मेरोमॉर्फिक फलन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Class of mathematical function}}
{{Short description|Class of mathematical function}}
[[जटिल विश्लेषण]] के गणितीय क्षेत्र में, [[जटिल विमान|जटिल समतल]] के एक खुले उपसमुच्चय ''<nowiki/>'D'<nowiki/>'' पर एक मेरोमोर्फिक फ़ंक्शन(गणित) एक ऐसा फलन है जो पृथक बिंदुओं के एक समूह को छोड़कर सभी ''<nowiki/>'D''' पर [[होलोमॉर्फिक फ़ंक्शन]] होता है, जो फलन के [[पृथक बिंदु|ध्रुव(जटिल विश्लेषण)]] हैं। <ref name=Hazewinkel_2001>{{cite encyclopedia |editor=Hazewinkel, Michiel |year=2001 |orig-year=1994 |article=Meromorphic function |chapter-url=https://www.encyclopediaofmath.org/index.php?title=p/m063460 |encyclopedia=Encyclopedia of Mathematics |title-link=Encyclopedia of Mathematics |publisher=Springer Science+Business Media B.V. ; Kluwer Academic Publishers |ISBN=978-1-55608-010-4}} <!-- {{springer|title=Meromorphic function|id=p/m063460}} --></ref> यह शब्द [[ग्रीक भाषा]] मेरोस से आया है (विकि:μέρος|μέρος), जिसका अर्थ है भाग{{efn|Greek ''meros'' ([[wikt:μέρος|μέρος]]) means "part", in contrast with the more commonly used ''holos'' ([[wikt:ὅλος|ὅλος]]), meaning "whole".}}
[[जटिल विश्लेषण]] के गणितीय क्षेत्र में, [[जटिल विमान|जटिल समतल]] के एक खुले उपसमुच्चय ''<nowiki/>'D'<nowiki/>'' पर एक '''मेरोमोर्फिक फलन''' (गणित) एक ऐसा फलन है जो पृथक बिंदुओं के एक समूह को छोड़कर सभी ''<nowiki/>'D''' पर [[होलोमॉर्फिक फ़ंक्शन|होलोमॉर्फिक फलन]] होता है, जो फलन के [[पृथक बिंदु|ध्रुव(जटिल विश्लेषण)]] हैं।<ref name=Hazewinkel_2001>{{cite encyclopedia |editor=Hazewinkel, Michiel |year=2001 |orig-year=1994 |article=Meromorphic function |chapter-url=https://www.encyclopediaofmath.org/index.php?title=p/m063460 |encyclopedia=Encyclopedia of Mathematics |title-link=Encyclopedia of Mathematics |publisher=Springer Science+Business Media B.V. ; Kluwer Academic Publishers |ISBN=978-1-55608-010-4}} <!-- {{springer|title=Meromorphic function|id=p/m063460}} --></ref> यह शब्द [[ग्रीक भाषा]] मेरोस(μέρος|μέρος) से आया है, जिसका अर्थ है "भाग"।{{efn|Greek ''meros'' ([[wikt:μέρος|μέρος]]) means "part", in contrast with the more commonly used ''holos'' ([[wikt:ὅλος|ὅλος]]), meaning "whole".}}
डी पर प्रत्येक मेरोमोर्फिक फ़ंक्शन को डी पर परिभाषित दो होलोमोर्फिक फ़ंक्शंस (भाजक 0 स्थिर नहीं) के बीच के अनुपात के रूप में व्यक्त किया जा सकता है: किसी भी ध्रुव को भाजक के शून्य के साथ मेल खाना चाहिए।
 
[[File:Gamma abs 3D.png|thumb|right|[[गामा समारोह]] पूरे जटिल समतल में मेरोमोर्फिक है।]]
'''D''<nowiki/>' पर प्रत्येक मेरोमोर्फिक फलन को ''D'' पर परिभाषित दो पूर्णसममितिक फलनों(भाजक 0 स्थिर नहीं) के बीच के अनुपात के रूप में व्यक्त किया जा सकता है: किसी भी ध्रुव को भाजक के शून्य के साथ मेल खाना चाहिए।
[[File:Gamma abs 3D.png|thumb|right|[[गामा समारोह|गामा फलन]] पूर्ण जटिल समतल में मेरोमोर्फिक है।]]


