विशिष्ट कक्षीय ऊर्जा: Difference between revisions
(Created page with "{{Astrodynamics}} गुरुत्वाकर्षण दो-पिंड समस्या में, विशिष्ट कक्षीय ऊर्जा <math>\var...") |
No edit summary |
||
(7 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
गुरुत्वाकर्षण दो-पिंड समस्या में, '''विशिष्ट कक्षीय ऊर्जा''' <math>\varepsilon</math> (या विवा-विवा ऊर्जा) दो परिक्रमा करने वाले पिंडों की उनकी पारस्परिक [[संभावित ऊर्जा]] का निरंतर योग है (<math>\varepsilon_p</math>) और उनकी कुल [[गतिज ऊर्जा]] (<math>\varepsilon_k</math>), [[कम द्रव्यमान]] से विभाजित।<ref>{{Cite web |title=Specific energy |url=https://marspedia.org/Specific_energy |access-date=2022-08-12 |website=Marspedia |language=en}}</ref> विस-विवा समीकरण (जिसे विस-विवा समीकरण भी कहा जाता है) के अनुसार, यह समय के साथ बदलता नहीं है: | |||
गुरुत्वाकर्षण दो-पिंड समस्या में, विशिष्ट कक्षीय ऊर्जा <math>\varepsilon</math> (या विवा-विवा ऊर्जा) दो परिक्रमा करने वाले पिंडों की उनकी पारस्परिक [[संभावित ऊर्जा]] का निरंतर योग है (<math>\varepsilon_p</math>) और उनकी कुल [[गतिज ऊर्जा]] (<math>\varepsilon_k</math>), [[कम द्रव्यमान]] से विभाजित।<ref>{{Cite web |title=Specific energy |url=https://marspedia.org/Specific_energy |access-date=2022-08-12 |website=Marspedia |language=en}}</ref> विस-विवा समीकरण (जिसे विस-विवा समीकरण भी कहा जाता है) के अनुसार, यह समय के साथ बदलता नहीं है: | |||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
\varepsilon &= \varepsilon_k + \varepsilon_p \\ | \varepsilon &= \varepsilon_k + \varepsilon_p \\ | ||
Line 15: | Line 14: | ||
*<math>a</math> अर्ध-प्रमुख अक्ष है। | *<math>a</math> अर्ध-प्रमुख अक्ष है। | ||
इसे MJ/kg या में व्यक्त किया जाता है <math>\frac{\text{km}^2}{\text{s}^2}</math>. एक दीर्घवृत्तीय कक्षा के लिए विशिष्ट कक्षीय ऊर्जा वेग से बचने के लिए एक किलोग्राम के द्रव्यमान को गति देने के लिए आवश्यक अतिरिक्त ऊर्जा का ऋणात्मक है ([[परवलयिक प्रक्षेपवक्र]])। | इसे MJ/kg या में व्यक्त किया जाता है <math>\frac{\text{km}^2}{\text{s}^2}</math>. एक दीर्घवृत्तीय कक्षा के लिए विशिष्ट कक्षीय ऊर्जा वेग से बचने के लिए एक किलोग्राम के द्रव्यमान को गति देने के लिए आवश्यक अतिरिक्त ऊर्जा का ऋणात्मक है ([[परवलयिक प्रक्षेपवक्र]])। [[अतिशयोक्तिपूर्ण प्रक्षेपवक्र]] के लिए, यह परवलयिक कक्षा की तुलना में अतिरिक्त ऊर्जा के बराबर है। इस स्थितिे में विशिष्ट कक्षीय ऊर्जा को चारित्रिक ऊर्जा भी कहा जाता है। | ||
== विभिन्न कक्षाओं के लिए समीकरण रूप == | == विभिन्न कक्षाओं के लिए समीकरण रूप == | ||
