ब्रजुनो संख्या: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 75: | Line 75: | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
{{reflist}} | {{reflist}} | ||
[[Category:Created On 03/02/2023]] | [[Category:Created On 03/02/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Machine Translated Page]] | ||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:गतिशील प्रणाली]] | |||
[[Category:नंबर द]] |
Latest revision as of 10:59, 9 February 2023
गणित में ब्रजुनो संख्या एक विशेष प्रकार की अपरिमेय संख्या होती है।
औपचारिक परिभाषा
अपरिमेय संख्या एक ब्रजुनो संख्या कहलाती है जब इसका योग अनंत होता है
- , जहाँ:
- nवें अभिसारी का हर हैके निरंतर अंश विस्तार का .
- ए ब्रजुनो समारोह है
नाम
ब्रजुनो संख्याओ का नाम अलेक्जेंडर ब्रूनो के नाम पर रखा गया है, जिन्होंने उन्हें Brjuno (1971) में प्रस्तुत किया। कभी-कभी इनको ब्रूनो संख्या या ब्रायनो संख्या भी लिखते हैं।
महत्व
ब्रजुनो संख्याएं एक-आयामी विश्लेषणात्मक छोटे विभाजक समस्याओं में महत्वपूर्ण हैं। ब्रूनो ने सीगल के प्रमेय में डायोफैंटाइन की स्थिति में सुधार किया और दिखाया कि रैखिक भाग के साथ होलोमोर्फिक कार्यों के कीटाणु (गणित) यदि रेखीय हैं तो एक ब्रजुनो संख्या है। (Jean-Christophe Yoccoz 1995) जीन-क्रिस्टोफ़ योकोज़ (1995) ने 1987 में दिखाया कि यह स्थिति भी आवश्यक है और द्विघात बहुपदों के लिए आवश्यक और पर्याप्त है।
गुण
सरल रूप से इन संख्याओं में अभिसरण के अनुक्रम में बहुत बड़ी छलांग नहीं होती है, जिसमें (n+1)वें अभिसरण का भाजक nवें अभिसरण की तुलना में घातीय रूप से बड़ा होता है। इस प्रकार, लिउविल संख्याओं के विपरीत, उनके पास परिमेय संख्याओं द्वारा असामान्य रूप से सटीक डायोफैंटाइन सन्निकटन नहीं होते हैं।
ब्रजुनो फलन
बृजुनो योग
ब्रजुनो योग या ब्रजुनो समारोह है
- , जहाँ:
- n वें अभिसारी का हर है के निरंतर अंश विस्तार का .
वास्तविक संस्करण
असली ब्रजुनो समारोह अपरिमेय संख्याओं के लिए परिभाषित किया गया है [1]
- सभी तर्कहीन के लिए 0 और 1 के बीच संतुष्ट करता है।
योकोज का संस्करण
ब्रजुनो परिमाण के जीन-क्रिस्टोफ़ योकोज़ के संस्करण को इस प्रकार परिभाषित किया गया है:[2]
- जहाँ:
- अपरिमेय वास्तविक संख्या है:
- का अंश है
- का अंश है
यह परिमाण सम्मिलित होता है अगर केवल ब्रजुनो योग करता है और वास्तव में उनका अंतर एक सार्वभौमिक स्थिरांक से जुड़ा होता है।
यह भी देखें
संदर्भ
- Brjuno, Alexander D. (1971), "Analytic form of differential equations. I, II", Trudy Moskovskogo Matematičeskogo Obščestva, 25: 119–262, ISSN 0134-8663, MR 0377192
- Lee, Eileen F. (Spring 1999), "The structure and topology of the Brjuno numbers" (PDF), Proceedings of the 1999 Topology and Dynamics Conference (Salt Lake City, UT), Topology Proceedings, vol. 24, pp. 189–201, MR 1802686
- Marmi, Stefano; Moussa, Pierre; Yoccoz, Jean-Christophe (2001), "Complex Brjuno functions", Journal of the American Mathematical Society, 14 (4): 783–841, doi:10.1090/S0894-0347-01-00371-X, ISSN 0894-0347, MR 1839917
- Yoccoz, Jean-Christophe (1995), "Théorème de Siegel, nombres de Bruno et polynômes quadratiques", Petits diviseurs en dimension 1, Astérisque, vol. 231, pp. 3–88, MR 1367353