== अनुमानी विवरण ==
== अनुमानी विवरण ==
सहजता से, एक मेरोमोर्फिक फ़ंक्शन दो अच्छी तरह से व्यवहार (होलोमोर्फिक) कार्यों का अनुपात है। इस तरह के एक समारोह अभी भी अच्छी तरह से व्यवहार किया जाएगा, संभवतः उन बिंदुओं को छोड़कर जहां अंश का भाजक शून्य है। यदि हर में z पर शून्य है और अंश में नहीं है, तो फलन का मान अनंत तक पहुंच जाएगा; यदि दोनों भागों में z पर शून्य है, तो किसी को इन शून्यों के बहुपद के मूल की बहुलता (गणित) # गुणन की तुलना करनी चाहिए।
सहजता से, एक मेरोमोर्फिक फलन दो ठीक प्रकार से व्यवहार(पूर्णसममितिक) फलनों का अनुपात है। इस प्रकार के एक फलन अभी भी ठीक प्रकार से व्यवहार किया जाएगा, संभवतः उन बिंदुओं को छोड़कर जहां अंश का भाजक शून्य है। यदि हर में z पर शून्य है और अंश में नहीं है, तो फलन का मान अनंत तक पहुंच जाएगा; यदि दोनों भागों में z पर शून्य है, तो किसी को इन शून्यों के बहुपद के मूल की बहुलता(गुणन-गणित) की तुलना करनी चाहिए।


बीजगणितीय दृष्टिकोण से, यदि फलन का डोमेन समूह से जुड़ा हुआ है, तो मेरोमोर्फिक फ़ंक्शंस का समूह होलोमोर्फिक फ़ंक्शंस के समूह के [[अभिन्न डोमेन]] के [[अंशों का क्षेत्र]] है। यह परिमेय संख्याओं और [[पूर्णांक]]ों के बीच संबंध के अनुरूप है।
बीजगणितीय दृष्टिकोण से, यदि फलन का डोमेन समूह से जुड़ा हुआ है, तो मेरोमोर्फिक फलनों का समूह पूर्णसममितिक फलनों के समूह के [[अभिन्न डोमेन]] के [[अंशों का क्षेत्र]] है। यह परिमेय संख्याओं और [[पूर्णांक|पूर्णांकों]] के बीच संबंध के अनुरूप है।


== पूर्व, वैकल्पिक उपयोग ==
== पूर्व, वैकल्पिक उपयोग ==
अध्ययन के दोनों क्षेत्रों में जहां इस शब्द का प्रयोग किया गया है और 20वीं शताब्दी में शब्द का सटीक अर्थ बदल गया है। 1930 के दशक में, [[समूह सिद्धांत]] में, एक मेरोमोर्फिक फ़ंक्शन (या मेरोमोर्फ) समूह जी से स्वयं में एक फलन था जो समूह पर उत्पाद को संरक्षित करता था। इस फलन की छवि को G का ऑटोमोर्फिज़्म कहा जाता था।<ref>{{cite book |last=Zassenhaus |first=Hans |author-link=Hans Zassenhaus |year=1937 |title=Lehrbuch der Gruppentheorie |publisher=B. G. Teubner Verlag |location=Leipzig; Berlin |edition=1st |pages=29, 41}}</ref> इसी तरह, एक होमोमोर्फिक फ़ंक्शन (या होमोमोर्फ) उन समूहों के बीच एक फलन था जो उत्पाद को संरक्षित करता था, जबकि एक होमोमोर्फिज़्म एक होमोमोर्फ की छवि थी। शब्द का यह रूप अब अप्रचलित है, और समूह सिद्धांत में संबंधित शब्द मेरोमोर्फ का अब उपयोग नहीं किया जाता है।
अध्ययन के दोनों क्षेत्र जिसमें शब्द का प्रयोग किया जाता है और शब्द का सटीक अर्थ 20 वीं शताब्दी में बदल गया। 1930 में, [[समूह सिद्धांत]] में, एक मेरोमोर्फिक फलन(या मेरोमोर्फ) समूह G से स्वयं में एक फलन था जो समूह पर उत्पाद को संरक्षित करता था। इस फलन की प्रतिरूप को G का स्वसमाकृतिकता कहा जाता था।<ref>{{cite book |last=Zassenhaus |first=Hans |author-link=Hans Zassenhaus |year=1937 |title=Lehrbuch der Gruppentheorie |publisher=B. G. Teubner Verlag |location=Leipzig; Berlin |edition=1st |pages=29, 41}}</ref> इसी प्रकार, एक समरूपी फलन (या समरूप) उन समूहों के बीच एक फलन था जो उत्पाद को संरक्षित करता था, जबकि एक समरूपता एक समरूप की प्रतिरूप थी। शब्द का यह रूप अब अप्रचलित है, और समूह सिद्धांत में संबंधित शब्द मेरोमोर्फ का अब उपयोग नहीं किया जाता है।
[[एंडोमोर्फिज्म]] शब्द अब फलन के लिए ही उपयोग किया जाता है, फलन की छवि को कोई विशेष नाम नहीं दिया गया है।
 