एक अण्डाकार कक्षा के लिए, विशिष्ट कक्षीय ऊर्जा समीकरण, जब कक्षा के किसी | एक अण्डाकार कक्षा के लिए, विशिष्ट कक्षीय ऊर्जा समीकरण, जब कक्षा के किसी [[apse|अपसाइड]] पर विशिष्ट सापेक्ष कोणीय गति के साथ संयुक्त हो जाता है, तो यह सरल हो जाता है:<ref name="Bong Wie SVDC">{{cite book|last=Wie|first=Bong|title=Space Vehicle Dynamics and Control|publisher=[[American Institute of Aeronautics and Astronautics]] |location=Reston, Virginia|year=1998|series=AIAA Education Series|chapter=Orbital Dynamics|isbn=1-56347-261-9| page=[https://archive.org/details/spacevehicledyna00wieb_0/page/220 220]|chapter-url-access=registration| chapter-url=https://archive.org/details/spacevehicledyna00wieb_0/page/220}}</ref> | ||
<math display="block">\varepsilon = -\frac{\mu}{2a}</math> | <math display="block">\varepsilon = -\frac{\mu}{2a}</math> | ||
Line 26: | Line 25: | ||
{{math proof | proof = | {{math proof | proof = | ||
के साथ एक अण्डाकार कक्षा के लिए [[विशिष्ट कोणीय गति]] ''h'' के द्वारा दिया गया | |||
<math display="block">h^2 = \mu p = \mu a \left(1 - e^2\right)</math> | <math display="block">h^2 = \mu p = \mu a \left(1 - e^2\right)</math> | ||
हम विशिष्ट कक्षीय ऊर्जा समीकरण के सामान्य रूप का उपयोग करते हैं, | |||
<math display="block">\varepsilon = \frac{v^2}{2} - \frac{\mu}{r}</math> | <math display="block">\varepsilon = \frac{v^2}{2} - \frac{\mu}{r}</math> | ||
संबंध के साथ कि सापेक्ष वेग पर [[periapsis]] is | |||
<math display="block"> v_p^2 | <math display="block"> v_p^2 | ||
= {h^2 \over r_p^2} | = {h^2 \over r_p^2} | ||
Line 37: | Line 36: | ||
= {\mu \left(1 - e^2\right) \over a(1 - e)^2} | = {\mu \left(1 - e^2\right) \over a(1 - e)^2} | ||
</math> | </math> | ||
इस प्रकार हमारा विशिष्ट कक्षीय ऊर्जा समीकरण बन जाता है | |||
<math display="block"> \varepsilon | <math display="block"> \varepsilon | ||
= \frac{\mu}{a} {\left[ { 1 - e^2 \over 2(1 - e)^2} - {1 \over 1 - e} \right]} | = \frac{\mu}{a} {\left[ { 1 - e^2 \over 2(1 - e)^2} - {1 \over 1 - e} \right]} | ||
Line 44: | Line 43: | ||
= \frac{\mu}{a} {\left[ { e - 1 \over 2(1 - e)} \right]} | = \frac{\mu}{a} {\left[ { e - 1 \over 2(1 - e)} \right]} | ||
</math> | </math> | ||
और अंत में हमने प्राप्त अंतिम सरलीकरण के साथ: | |||
<math display="block">\varepsilon = -{\mu \over 2a}</math>}} | <math display="block">\varepsilon = -{\mu \over 2a}</math>}} | ||
एक [[परवलयिक कक्षा]] के लिए यह समीकरण सरल हो जाता है | एक [[परवलयिक कक्षा]] के लिए यह समीकरण सरल हो जाता है | ||
