Preliminary Evaluation of the Demand Response Capabilities of Alcoa Inc" (PDF). Archived from the original (PDF) on 2016-12-29.
  28. Zhang, Xiao; Hug, Gabriela (2015). "Bidding strategy in energy and spinning reserve markets for aluminum smelters' demand response". 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). pp. 1–5. doi:10.1109/ISGT.2015.7131854. ISBN 978-1-4799-1785-3. S2CID 8139559.
  29. CCEE (2008). "Relatório de Informações ao Público" (PDF). Análise Anual. Archived from the original (PDF) on 2010-12-14.
  30. Katz, Myron B (1992). "Demand-side management". Resources and Energy. 14 (1–2): 187–203. doi:10.1016/0165-0572(92)90025-C.


संदर्भ



उद्धृत कार्य


बाहरी कड़ियाँ