[[एंडोमोर्फिज्म|अंतःरूपता]] शब्द अब फलन के लिए ही उपयोग किया जाता है, फलन के प्रतिरूप को कोई विशेष नाम नहीं दिया गया है।


एक मेरोमोर्फिक फ़ंक्शन अनिवार्य रूप से एक एंडोमोर्फिज्म नहीं है, क्योंकि इसके ध्रुवों पर जटिल बिंदु इसके डोमेन में नहीं हैं, लेकिन इसकी सीमा में हो सकते हैं।
एक मेरोमोर्फिक फलन अनिवार्य रूप से एक अंतःरूपता नहीं है, क्योंकि इसके ध्रुवों पर जटिल बिंदु इसके डोमेन में नहीं हैं, लेकिन इसकी सीमा में हो सकते हैं।


== गुण ==
== गुण ==
चूंकि मेरोमोर्फिक फ़ंक्शन के ध्रुव अलग-थलग हैं, इसलिए अधिक से अधिक [[गणनीय]] हैं।<ref name=Lang_1999/>ध्रुवों का समूह अनंत हो सकता है, जैसा कि फलन द्वारा उदाहरण दिया गया है <math display="block">f(z) = \csc z = \frac{1}{\sin z}.</math>
चूंकि मेरोमोर्फिक फलन के ध्रुव पृथक हैं, इसलिए अधिक से अधिक [[गणनीय]] हैं।<ref name=Lang_1999/> ध्रुवों का समूह अनंत हो सकता है, जैसा कि फलन द्वारा उदाहरण दिया गया है <math display="block">f(z) = \csc z = \frac{1}{\sin z}.</math>
[[हटाने योग्य विलक्षणता]] को खत्म करने के लिए [[विश्लेषणात्मक निरंतरता]] का उपयोग करके, मेरोमोर्फिक कार्यों को जोड़ा जा सकता है, घटाया जा सकता है, गुणा किया जा सकता है और भागफल <math>f/g</math> तक बन सकता है <math>g(z) = 0</math> डी के जुड़े हुए स्थान पर। इस प्रकार, यदि डी जुड़ा हुआ है, तो मेरोमोर्फिक फ़ंक्शन एक [[क्षेत्र (गणित)]] बनाते हैं, वास्तव में जटिल संख्याओं का एक क्षेत्र विस्तार।
[[हटाने योग्य विलक्षणता|निराकरणीय विलक्षणता]] को समाप्त करने के लिए [[विश्लेषणात्मक निरंतरता]] का उपयोग करके, मेरोमोर्फिक फलनों को जोड़ा जा सकता है, घटाया जा सकता है, गुणा किया जा सकता है और भागफल <math>f/g</math> तब तक बनाया जा सकता है जब तक कि ''D'' के जुड़े घटक पर <math>g(z) = 0</math> न हो। इस प्रकार, यदि ''D'' जुड़ा हुआ है, तो मेरोमोर्फिक फलन एक [[क्षेत्र (गणित)|क्षेत्र(गणित)]] बनाते हैं, वस्तुत: जटिल संख्याओं का एक क्षेत्र विस्तार है।