Line 52: | Line 51: | ||
या दीर्घवृत्त के समान, a के चिह्न के लिए परिपाटी पर निर्भर करता है। | या दीर्घवृत्त के समान, a के चिह्न के लिए परिपाटी पर निर्भर करता है। | ||
इस | इस स्थितिे में विशिष्ट कक्षीय ऊर्जा को अभिलाक्षणिक ऊर्जा (या <math>C_3</math>) और परवलयिक कक्षा की तुलना में अतिरिक्त विशिष्ट ऊर्जा के बराबर है। | ||
यह [[अतिशयोक्तिपूर्ण अतिरिक्त वेग]] से संबंधित है <math>v_\infty</math> (अनंत पर गतिज ऊर्जा) द्वारा | यह [[अतिशयोक्तिपूर्ण अतिरिक्त वेग]] से संबंधित है <math>v_\infty</math> (अनंत पर गतिज ऊर्जा) द्वारा | ||
Line 58: | Line 57: | ||
यह इंटरप्लेनेटरी मिशन के लिए प्रासंगिक है। | यह इंटरप्लेनेटरी मिशन के लिए प्रासंगिक है। | ||
इस प्रकार, यदि कक्षीय स्थिति सदिश (<math>\mathbf{r}</math>) और [[कक्षीय वेग वेक्टर]] (<math>\mathbf{v}</math>) | इस प्रकार, यदि कक्षीय स्थिति सदिश (<math>\mathbf{r}</math>) और [[कक्षीय वेग वेक्टर]] (<math>\mathbf{v}</math>) स्थान पर जाने जाते हैं, और <math>\mu</math> ज्ञात है, तो ऊर्जा की गणना की जा सकती है और उससे, किसी अन्य स्थिति के लिए, कक्षीय गति। | ||
== परिवर्तन की दर == | == परिवर्तन की दर == | ||
Line 68: | Line 67: | ||
*<math>a\,\!</math> कक्षा की अर्ध-प्रमुख धुरी है। | *<math>a\,\!</math> कक्षा की अर्ध-प्रमुख धुरी है। | ||
वृत्ताकार कक्षाओं के | वृत्ताकार कक्षाओं के स्थितिे में, यह दर कक्षा में गुरुत्वाकर्षण का आधा है। यह इस तथ्य से मेल खाता है कि ऐसी कक्षाओं के लिए कुल ऊर्जा संभावित ऊर्जा का आधा है, क्योंकि गतिज ऊर्जा संभावित ऊर्जा का आधा घटा है। | ||
== अतिरिक्त ऊर्जा == | == अतिरिक्त ऊर्जा == | ||
यदि केंद्रीय निकाय की त्रिज्या R है, तो सतह पर स्थिर होने की तुलना में | यदि केंद्रीय निकाय की त्रिज्या R है, तो सतह पर स्थिर होने की तुलना में अण्डाकार कक्षा की अतिरिक्त विशिष्ट ऊर्जा है | ||
<math display="block"> -\frac{\mu}{2a}+\frac{\mu}{R} = \frac{\mu(2a-R)}{2aR}</math> | <math display="block"> -\frac{\mu}{2a}+\frac{\mu}{R} = \frac{\mu(2a-R)}{2aR}</math> | ||
मात्रा <math>2a-R</math> वह ऊँचाई है जो दीर्घवृत्त सतह के ऊपर फैली हुई है, साथ ही पेरीप्सिस दूरी (दीर्घवृत्त पृथ्वी के केंद्र से परे फैली हुई दूरी)। पृथ्वी के लिए और <math>a</math> से थोड़ा अधिक <math>R</math> अतिरिक्त विशिष्ट ऊर्जा है <math>(gR/2)</math>; जो वेग के क्षैतिज घटक की गतिज ऊर्जा है, अर्थात <math display="inline">\frac{1}{2}V^2 = \frac{1}{2}gR</math>, | मात्रा <math>2a-R</math> वह ऊँचाई है जो दीर्घवृत्त सतह के ऊपर फैली हुई है, साथ ही पेरीप्सिस दूरी (दीर्घवृत्त पृथ्वी के केंद्र से परे फैली हुई दूरी)। पृथ्वी के लिए और <math>a</math> से थोड़ा अधिक <math>R</math> अतिरिक्त विशिष्ट ऊर्जा है <math>(gR/2)</math>; जो वेग के क्षैतिज घटक की गतिज ऊर्जा है, अर्थात <math display="inline">\frac{1}{2}V^2 = \frac{1}{2}gR</math>, <math>V=\sqrt{gR}</math>. | ||
