बीजगणितीय स्वतंत्रता: Difference between revisions
(Created page with "{{Short description|Set without nontrivial polynomial equalities}} {{use mdy dates|date=September 2021}} {{Use American English|date = January 2019}} {{Ring theory sidebar}} [...") |
No edit summary |
||
(11 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
[[सार बीजगणित|'''अमूर्त बीजगणित''']] में, क्षेत्र <math>L</math> का एक उपसमुच्चय <math>S</math> उपक्षेत्र <math>K</math> पर बीजगणितीय रूप से स्वतंत्र होता है यदि <math>S</math> के तत्व <math>K</math> में गुणांक वाले किसी गैर-तुच्छ [[तुच्छ (गणित)|(गणित)]] [[बहुपद]] समीकरण को संतुष्ट नहीं करते है। | |||
[[सार बीजगणित]] में, एक उपसमुच्चय <math>S</math> | |||
विशेष रूप से, एक तत्व सेट <math>\{\alpha\}</math> | विशेष रूप से, एक तत्व सेट <math>\{\alpha\}</math>, <math>K</math> पर बीजगणितीय रूप से स्वतंत्र है यदि [[अगर और केवल अगर|और केवल]] यदि <math>\alpha</math>, <math>K</math> पर [[पारलौकिक तत्व|पारलौकिक]] है। सामान्यतः, बीजगणितीय रूप से स्वतंत्र सेट <math>S</math> के सभी तत्व <math>K</math> पर आवश्यकता से [[फील्ड एक्सटेंशन|पूरे क्षेत्र]] में अधिक होते है। <math>S</math> के शेष तत्वों द्वारा उत्पन्न <math>K</math> पर विस्तार होता है। | ||
== उदाहरण == | == उदाहरण == | ||
दो [[वास्तविक संख्या]] | दो [[वास्तविक संख्या|वास्तविक]] संख्याएँ <math>\sqrt{\pi}</math> और <math>2\pi+1</math> प्रत्येक पारलौकिक संख्याएँ है: वे किसी भी गैर-तुच्छ बहुपद की जड़ें नहीं है जिनके गुणांक परिमेय संख्याएँ है। इस प्रकार, दो [[सिंगलटन सेट]] <math>\{\sqrt{\pi}\}</math> और <math>\{2\pi+1\}</math> परिमेय संख्याओं के क्षेत्र <math>\mathbb{Q}</math> पर बीजगणितीय रूप से स्वतंत्र है। | ||
चूँकि, सेट <math>\{ \sqrt{\pi}, 2\pi+1 \}</math> परिमेय संख्याओं पर बीजगणितीय रूप से स्वतंत्र नहीं है, क्योंकि गैर-तुच्छ बहुपद है | |||
:<math>P(x,y)=2x^2-y+1</math> | :<math>P(x,y)=2x^2-y+1</math> | ||
शून्य है जब <math>x=\sqrt{\pi}</math> और <math>y=2\pi+1</math>. | शून्य है जब <math>x=\sqrt{\pi}</math> और <math>y=2\pi+1</math>. | ||
== ज्ञात स्थिरांकों की | == ज्ञात स्थिरांकों की बीजगणितीय स्वतंत्रता == | ||
चूंकि <math>\pi</math> और E दोनों को अनुवांशिक माना जाता है, यह ज्ञात नहीं है कि दोनों का सेट <math>\mathbb{Q}</math> पर बीजगणितीय रूप से स्वतंत्र है या नहीं है।<ref>{{cite book | |||
यह ज्ञात नहीं है कि दोनों का | |||
| url = https://books.google.com/books?id=jQ7c8Xqpqk0C | | url = https://books.google.com/books?id=jQ7c8Xqpqk0C | ||
| title = Field and Galois Theory | | title = Field and Galois Theory | ||
Line 25: | Line 20: | ||
| access-date = 2008-04-11 | | access-date = 2008-04-11 | ||
| isbn = 978-0-387-94753-2 | | isbn = 978-0-387-94753-2 | ||