=== उच्च आयाम ===
=== उच्च विमा ===
[[कई जटिल चर]]ों में, एक मेरोमोर्फिक फ़ंक्शन को स्थानीय रूप से दो होलोमोर्फिक फ़ंक्शन के भागफल के रूप में परिभाषित किया जाता है। उदाहरण के लिए, <math>f(z_1, z_2) = z_1 / z_2</math> द्वि-आयामी जटिल एफ़िन स्पेस पर एक मेरोमोर्फिक फ़ंक्शन है। यहाँ यह अब सच नहीं है कि प्रत्येक मेरोमॉर्फिक फ़ंक्शन को [[रीमैन क्षेत्र]] में मूल्यों के साथ एक होलोमोर्फिक फ़ंक्शन के रूप में माना जा सकता है: [[codimension]] दो की अनिश्चितता का एक समूह है (दिए गए उदाहरण में इस समूह में मूल शामिल हैं <math>(0, 0)</math>).
[[कई जटिल चर|कई जटिल चरों]] में, मेरोमोर्फिक फलन को स्थानीय रूप से दो पूर्णसममितिक फलन के भागफल के रूप में परिभाषित किया जाता है। उदाहरण के लिए, <math>f(z_1, z_2) = z_1 / z_2</math> द्वि-विमीय जटिल सजातीय स्थान पर मेरोमोर्फिक फलन है। यहाँ यह अब सच नहीं है कि प्रत्येक मेरोमॉर्फिक फलन को [[रीमैन क्षेत्र]] में मूल्यों के साथ एक पूर्णसममितिक फलन के रूप में माना जा सकता है: [[codimension|सह विमा]] दो की "अनिश्चितता" का एक समूह है (दिए गए उदाहरण में इस समूह में मूल<math>(0, 0)</math>) सम्मिलित हैं।


आयाम एक के विपरीत, उच्च आयामों में कॉम्पैक्ट [[जटिल कई गुना]] मौजूद होते हैं, जिन पर कोई गैर-निरंतर मेरोमोर्फिक फ़ंक्शन नहीं होते हैं, उदाहरण के लिए, सबसे [[जटिल टोरस]]
विमा एक के विपरीत, उच्च विमाओं में सघन [[जटिल कई गुना|जटिल विविध]] स्थित होते हैं, जिन पर कोई गैर-निरंतर मेरोमोर्फिक फलन नहीं होते हैं, उदाहरण के लिए, सबसे [[जटिल टोरस]] है।


== उदाहरण ==
== उदाहरण ==
* सभी [[तर्कसंगत कार्य]],<ref name=Lang_1999>{{cite book |last=Lang |first=Serge |author-link=Serge Lang |year=1999 |title=जटिल विश्लेषण|publisher=[[Springer-Verlag]] |location=Berlin; New York |edition=4th |isbn=978-0-387-98592-3}}</रेफरी> उदाहरण के लिए <math display="block"> f(z) = \frac{z^3 - 2z + 10}{z^5 + 3z - 1}, </math> पूरे जटिल तल पर मेरोमोर्फिक हैं।
* सभी [[तर्कसंगत कार्य|तर्कसंगत फलन]], उदाहरण के लिए <math display="block"> f(z) = \frac{z^3 - 2z + 10}{z^5 + 3z - 1}, </math> पूर्ण जटिल तल पर मेरोमोर्फिक हैं।
* कार्य <math display="block"> f(z) = \frac{e^z}{z} \quad\text{and}\quad f(z) = \frac{\sin{z}}{(z-1)^2} </math> साथ ही साथ गामा फलन और [[रीमैन जीटा फ़ंक्शन|रीमैन जीटा फलन]] पूरे जटिल तल पर मेरोमोर्फिक हैं।<ref name=Lang_1999/>* कार्यक्रम <math display="block"> f(z) = e^\frac{1}{z} </math> मूल, 0. को छोड़कर पूरे जटिल तल में परिभाषित किया गया है। हालांकि, 0 इस कार्य का ध्रुव नहीं है, बल्कि एक [[आवश्यक विलक्षणता]] है। इस प्रकार, यह कार्य पूरे जटिल समतल में मेरोमोर्फिक नहीं है। हालाँकि, यह मेरोमोर्फिक (यहां तक ​​​​कि होलोमोर्फिक) है <math>\mathbb{C} \setminus \{0\}</math>.
* फलन <math display="block"> f(z) = \frac{e^z}{z} \quad\text{and}\quad f(z) = \frac{\sin{z}}{(z-1)^2} </math> साथ ही साथ गामा फलन और [[रीमैन जीटा फ़ंक्शन|रीमैन जीटा फलन]] पूर्ण जटिल तल पर मेरोमोर्फिक हैं।<ref name=Lang_1999/>
* [[जटिल लघुगणक]] समारोह <math display="block"> f(z) = \ln(z) </math> संपूर्ण जटिल तल पर मेरोमोर्फिक नहीं है, क्योंकि इसे केवल पृथक बिंदुओं के एक समूह को छोड़कर पूरे जटिल तल पर परिभाषित नहीं किया जा सकता है।<ref name=Lang_1999/>* कार्यक्रम <math display="block"> f(z) = \csc\frac{1}{z} = \frac1{\sin\left(\frac{1}{z}\right)} </math> बिंदु के बाद से पूरे समतल में मेरोमोर्फिक नहीं है <math>z = 0</math> ध्रुवों का एक [[संचय बिंदु]] है और इस प्रकार यह एक पृथक विलक्षणता नहीं है।<ref name=Lang_1999/>* कार्यक्रम <math display="block"> f(z) = \sin \frac 1 z </math> मेरोमोर्फिक भी नहीं है, क्योंकि इसमें 0 पर एक आवश्यक विलक्षणता है।
*फलन <math display="block"> f(z) = e^\frac{1}{z} </math> को जटिल तल में परिभाषित किया गया है,मूल को छोड़कर, 0. यद्यपि 0 इस फलन का ध्रुव नहीं है, बल्कि एक [[आवश्यक विलक्षणता]] है। इस प्रकार, यह फलन पूर्ण जटिल समतल में मेरोमोर्फिक नहीं है। यद्यपि, यह <math>\mathbb{C} \setminus \{0\}</math> पर मेरोमोर्फिक(यहां तक ​​​​कि पूर्णसममितिक) है।
* [[जटिल लघुगणक]] फलन <math display="block"> f(z) = \ln(z) </math> संपूर्ण जटिल तल पर मेरोमोर्फिक नहीं है, क्योंकि इसे मात्र पृथक बिंदुओं के एक समूह को छोड़कर पूर्ण जटिल तल पर परिभाषित नहीं किया जा सकता है।<ref name="Lang_1999" />
*फलनक्रम <math display="block"> f(z) = \csc\frac{1}{z} = \frac1{\sin\left(\frac{1}{z}\right)} </math> पूर्ण समतल में मेरोमोर्फिक नहीं है, क्योंकि बिंदु <math>z = 0</math> ध्रुवों का एक [[संचय बिंदु]] है और इस प्रकार यह एक पृथक विलक्षणता नहीं है।<ref name="Lang_1999" />
*फलनक्रम <math display="block"> f(z) = \sin \frac 1 z </math> मेरोमोर्फिक भी नहीं है, क्योंकि इसमें 0 पर एक आवश्यक विलक्षणता है।