== उदाहरण == | == उदाहरण == | ||
Line 82: | Line 81: | ||
=== आईएसएस === | === आईएसएस === | ||
अंतर्राष्ट्रीय अंतरिक्ष स्टेशन की कक्षीय अवधि 91.74 मिनट ( | अंतर्राष्ट्रीय अंतरिक्ष स्टेशन की कक्षीय अवधि 91.74 मिनट (5504s), इसलिए केप्लर के ग्रहों की गति के नियमों द्वारा | केप्लर का तीसरा नियम इसकी कक्षा का अर्ध-प्रमुख अक्ष 6,738 हैकिमी।{{cn|date=March 2022}} | ||
ऊर्जा -29.6 | ऊर्जा -29.6 हैएमजे/किग्रा: संभावित ऊर्जा -59.2 हैएमजे/किग्रा, और गतिज ऊर्जा 29.6एमजे / किग्रा। सतह पर स्थितिज ऊर्जा से तुलना करें, जो -62.6 हैएमजे / किग्रा। अतिरिक्त संभावित ऊर्जा 3.4 हैएमजे/किग्रा, कुल अतिरिक्त ऊर्जा 33.0 हैएमजे / किग्रा। औसत गति 7.7 हैकिमी/सेकेंड, इस कक्षा तक पहुंचने के लिए नेट [[डेल्टा-सी]]ी 8.1 हैकिमी/सेकंड (वास्तविक डेल्टा-वी सामान्यतः 1.5-2.0 हैवायुमंडलीय ड्रैग और [[गुरुत्वाकर्षण खींचें]] के लिए किमी/सेकंड अधिक)। | ||
प्रति मीटर वृद्धि 4.4 | प्रति मीटर वृद्धि 4.4 होगीजे / किग्रा; यह दर 8.8 के स्थानीय गुरुत्व के आधे से मेल खाती हैएमएस<sup>2</उप>। | ||
100 की ऊँचाई के | 100 की ऊँचाई के लिएकिमी (त्रिज्या 6471 हैकिमी): | ||
ऊर्जा -30.8 | ऊर्जा -30.8 हैएमजे/किग्रा: संभावित ऊर्जा -61.6 हैएमजे/किग्रा, और गतिज ऊर्जा 30.8एमजे / किग्रा। सतह पर स्थितिज ऊर्जा से तुलना करें, जो -62.6 हैएमजे / किग्रा। अतिरिक्त संभावित ऊर्जा 1.0 हैएमजे/किग्रा, कुल अतिरिक्त ऊर्जा 31.8 हैएमजे / किग्रा। | ||
प्रति मीटर वृद्धि 4.8 | प्रति मीटर वृद्धि 4.8 होगीजे / किग्रा; यह दर 9.5 के स्थानीय गुरुत्वाकर्षण के आधे से मेल खाती हैएमएस<sup>2</उप>। स्पीड 7.8 हैकिमी/सेकेंड, इस कक्षा तक पहुंचने के लिए नेट डेल्टा-वी 8.0 हैकिमी/से. | ||
पृथ्वी के घूर्णन को ध्यान में रखते हुए डेल्टा-वी 0.46 तक | पृथ्वी के घूर्णन को ध्यान में रखते हुए डेल्टा-वी 0.46 तक हैकिमी/सेकंड कम (भूमध्य रेखा से प्रारंभू होकर पूर्व की ओर) या अधिक (यदि पश्चिम की ओर जा रहे हैं)। | ||
=== | === वॉयेजर 1 === | ||
वायेजर 1 के लिए, सूर्य के संबंध में: | वायेजर 1 के लिए, सूर्य के संबंध में: | ||
Line 106: | Line 105: | ||
इस प्रकार अतिशयोक्तिपूर्ण अतिरिक्त वेग (अनंत पर सैद्धांतिक गतिज ऊर्जा) द्वारा दिया जाता है | इस प्रकार अतिशयोक्तिपूर्ण अतिरिक्त वेग (अनंत पर सैद्धांतिक गतिज ऊर्जा) द्वारा दिया जाता है | ||
<math display="block">v_\infty = \mathrm{16.6\,km/s}</math> | <math display="block">v_\infty = \mathrm{16.6\,km/s}</math> | ||