}}</ref> वास्तव में, यह ज्ञात | }}</ref> वास्तव में, यह भी ज्ञात नहीं है कि <math>\pi+e</math> अपरिमेय है या नहीं है।<ref>{{Citation |last=Green |first=Ben |author-link=Ben J. Green|chapter=III.41 Irrational and Transcendental Numbers |editor-last=Gowers |editor-first=Timothy |year=2008 |title=[[The Princeton Companion to Mathematics]] |page=222 |publisher=Princeton University Press}}</ref> [[यूरी वैलेंटाइनोविच नेस्टरेंको|नेस्टरेंको]] ने 1996 में सिद्ध किया कि: | ||
[[यूरी वैलेंटाइनोविच नेस्टरेंको]] ने 1996 में | * संख्या <math>\pi</math>,<math>e^\pi</math>, और Γ(1/4) <math>\mathbb{Q}</math> पर बीजगणितीय रूप से स्वतंत्र है।<ref name="MP61">{{cite book | first1=Yu. I. | last1=Manin | author-link1=Yuri I. Manin | first2=A. A. | last2=Panchishkin | title=Introduction to Modern Number Theory | series=Encyclopaedia of Mathematical Sciences | volume=49 | edition=Second | year=2007 | isbn=978-3-540-20364-3 | issn=0938-0396 | zbl=1079.11002 | page=61 }}</ref> | ||
* संख्या <math>\pi</math>, <math>e^\pi</math>, और | * संख्या <math>e^{\pi\sqrt{3}}</math> और Γ(1/3) <math>\mathbb{Q}</math> पर बीजगणितीय रूप से स्वतंत्र है। | ||
* संख्या <math>e^{\pi\sqrt{3}}</math> और Γ(1/3) | * सभी सकारात्मक पूर्णांकों <math>n</math> के लिए, संख्या <math>e^{\pi\sqrt{n}}</math> बीजगणितीय रूप से <math>\mathbb{Q}</math> पर स्वतंत्र है।<ref>{{cite journal|author=Nesterenko, Yuri V|author-link=Yuri Valentinovich Nesterenko|title=Modular Functions and Transcendence Problems|journal=[[Comptes rendus de l'Académie des sciences|Comptes Rendus de l'Académie des Sciences, Série I]]|volume=322|pages=909–914|year=1996|issue=10}}</ref> | ||
* सभी सकारात्मक पूर्णांकों | == लिंडमैन-वीयरस्ट्रास प्रमेय == | ||
लिंडमैन-वीयरस्ट्रास प्रमेय का उपयोग अधिकांशतः यह सिद्ध करने के लिए किया जा सकता है कि कुछ सेट <math>\mathbb{Q}</math> पर बीजगणितीय रूप से स्वतंत्र होते है। यह बताता है कि जब भी <math>\alpha_1,\ldots,\alpha_n</math> [[बीजगणितीय संख्या|बीजगणितीय]] संख्याएँ होती है जो <math>\mathbb{Q}</math> पर [[रैखिक रूप से स्वतंत्र]] होती है, तो <math>e^{\alpha_1},\ldots,e^{\alpha_n}</math> भी <math>\mathbb{Q}</math> पर बीजगणितीय रूप से स्वतंत्र होती है। | |||
== बीजगणितीय मैट्रोइड्स == | |||
{{main|बीजगणितीय मैट्रोइड}} | |||
एक क्षेत्र विस्तार <math>L/K</math> दिया गया है जो बीजगणितीय नहीं है, ज़ोर्न के लेम्मा का उपयोग यह दिखाने के लिए किया जा सकता है कि <math>L</math> के ऊपर <math>K</math> का अधिकतम बीजगणितीय रूप से स्वतंत्र उपसमुच्चय हमेशा उपस्तिथ होता है। इसके अतिरिक्त, सभी अधिकतम बीजगणितीय रूप से स्वतंत्र उपसमुच्चय में समान कार्डिनैलिटी होती है, जिसे विस्तार की [[श्रेष्ठता की डिग्री]] के रूप में जाना जाता है। | |||
<math>L</math> के तत्वों के प्रत्येक सेट <math>S</math> के लिए, <math>S</math> के बीजगणितीय रूप से स्वतंत्र उपसमुच्चय है जो सिद्धांतों को संतुष्ट करते है जो एक मैट्रॉइड के स्वतंत्र सेट को परिभाषित करते है। इस [[matroid|मैट्रॉइड]] में, तत्वों के एक सेट का रैंक इसकी श्रेष्ठता की डिग्री है, और <math>K[T]</math> के साथ <math>L</math> का प्रतिच्छेदन तत्वों के एक सेट <math>T</math> द्वारा उत्पन्न समतल क्षेत्र होता है। एक मैट्रॉइड जिसे इस तरह से उत्पन्न किया जा सकता है उसे बीजगणितीय मैट्रोइड कहा जाता है। बीजगणितीय मैट्रोइड्स का कोई अच्छा लक्षण वर्णन ज्ञात नहीं है, लेकिन कुछ मैट्रोइड्स को गैर-बीजीय मैट्रोइड्स के रूप में जाना जाता है; सबसे छोटा '''वामोस मैट्रोइड''' होता है।<ref>{{citation | |||