== [[रीमैन सतह]]ों पर ==
== [[रीमैन सतह|रीमैन सतहों]] पर ==
रीमैन की सतह पर, प्रत्येक बिंदु एक खुले पड़ोस को स्वीकार करता है
रीमैन सतह पर, प्रत्येक बिंदु एक खुले निकटवर्ती को मानते है जो जटिल तल के एक खुले उपसमुच्चय के लिए [[biholomorphism|द्विसमरूपता]] है। इस प्रकार प्रत्येक रीमैन सतह के लिए मेरोमोर्फिक फलन की धारणा को परिभाषित किया जा सकता है।
जो जटिल तल के एक खुले उपसमुच्चय के लिए [[biholomorphism]] है। इस प्रकार प्रत्येक रीमैन सतह के लिए मेरोमोर्फिक फ़ंक्शन की धारणा को परिभाषित किया जा सकता है।


जब डी संपूर्ण रीमैन क्षेत्र है, मेरोमोर्फिक कार्यों का क्षेत्र जटिल क्षेत्र पर एक चर में तर्कसंगत कार्यों का क्षेत्र है, क्योंकि कोई यह साबित कर सकता है कि क्षेत्र पर कोई मेरोमोर्फिक फ़ंक्शन तर्कसंगत है। (यह तथाकथित [[बेहूदा]] सिद्धांत का एक विशेष मामला है।)
जब ''D'' संपूर्ण रीमैन क्षेत्र है, मेरोमोर्फिक फलनों का क्षेत्र जटिल क्षेत्र पर एक चर में तर्कसंगत फलनों का क्षेत्र है, क्योंकि कोई यह सिद्ध कर सकता है कि क्षेत्र पर कोई मेरोमोर्फिक फलन तर्कसंगत है। (यह तथाकथित [[बेहूदा|जीएजीए]] सिद्धांत का एक विशेष विषय है।)