चूंकि, वोयाजर 1 के पास [[आकाशगंगा]] को छोड़ने के लिए पर्याप्त वेग नहीं है। गणना की गई गति सूर्य से बहुत दूर प्रयुक्त होती है, किन्तु ऐसी स्थिति में कि समग्र रूप से मिल्की वे के संबंध में संभावित ऊर्जा नगण्य रूप से बदल गई है, और केवल तभी जब सूर्य के अतिरिक्त आकाशीय पिंडों के साथ कोई प्रभावशाली संपर्क न हो। | |||
== थ्रस्ट लगाना == | == थ्रस्ट लगाना == | ||
मान लीजिए: | मान लीजिए: | ||
* | *a [[जोर|फोर्स]] के कारण त्वरण है (समय-दर जिस पर डेल्टा-वी खर्च किया जाता है) | ||
*g गुरुत्वाकर्षण क्षेत्र की ताकत है | *g गुरुत्वाकर्षण क्षेत्र की ताकत है | ||
*v रॉकेट का वेग है | *v रॉकेट का वेग है | ||
तब रॉकेट की विशिष्ट ऊर्जा के परिवर्तन की समय-दर है <math> \mathbf{v} \cdot \mathbf{a}</math>: एक राशि <math>\mathbf{v} \cdot (\mathbf{a}-\mathbf{g})</math> गतिज ऊर्जा और | तब रॉकेट की विशिष्ट ऊर्जा के परिवर्तन की समय-दर है <math> \mathbf{v} \cdot \mathbf{a}</math>: एक राशि <math>\mathbf{v} \cdot (\mathbf{a}-\mathbf{g})</math> गतिज ऊर्जा और राशि के लिए <math>\mathbf{v} \cdot \mathbf{g}</math> संभावित ऊर्जा के लिए। | ||
डेल्टा-वी के प्रति इकाई परिवर्तन में रॉकेट की विशिष्ट ऊर्जा का परिवर्तन है | डेल्टा-वी के प्रति इकाई परिवर्तन में रॉकेट की विशिष्ट ऊर्जा का परिवर्तन है | ||
<math display="block">\frac{\mathbf{v \cdot a}}{|\mathbf{a}|}</math> | <math display="block">\frac{\mathbf{v \cdot a}}{|\mathbf{a}|}</math> | ||
जो है | | जो है |'''v'''| v और a के बीच के कोण की कोज्या का गुना। | ||
इस प्रकार, विशिष्ट कक्षीय ऊर्जा को बढ़ाने के लिए डेल्टा-वी को | इस प्रकार, विशिष्ट कक्षीय ऊर्जा को बढ़ाने के लिए डेल्टा-वी को प्रयुक्त करते समय, यह सबसे अधिक कुशलता से किया जाता है यदि ए को वी की दिशा में प्रयुक्त किया जाता है, और जब |v| बड़ी है। यदि v और g के बीच का कोण अधिक है, उदाहरण के लिए लॉन्च में और उच्च कक्षा में स्थानांतरण में, इसका मतलब डेल्टा-वी को जितनी जल्दी हो सके और पूरी क्षमता पर प्रयुक्त करना है। ग्रेविटी ड्रैग भी देखें। किसी खगोलीय पिंड के पास से निकलते समय इसका मतलब है कि पिंड के सबसे निकटतम होने पर जोर लगाना। जब धीरे-धीरे अण्डाकार कक्षा को बड़ा बनाते हैं, तो इसका मतलब है कि हर बार पेरीएप्सिस के पास जोर लगाना। | ||
विशिष्ट कक्षीय ऊर्जा को 'घटाने' के लिए डेल्टा-वी | विशिष्ट कक्षीय ऊर्जा को 'घटाने' के लिए डेल्टा-वी प्रयुक्त करते समय, यह सबसे कुशलता से किया जाता है यदि ए को वी के विपरीत दिशा में प्रयुक्त किया जाता है, और फिर जब |v| बड़ी है। यदि v और g के बीच का कोण तीव्र है, उदाहरण के लिए लैंडिंग में (वायुमंडल के बिना आकाशीय पिंड पर) और बाहर से आने पर खगोलीय पिंड के चारों ओर गोलाकार कक्षा में स्थानांतरण में, इसका मतलब डेल्टा-v को जितनी देर से लगाना है संभावित। किसी ग्रह के पास से निकलते समय इसका मतलब है कि ग्रह के सबसे नजदीक होने पर जोर लगाना। जब धीरे-धीरे दीर्घवृत्तीय कक्षा को छोटा करते हैं, तो इसका मतलब है कि पेरीएप्सिस के पास हर बार थ्रस्ट लगाना। | ||