| last1 = Ingleton | first1 = A. W. | | last1 = Ingleton | first1 = A. W. | ||
| last2 = Main | first2 = R. A. | | last2 = Main | first2 = R. A. | ||
Line 50: | Line 43: | ||
| year = 1975| issue = 2 | | year = 1975| issue = 2 | ||
}}.</ref> | }}.</ref> | ||
कई परिमित मैट्रोइड्स एक [[मैट्रिक्स (गणित)]] क्षेत्र <math>K</math> पर एक मैट्रिक्स द्वारा प्रतिनिधित्व किया जा सकता है, जिसमें मैट्रॉइड तत्व मैट्रिक्स कॉलम के अनुरूप होते है, और तत्वों का एक सेट स्वतंत्र होता है यदि स्तंभों का संबंधित सेट [[रैखिक स्वतंत्रता|रैखिक]] रूप से [[रैखिक स्वतंत्रता|स्वतंत्र]] होता है। मैट्रिक्स की प्रत्येक पंक्ति के लिए एक [[अनिश्चित (चर)]] का चयन करके और प्रत्येक मैट्रोइड तत्व को इन ट्रान्सेंडैंटल के एक रैखिक संयोजन को सौंपने के लिए प्रत्येक कॉलम के भीतर मैट्रिक्स गुणांक का उपयोग करके इस प्रकार के एक रैखिक प्रतिनिधित्व के साथ प्रत्येक मैट्रॉइड तैयार करता है। इसका विलोम असत्य है: प्रत्येक बीजगणितीय मैट्रॉइड का एक रेखीय निरूपण नहीं होता है।<ref>{{citation|title=Applied Discrete Structures|first=K. D.|last=Joshi|publisher=New Age International|year=1997|isbn=9788122408263|page=909|url=https://books.google.com/books?id=lxIgGGJXacoC&pg=PA909}}.</ref> | |||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} | ||
Line 59: | Line 51: | ||
==बाहरी कड़ियाँ== | ==बाहरी कड़ियाँ== | ||
*{{MathWorld|urlname=AlgebraicallyIndependent|title=Algebraically Independent|author=Chen, Johnny}} | *{{MathWorld|urlname=AlgebraicallyIndependent|title=Algebraically Independent|author=Chen, Johnny}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Created On 03/02/2023]] | [[Category:Created On 03/02/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:मैट्रोइड सिद्धांत]] | |||
[[Category:सार बीजगणित]] |
Latest revision as of 11:59, 9 February 2023
अमूर्त बीजगणित में, क्षेत्र का एक उपसमुच्चय उपक्षेत्र पर बीजगणितीय रूप से स्वतंत्र होता है यदि के तत्व में गुणांक वाले किसी गैर-तुच्छ (गणित) बहुपद समीकरण को संतुष्ट नहीं करते है।
विशेष रूप से, एक तत्व सेट , पर बीजगणितीय रूप से स्वतंत्र है यदि और केवल यदि , पर पारलौकिक है। सामान्यतः, बीजगणितीय रूप से स्वतंत्र सेट के सभी तत्व पर आवश्यकता से पूरे क्षेत्र में अधिक होते है। के शेष तत्वों द्वारा उत्पन्न पर विस्तार होता है।
उदाहरण
दो वास्तविक संख्याएँ और प्रत्येक पारलौकिक संख्याएँ है: वे किसी भी गैर-तुच्छ बहुपद की जड़ें नहीं है जिनके गुणांक परिमेय संख्याएँ है। इस प्रकार, दो सिंगलटन सेट और परिमेय संख्याओं के क्षेत्र पर बीजगणितीय रूप से स्वतंत्र है।
चूँकि, सेट परिमेय संख्याओं पर बीजगणितीय रूप से स्वतंत्र नहीं है, क्योंकि गैर-तुच्छ बहुपद है
शून्य है जब और .