प्रत्येक रीमैन सतह के लिए, एक मेरोमोर्फिक फ़ंक्शन एक होलोमोर्फिक फ़ंक्शन के समान होता है जो रीमैन क्षेत्र के लिए मैप करता है और जो ∞ के बराबर निरंतर फलन नहीं होता है। ध्रुव उन सम्मिश्र संख्याओं के अनुरूप होते हैं जिन्हें ∞ से प्रतिचित्रित किया जाता है।
प्रत्येक रीमैन सतह के लिए, मेरोमोर्फिक फलन एक पूर्णसममितिक फलन के समान होता है जो रीमैन क्षेत्र के लिए प्रतिचित्रित करता है और जो ∞ के बराबर निरंतर फलन नहीं होता है। ध्रुव उन सम्मिश्र संख्याओं के अनुरूप होते हैं जिन्हें ∞ से प्रतिचित्रित किया जाता है।


एक गैर-कॉम्पैक्ट रीमैन सतह पर, प्रत्येक मेरोमोर्फिक फ़ंक्शन को दो (वैश्विक रूप से परिभाषित) होलोमोर्फिक फ़ंक्शन के भागफल के रूप में महसूस किया जा सकता है। इसके विपरीत, एक कॉम्पैक्ट रीमैन सतह पर, प्रत्येक होलोमोर्फिक फ़ंक्शन स्थिर होता है, जबकि हमेशा गैर-निरंतर मेरोमोर्फिक फ़ंक्शन मौजूद होते हैं।
एक गैर-सघन रीमैन सतह पर, प्रत्येक मेरोमोर्फिक फलन को दो (वैश्विक रूप से परिभाषित) पूर्णसममितिक फलन के भागफल के रूप में समझा जा सकता है। इसके विपरीत, एक सघन रीमैन सतह पर, प्रत्येक पूर्णसममितिक फलन स्थिर होता है, जबकि सघन गैर-निरंतर मेरोमोर्फिक फलन स्थित होते हैं।


== यह भी देखें ==
== यह भी देखें ==
*[[चचेरे भाई की समस्या]]
*[[चचेरे भाई की समस्या|कजिन समस्या]]
*Mittag-Leffler's प्रमेय
*मित्ताग-लेफ्फलर की प्रमेय
* वीयरस्ट्रास गुणनखंड प्रमेय
* वीयरस्ट्रास गुणनखंड प्रमेय


Line 53: Line 57:
{{Authority control}}
{{Authority control}}


{{DEFAULTSORT:Meromorphic Function}}[[Category: मेरोमॉर्फिक फ़ंक्शन | मेरोमॉर्फिक फ़ंक्शन ]]
{{DEFAULTSORT:Meromorphic Function}}
 
 


[[Category: Machine Translated Page]]
[[Category:Created On 03/02/2023|Meromorphic Function]]
[[Category:Created On 03/02/2023]]
[[Category:Lua-based templates|Meromorphic Function]]
[[Category:Machine Translated Page|Meromorphic Function]]
[[Category:Pages with reference errors]]
[[Category:Pages with script errors|Meromorphic Function]]
[[Category:Short description with empty Wikidata description|Meromorphic Function]]
[[Category:Templates Vigyan Ready|Meromorphic Function]]
[[Category:Templates that add a tracking category|Meromorphic Function]]
[[Category:Templates that generate short descriptions|Meromorphic Function]]
[[Category:Templates using TemplateData|Meromorphic Function]]
[[Category:मेरोमॉर्फिक फ़ंक्शन| मेरोमॉर्फिक फ़ंक्शन ]]

Latest revision as of 19:59, 9 February 2023

जटिल विश्लेषण के गणितीय क्षेत्र में, जटिल समतल के एक खुले उपसमुच्चय 'D' पर एक मेरोमोर्फिक फलन' (गणित) एक ऐसा फलन है जो पृथक बिंदुओं के एक समूह को छोड़कर सभी 'D पर होलोमॉर्फिक फलन होता है, जो फलन के ध्रुव(जटिल विश्लेषण) हैं।[1] यह शब्द ग्रीक भाषा मेरोस(μέρος|μέρος) से आया है, जिसका अर्थ है "भाग"।[lower-alpha 1]

'D' पर प्रत्येक मेरोमोर्फिक फलन को D पर परिभाषित दो पूर्णसममितिक फलनों(भाजक 0 स्थिर नहीं) के बीच के अनुपात के रूप में व्यक्त किया जा सकता है: किसी भी ध्रुव को भाजक के शून्य के साथ मेल खाना चाहिए।