यदि a v की दिशा में है: | यदि a v की दिशा में है: | ||
<math display="block">\Delta \varepsilon = \int v\, d (\Delta v) = \int v\, a dt</math> | <math display="block">\Delta \varepsilon = \int v\, d (\Delta v) = \int v\, a dt</math> | ||
== यह भी देखें == | == यह भी देखें == | ||
* | *सियोलकोवस्की रॉकेट समीकरण या ऊर्जा | ||
* अभिलाक्षणिक ऊर्जा C3 (विशिष्ट कक्षीय ऊर्जा का दुगुना) | * अभिलाक्षणिक ऊर्जा C3 (विशिष्ट कक्षीय ऊर्जा का दुगुना) | ||
Line 138: | Line 133: | ||
{{reflist}} | {{reflist}} | ||
[[Category:All articles with unsourced statements]] | |||
[[Category:Articles with unsourced statements from March 2022]] | |||
[[Category: | [[Category:CS1 English-language sources (en)]] | ||
[[Category:Collapse templates]] | |||
[[Category: | |||
[[Category:Created On 27/01/2023]] | [[Category:Created On 27/01/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Translated in Hindi]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:कक्षाओं]] | |||
[[Category:खगोल गतिशीलता]] |
Latest revision as of 17:04, 19 October 2023
गुरुत्वाकर्षण दो-पिंड समस्या में, विशिष्ट कक्षीय ऊर्जा (या विवा-विवा ऊर्जा) दो परिक्रमा करने वाले पिंडों की उनकी पारस्परिक संभावित ऊर्जा का निरंतर योग है () और उनकी कुल गतिज ऊर्जा (), कम द्रव्यमान से विभाजित।[1] विस-विवा समीकरण (जिसे विस-विवा समीकरण भी कहा जाता है) के अनुसार, यह समय के साथ बदलता नहीं है:
- सापेक्ष कक्षीय गति है;
- निकायों के बीच कक्षीय राज्य वैक्टर है;
- निकायों के मानक गुरुत्वाकर्षण मापदंडों का योग है;
- सापेक्ष कोणीय संवेग के अर्थ में विशिष्ट सापेक्ष कोणीय संवेग है जिसे कम द्रव्यमान से विभाजित किया जाता है;
- विलक्षणता (कक्षा) है;
- अर्ध-प्रमुख अक्ष है।
इसे MJ/kg या में व्यक्त किया जाता है . एक दीर्घवृत्तीय कक्षा के लिए विशिष्ट कक्षीय ऊर्जा वेग से बचने के लिए एक किलोग्राम के द्रव्यमान को गति देने के लिए आवश्यक अतिरिक्त ऊर्जा का ऋणात्मक है (परवलयिक प्रक्षेपवक्र)। अतिशयोक्तिपूर्ण प्रक्षेपवक्र के लिए, यह परवलयिक कक्षा की तुलना में अतिरिक्त ऊर्जा के बराबर है। इस स्थितिे में विशिष्ट कक्षीय ऊर्जा को चारित्रिक ऊर्जा भी कहा जाता है।
विभिन्न कक्षाओं के लिए समीकरण रूप