ज्ञात स्थिरांकों की बीजगणितीय स्वतंत्रता
चूंकि और E दोनों को अनुवांशिक माना जाता है, यह ज्ञात नहीं है कि दोनों का सेट पर बीजगणितीय रूप से स्वतंत्र है या नहीं है।[1] वास्तव में, यह भी ज्ञात नहीं है कि अपरिमेय है या नहीं है।[2] नेस्टरेंको ने 1996 में सिद्ध किया कि:
- संख्या ,, और Γ(1/4) पर बीजगणितीय रूप से स्वतंत्र है।[3]
- संख्या और Γ(1/3) पर बीजगणितीय रूप से स्वतंत्र है।
- सभी सकारात्मक पूर्णांकों के लिए, संख्या बीजगणितीय रूप से पर स्वतंत्र है।[4]
लिंडमैन-वीयरस्ट्रास प्रमेय
लिंडमैन-वीयरस्ट्रास प्रमेय का उपयोग अधिकांशतः यह सिद्ध करने के लिए किया जा सकता है कि कुछ सेट पर बीजगणितीय रूप से स्वतंत्र होते है। यह बताता है कि जब भी बीजगणितीय संख्याएँ होती है जो पर रैखिक रूप से स्वतंत्र होती है, तो भी पर बीजगणितीय रूप से स्वतंत्र होती है।
बीजगणितीय मैट्रोइड्स
एक क्षेत्र विस्तार दिया गया है जो बीजगणितीय नहीं है, ज़ोर्न के लेम्मा का उपयोग यह दिखाने के लिए किया जा सकता है कि के ऊपर का अधिकतम बीजगणितीय रूप से स्वतंत्र उपसमुच्चय हमेशा उपस्तिथ होता है। इसके अतिरिक्त, सभी अधिकतम बीजगणितीय रूप से स्वतंत्र उपसमुच्चय में समान कार्डिनैलिटी होती है, जिसे विस्तार की श्रेष्ठता की डिग्री के रूप में जाना जाता है।
के तत्वों के प्रत्येक सेट के लिए, के बीजगणितीय रूप से स्वतंत्र उपसमुच्चय है जो सिद्धांतों को संतुष्ट करते है जो एक मैट्रॉइड के स्वतंत्र सेट को परिभाषित करते है। इस मैट्रॉइड में, तत्वों के एक सेट का रैंक इसकी श्रेष्ठता की डिग्री है, और के साथ का प्रतिच्छेदन तत्वों के एक सेट द्वारा उत्पन्न समतल क्षेत्र होता है। एक मैट्रॉइड जिसे इस तरह से उत्पन्न किया जा सकता है उसे बीजगणितीय मैट्रोइड कहा जाता है। बीजगणितीय मैट्रोइड्स का कोई अच्छा लक्षण वर्णन ज्ञात नहीं है, लेकिन कुछ मैट्रोइड्स को गैर-बीजीय मैट्रोइड्स के रूप में जाना जाता है; सबसे छोटा वामोस मैट्रोइड होता है।[5]
कई परिमित मैट्रोइड्स एक मैट्रिक्स (गणित) क्षेत्र पर एक मैट्रिक्स द्वारा प्रतिनिधित्व किया जा सकता है, जिसमें मैट्रॉइड तत्व मैट्रिक्स कॉलम के अनुरूप होते है, और तत्वों का एक सेट स्वतंत्र होता है यदि स्तंभों का संबंधित सेट रैखिक रूप से स्वतंत्र होता है। मैट्रिक्स की प्रत्येक पंक्ति के लिए एक अनिश्चित (चर) का चयन करके और प्रत्येक मैट्रोइड तत्व को इन ट्रान्सेंडैंटल के एक रैखिक संयोजन को सौंपने के लिए प्रत्येक कॉलम के भीतर मैट्रिक्स गुणांक का उपयोग करके इस प्रकार के एक रैखिक प्रतिनिधित्व के साथ प्रत्येक मैट्रॉइड तैयार करता है। इसका विलोम असत्य है: प्रत्येक बीजगणितीय मैट्रॉइड का एक रेखीय निरूपण नहीं होता है।[6]
संदर्भ
- ↑ Patrick Morandi (1996). Field and Galois Theory. Springer. p. 174. ISBN 978-0-387-94753-2. Retrieved 2008-04-11.
- ↑ Green, Ben (2008), "III.41 Irrational and Transcendental Numbers", in Gowers, Timothy (ed.), The Princeton Companion to Mathematics, Princeton University Press, p. 222
- ↑ Manin, Yu. I.; Panchishkin, A. A. (2007). Introduction to Modern Number Theory. Encyclopaedia of Mathematical Sciences. Vol. 49 (Second ed.). p. 61. ISBN 978-3-540-20364-3. ISSN 0938-0396. Zbl 1079.11002.
- ↑ Nesterenko, Yuri V (1996). "Modular Functions and Transcendence Problems". Comptes Rendus de l'Académie des Sciences, Série I. 322 (10): 909–914.
- ↑ Ingleton, A. W.; Main, R. A. (1975), "Non-algebraic matroids exist", Bulletin of the London Mathematical Society, 7 (2): 144–146, doi:10.1112/blms/7.2.144, MR 0369110.
- ↑ Joshi, K. D. (1997), Applied Discrete Structures, New Age International, p. 909, ISBN 9788122408263.
बाहरी कड़ियाँ
- Chen, Johnny. "Algebraically Independent". MathWorld.