गामा फलन पूर्ण जटिल समतल में मेरोमोर्फिक है।

अनुमानी विवरण

सहजता से, एक मेरोमोर्फिक फलन दो ठीक प्रकार से व्यवहार(पूर्णसममितिक) फलनों का अनुपात है। इस प्रकार के एक फलन अभी भी ठीक प्रकार से व्यवहार किया जाएगा, संभवतः उन बिंदुओं को छोड़कर जहां अंश का भाजक शून्य है। यदि हर में z पर शून्य है और अंश में नहीं है, तो फलन का मान अनंत तक पहुंच जाएगा; यदि दोनों भागों में z पर शून्य है, तो किसी को इन शून्यों के बहुपद के मूल की बहुलता(गुणन-गणित) की तुलना करनी चाहिए।

बीजगणितीय दृष्टिकोण से, यदि फलन का डोमेन समूह से जुड़ा हुआ है, तो मेरोमोर्फिक फलनों का समूह पूर्णसममितिक फलनों के समूह के अभिन्न डोमेन के अंशों का क्षेत्र है। यह परिमेय संख्याओं और पूर्णांकों के बीच संबंध के अनुरूप है।

पूर्व, वैकल्पिक उपयोग

अध्ययन के दोनों क्षेत्र जिसमें शब्द का प्रयोग किया जाता है और शब्द का सटीक अर्थ 20 वीं शताब्दी में बदल गया। 1930 में, समूह सिद्धांत में, एक मेरोमोर्फिक फलन(या मेरोमोर्फ) समूह G से स्वयं में एक फलन था जो समूह पर उत्पाद को संरक्षित करता था। इस फलन की प्रतिरूप को G का स्वसमाकृतिकता कहा जाता था।[2] इसी प्रकार, एक समरूपी फलन (या समरूप) उन समूहों के बीच एक फलन था जो उत्पाद को संरक्षित करता था, जबकि एक समरूपता एक समरूप की प्रतिरूप थी। शब्द का यह रूप अब अप्रचलित है, और समूह सिद्धांत में संबंधित शब्द मेरोमोर्फ का अब उपयोग नहीं किया जाता है।

अंतःरूपता शब्द अब फलन के लिए ही उपयोग किया जाता है, फलन के प्रतिरूप को कोई विशेष नाम नहीं दिया गया है।

एक मेरोमोर्फिक फलन अनिवार्य रूप से एक अंतःरूपता नहीं है, क्योंकि इसके ध्रुवों पर जटिल बिंदु इसके डोमेन में नहीं हैं, लेकिन इसकी सीमा में हो सकते हैं।

गुण

चूंकि मेरोमोर्फिक फलन के ध्रुव पृथक हैं, इसलिए अधिक से अधिक गणनीय हैं।[3] ध्रुवों का समूह अनंत हो सकता है, जैसा कि फलन द्वारा उदाहरण दिया गया है

निराकरणीय विलक्षणता को समाप्त करने के लिए विश्लेषणात्मक निरंतरता का उपयोग करके, मेरोमोर्फिक फलनों को जोड़ा जा सकता है, घटाया जा सकता है, गुणा किया जा सकता है और भागफल तब तक बनाया जा सकता है जब तक कि D के जुड़े घटक पर न हो। इस प्रकार, यदि D जुड़ा हुआ है, तो मेरोमोर्फिक फलन एक क्षेत्र(गणित) बनाते हैं, वस्तुत: जटिल संख्याओं का एक क्षेत्र विस्तार है।

उच्च विमा

कई जटिल चरों में, मेरोमोर्फिक फलन को स्थानीय रूप से दो पूर्णसममितिक फलन के भागफल के रूप में परिभाषित किया जाता है। उदाहरण के लिए, द्वि-विमीय जटिल सजातीय स्थान पर मेरोमोर्फिक फलन है। यहाँ यह अब सच नहीं है कि प्रत्येक मेरोमॉर्फिक फलन को रीमैन क्षेत्र में मूल्यों के साथ एक पूर्णसममितिक फलन के रूप में माना जा सकता है: सह विमा दो की "अनिश्चितता" का एक समूह है (दिए गए उदाहरण में इस समूह में मूल) सम्मिलित हैं।