एक अण्डाकार कक्षा के लिए, विशिष्ट कक्षीय ऊर्जा समीकरण, जब कक्षा के किसी अपसाइड पर विशिष्ट सापेक्ष कोणीय गति के साथ संयुक्त हो जाता है, तो यह सरल हो जाता है:[2]
- मानक गुरुत्वाकर्षण पैरामीटर है;
- कक्षा की अर्ध-प्रमुख धुरी है।
के साथ एक अण्डाकार कक्षा के लिए विशिष्ट कोणीय गति h के द्वारा दिया गया
एक परवलयिक कक्षा के लिए यह समीकरण सरल हो जाता है
इस स्थितिे में विशिष्ट कक्षीय ऊर्जा को अभिलाक्षणिक ऊर्जा (या ) और परवलयिक कक्षा की तुलना में अतिरिक्त विशिष्ट ऊर्जा के बराबर है।
यह अतिशयोक्तिपूर्ण अतिरिक्त वेग से संबंधित है (अनंत पर गतिज ऊर्जा) द्वारा
इस प्रकार, यदि कक्षीय स्थिति सदिश () और कक्षीय वेग वेक्टर () स्थान पर जाने जाते हैं, और ज्ञात है, तो ऊर्जा की गणना की जा सकती है और उससे, किसी अन्य स्थिति के लिए, कक्षीय गति।
परिवर्तन की दर
एक अण्डाकार कक्षा के लिए अर्ध-प्रमुख अक्ष में परिवर्तन के संबंध में विशिष्ट कक्षीय ऊर्जा के परिवर्तन की दर है
- मानक गुरुत्वाकर्षण पैरामीटर है;
- कक्षा की अर्ध-प्रमुख धुरी है।
वृत्ताकार कक्षाओं के स्थितिे में, यह दर कक्षा में गुरुत्वाकर्षण का आधा है। यह इस तथ्य से मेल खाता है कि ऐसी कक्षाओं के लिए कुल ऊर्जा संभावित ऊर्जा का आधा है, क्योंकि गतिज ऊर्जा संभावित ऊर्जा का आधा घटा है।
अतिरिक्त ऊर्जा
यदि केंद्रीय निकाय की त्रिज्या R है, तो सतह पर स्थिर होने की तुलना में अण्डाकार कक्षा की अतिरिक्त विशिष्ट ऊर्जा है
उदाहरण
आईएसएस
अंतर्राष्ट्रीय अंतरिक्ष स्टेशन की कक्षीय अवधि 91.74 मिनट (5504s), इसलिए केप्लर के ग्रहों की गति के नियमों द्वारा | केप्लर का तीसरा नियम इसकी कक्षा का अर्ध-प्रमुख अक्ष 6,738 हैकिमी।[citation needed] ऊर्जा -29.6 हैएमजे/किग्रा: संभावित ऊर्जा -59.2 हैएमजे/किग्रा, और गतिज ऊर्जा 29.6एमजे / किग्रा। सतह पर स्थितिज ऊर्जा से तुलना करें, जो -62.6 हैएमजे / किग्रा। अतिरिक्त संभावित ऊर्जा 3.4 हैएमजे/किग्रा, कुल अतिरिक्त ऊर्जा 33.0 हैएमजे / किग्रा। औसत गति 7.7 हैकिमी/सेकेंड, इस कक्षा तक पहुंचने के लिए नेट डेल्टा-सीी 8.1 हैकिमी/सेकंड (वास्तविक डेल्टा-वी सामान्यतः 1.5-2.0 हैवायुमंडलीय ड्रैग और गुरुत्वाकर्षण खींचें के लिए किमी/सेकंड अधिक)।
प्रति मीटर वृद्धि 4.4 होगीजे / किग्रा; यह दर 8.8 के स्थानीय गुरुत्व के आधे से मेल खाती हैएमएस2</उप>।
100 की ऊँचाई के लिएकिमी (त्रिज्या 6471 हैकिमी):
ऊर्जा -30.8 हैएमजे/किग्रा: संभावित ऊर्जा -61.6 हैएमजे/किग्रा, और गतिज ऊर्जा 30.8एमजे / किग्रा। सतह पर स्थितिज ऊर्जा से तुलना करें, जो -62.6 हैएमजे / किग्रा। अतिरिक्त संभावित ऊर्जा 1.0 हैएमजे/किग्रा, कुल अतिरिक्त ऊर्जा 31.8 हैएमजे / किग्रा।
प्रति मीटर वृद्धि 4.8 होगीजे / किग्रा; यह दर 9.5 के स्थानीय गुरुत्वाकर्षण के आधे से मेल खाती हैएमएस2</उप>। स्पीड 7.8 हैकिमी/सेकेंड, इस कक्षा तक पहुंचने के लिए नेट डेल्टा-वी 8.0 हैकिमी/से.