विमा एक के विपरीत, उच्च विमाओं में सघन जटिल विविध स्थित होते हैं, जिन पर कोई गैर-निरंतर मेरोमोर्फिक फलन नहीं होते हैं, उदाहरण के लिए, सबसे जटिल टोरस है।

उदाहरण

  • सभी तर्कसंगत फलन, उदाहरण के लिए
    पूर्ण जटिल तल पर मेरोमोर्फिक हैं।
  • फलन
    साथ ही साथ गामा फलन और रीमैन जीटा फलन पूर्ण जटिल तल पर मेरोमोर्फिक हैं।[3]
  • फलन
    को जटिल तल में परिभाषित किया गया है,मूल को छोड़कर, 0. यद्यपि 0 इस फलन का ध्रुव नहीं है, बल्कि एक आवश्यक विलक्षणता है। इस प्रकार, यह फलन पूर्ण जटिल समतल में मेरोमोर्फिक नहीं है। यद्यपि, यह पर मेरोमोर्फिक(यहां तक ​​​​कि पूर्णसममितिक) है।
  • जटिल लघुगणक फलन
    संपूर्ण जटिल तल पर मेरोमोर्फिक नहीं है, क्योंकि इसे मात्र पृथक बिंदुओं के एक समूह को छोड़कर पूर्ण जटिल तल पर परिभाषित नहीं किया जा सकता है।[3]
  • फलनक्रम
    पूर्ण समतल में मेरोमोर्फिक नहीं है, क्योंकि बिंदु ध्रुवों का एक संचय बिंदु है और इस प्रकार यह एक पृथक विलक्षणता नहीं है।[3]
  • फलनक्रम
    मेरोमोर्फिक भी नहीं है, क्योंकि इसमें 0 पर एक आवश्यक विलक्षणता है।

रीमैन सतहों पर

रीमैन सतह पर, प्रत्येक बिंदु एक खुले निकटवर्ती को मानते है जो जटिल तल के एक खुले उपसमुच्चय के लिए द्विसमरूपता है। इस प्रकार प्रत्येक रीमैन सतह के लिए मेरोमोर्फिक फलन की धारणा को परिभाषित किया जा सकता है।

जब D संपूर्ण रीमैन क्षेत्र है, मेरोमोर्फिक फलनों का क्षेत्र जटिल क्षेत्र पर एक चर में तर्कसंगत फलनों का क्षेत्र है, क्योंकि कोई यह सिद्ध कर सकता है कि क्षेत्र पर कोई मेरोमोर्फिक फलन तर्कसंगत है। (यह तथाकथित जीएजीए सिद्धांत का एक विशेष विषय है।)

प्रत्येक रीमैन सतह के लिए, मेरोमोर्फिक फलन एक पूर्णसममितिक फलन के समान होता है जो रीमैन क्षेत्र के लिए प्रतिचित्रित करता है और जो ∞ के बराबर निरंतर फलन नहीं होता है। ध्रुव उन सम्मिश्र संख्याओं के अनुरूप होते हैं जिन्हें ∞ से प्रतिचित्रित किया जाता है।

एक गैर-सघन रीमैन सतह पर, प्रत्येक मेरोमोर्फिक फलन को दो (वैश्विक रूप से परिभाषित) पूर्णसममितिक फलन के भागफल के रूप में समझा जा सकता है। इसके विपरीत, एक सघन रीमैन सतह पर, प्रत्येक पूर्णसममितिक फलन स्थिर होता है, जबकि सघन गैर-निरंतर मेरोमोर्फिक फलन स्थित होते हैं।

यह भी देखें

  • कजिन समस्या
  • मित्ताग-लेफ्फलर की प्रमेय
  • वीयरस्ट्रास गुणनखंड प्रमेय

फुटनोट्स

  1. Greek meros (μέρος) means "part", in contrast with the more commonly used holos (ὅλος), meaning "whole".


संदर्भ

  1. Hazewinkel, Michiel, ed. (2001) [1994]. "Meromorphic function". Encyclopedia of Mathematics. Springer Science+Business Media B.V. ; Kluwer Academic Publishers. ISBN 978-1-55608-010-4.
  2. Zassenhaus, Hans (1937). Lehrbuch der Gruppentheorie (1st ed.). Leipzig; Berlin: B. G. Teubner Verlag. pp. 29, 41.
  3. 3.0 3.1 3.2 3.3 Cite error: Invalid <ref> tag; no text was provided for refs named Lang_1999