पृथ्वी के घूर्णन को ध्यान में रखते हुए डेल्टा-वी 0.46 तक हैकिमी/सेकंड कम (भूमध्य रेखा से प्रारंभू होकर पूर्व की ओर) या अधिक (यदि पश्चिम की ओर जा रहे हैं)।
वॉयेजर 1
वायेजर 1 के लिए, सूर्य के संबंध में:
- = 132,712,440,018 किमी3⋅s−2 सूर्य का मानक गुरुत्वीय प्राचल है
- r = 17 1000000000 (संख्या) किलोमीटर
- v = 17.1 किमी/सेकंड
इस तरह:
थ्रस्ट लगाना
मान लीजिए:
- a फोर्स के कारण त्वरण है (समय-दर जिस पर डेल्टा-वी खर्च किया जाता है)
- g गुरुत्वाकर्षण क्षेत्र की ताकत है
- v रॉकेट का वेग है
तब रॉकेट की विशिष्ट ऊर्जा के परिवर्तन की समय-दर है : एक राशि गतिज ऊर्जा और राशि के लिए संभावित ऊर्जा के लिए।
डेल्टा-वी के प्रति इकाई परिवर्तन में रॉकेट की विशिष्ट ऊर्जा का परिवर्तन है
इस प्रकार, विशिष्ट कक्षीय ऊर्जा को बढ़ाने के लिए डेल्टा-वी को प्रयुक्त करते समय, यह सबसे अधिक कुशलता से किया जाता है यदि ए को वी की दिशा में प्रयुक्त किया जाता है, और जब |v| बड़ी है। यदि v और g के बीच का कोण अधिक है, उदाहरण के लिए लॉन्च में और उच्च कक्षा में स्थानांतरण में, इसका मतलब डेल्टा-वी को जितनी जल्दी हो सके और पूरी क्षमता पर प्रयुक्त करना है। ग्रेविटी ड्रैग भी देखें। किसी खगोलीय पिंड के पास से निकलते समय इसका मतलब है कि पिंड के सबसे निकटतम होने पर जोर लगाना। जब धीरे-धीरे अण्डाकार कक्षा को बड़ा बनाते हैं, तो इसका मतलब है कि हर बार पेरीएप्सिस के पास जोर लगाना।
विशिष्ट कक्षीय ऊर्जा को 'घटाने' के लिए डेल्टा-वी प्रयुक्त करते समय, यह सबसे कुशलता से किया जाता है यदि ए को वी के विपरीत दिशा में प्रयुक्त किया जाता है, और फिर जब |v| बड़ी है। यदि v और g के बीच का कोण तीव्र है, उदाहरण के लिए लैंडिंग में (वायुमंडल के बिना आकाशीय पिंड पर) और बाहर से आने पर खगोलीय पिंड के चारों ओर गोलाकार कक्षा में स्थानांतरण में, इसका मतलब डेल्टा-v को जितनी देर से लगाना है संभावित। किसी ग्रह के पास से निकलते समय इसका मतलब है कि ग्रह के सबसे नजदीक होने पर जोर लगाना। जब धीरे-धीरे दीर्घवृत्तीय कक्षा को छोटा करते हैं, तो इसका मतलब है कि पेरीएप्सिस के पास हर बार थ्रस्ट लगाना।
यदि a v की दिशा में है:
यह भी देखें
- सियोलकोवस्की रॉकेट समीकरण या ऊर्जा
- अभिलाक्षणिक ऊर्जा C3 (विशिष्ट कक्षीय ऊर्जा का दुगुना)
संदर्भ
- ↑ "Specific energy". Marspedia (in English). Retrieved 2022-08-12.
- ↑ Wie, Bong (1998). "Orbital Dynamics". Space Vehicle Dynamics and Control. AIAA Education Series. Reston, Virginia: American Institute of Aeronautics and Astronautics. p. 220. ISBN 1-56347-261-9.