द्विपद (बहुपद): Difference between revisions
No edit summary |
No edit summary |
||
(8 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|In mathematics, a polynomial with two terms}} | {{Short description|In mathematics, a polynomial with two terms}} | ||
[[बीजगणित]] में, '''द्विपद''' फलन एक [[बहुपद]] है जो दो शब्दों का योग है, जिनमें से प्रत्येक [[एकपद|एकपदी]] है।<ref>{{Cite web | |||
[[बीजगणित]] में, | |||
| last = Weisstein | | last = Weisstein | ||
| first = Eric | | first = Eric | ||
Line 11: | Line 10: | ||
| url = http://mathworld.wolfram.com/Binomial.html | | url = http://mathworld.wolfram.com/Binomial.html | ||
| doi = | | doi = | ||
| accessdate = 29 March 2011}}</ref> यह एकपदी के | | accessdate = 29 March 2011}}</ref> यह एकपदी के पश्चात [[विरल बहुपद]] का सबसे सरल प्रकार है। | ||
== परिभाषा == | == परिभाषा == | ||
द्विपद फलन एक बहुपद है जो दो एकपदी का योग है। एकल [[अनिश्चित (चर)|अनिश्चित (वेरिएबल)]] में द्विपद (जिसे अविभाज्य द्विपद के रूप में भी जाना जाता है) के रूप में लिखा जा सकता है | |||
:<math>a x^m - bx^n ,</math> | :<math>a x^m - bx^n ,</math> | ||
जहाँ | जहाँ {{math|''a''}} और {{math|''b''}} [[संख्या|संख्याएँ]] हैं, और {{math|''m''}} और {{math|''n''}} विशिष्ट गैर-ऋणात्मक [[पूर्णांक]] हैं और {{math|''x''}} प्रतीक है जिसे अनिश्चित (वेरिएबल) या, ऐतिहासिक कारणों से, [[चर (गणित)|वेरिएबल (गणित)]] कहा जाता है। [[लॉरेंट बहुपद|लॉरेंट बहुपदों]] के संदर्भ में, लॉरेंट द्विपद, जिसे अधिकांश द्विपद कहा जाता है, समान रूप से परिभाषित किया जाता है, लेकिन प्रतिपादक {{math|''m''}} और {{math|''n''}} ऋणात्मक हो सकता है। | ||
अधिक सामान्यतः, | अधिक सामान्यतः, द्विपद लिखा जा सकता है<ref name=Sturmfels62>{{Cite book | ||
| last = Sturmfels | | last = Sturmfels | ||
| first = Bernd | | first = Bernd | ||
Line 42: | Line 41: | ||
* द्विपद {{math|''x''<sup>2</sup> − ''y''<sup>2</sup>}} को दो अन्य द्विपदों के गुणनफल के रूप में [[सकारात्मक असर|गुणनखंडित]] किया जा सकता है: | * द्विपद {{math|''x''<sup>2</sup> − ''y''<sup>2</sup>}} को दो अन्य द्विपदों के गुणनफल के रूप में [[सकारात्मक असर|गुणनखंडित]] किया जा सकता है: | ||
::<math> x^2 - y^2 = (x - y)(x + y). </math> | ::<math> x^2 - y^2 = (x - y)(x + y). </math> | ||
: यह अधिक सामान्य सूत्र | : यह अधिक सामान्य सूत्र की [[विशेष मामला|विशेष स्थिति]] है: | ||
::<math> x^{n+1} - y^{n+1} = (x - y)\sum_{k=0}^{n} x^{k} y^{n-k}.</math> | ::<math> x^{n+1} - y^{n+1} = (x - y)\sum_{k=0}^{n} x^{k} y^{n-k}.</math> | ||
: सम्मिश्र संख्याओं पर कार्य करते समय, इसे निम्न तक भी बढ़ाया जा सकता है: | : सम्मिश्र संख्याओं पर कार्य करते समय, इसे निम्न तक भी बढ़ाया जा सकता है: | ||
::<math> x^2 + y^2 = x^2 - (iy)^2 = (x - iy)(x + iy). </math> | ::<math> x^2 + y^2 = x^2 - (iy)^2 = (x - iy)(x + iy). </math> | ||
* रैखिक द्विपदों {{math|(''ax'' + ''b'')}} और {{math|(''cx'' + ''d'' )}} की जोड़ी का गुणनफल | * रैखिक द्विपदों {{math|(''ax'' + ''b'')}} और {{math|(''cx'' + ''d'' )}} की जोड़ी का गुणनफल [[त्रिनाम|त्रिपद]] है: | ||
:: <math> (ax+b)(cx+d) = acx^2+(ad+bc)x+bd.</math> | :: <math> (ax+b)(cx+d) = acx^2+(ad+bc)x+bd.</math> | ||
द्विपद को ''n''<sup>th</sup> [[घातांक]], के रूप में प्रतिनिधित्व किया {{math|(''x'' + ''y'')<sup>''n''</sup>}} पास्कल के त्रिकोण का उपयोग करके, [[द्विपद प्रमेय]] के माध्यम से या समकक्ष रूप से विस्तारित किया जा सकता है। उदाहरण के लिए, [[वर्ग (बीजगणित)]] {{math|(''x'' + ''y'')<sup>2</sup>}} द्विपद का {{math|(''x'' + ''y'')}} दो शब्दों के वर्गों के योग के बराबर है और शब्दों के उत्पाद का दोगुना है, जो है: | |||
::<math> (x + y)^2 = x^2 + 2xy + y^2.</math> | ::<math> (x + y)^2 = x^2 + 2xy + y^2.</math> | ||
:इस विस्तार में पदों के लिए गुणक के रूप में दिखाई देने वाली संख्याएं (1, 2, 1) [[द्विपद गुणांक]] हैं जो पास्कल के त्रिकोण के ऊपर से दो पंक्तियां नीचे हैं। | :इस विस्तार में पदों के लिए गुणक के रूप में दिखाई देने वाली संख्याएं (1, 2, 1) [[द्विपद गुणांक]] हैं जो पास्कल के त्रिकोण के ऊपर से दो पंक्तियां नीचे हैं। ''n<sup>v</sup>'' घात का विस्तार त्रिकोण के शीर्ष से नीचे की ओर n पंक्तियों की संख्या का उपयोग करता है। | ||
* | *द्विपद के वर्ग के लिए उपरोक्त सूत्र का अनुप्रयोग है, {{math|(''m'', ''n'')}}-पायथागॉरियन त्रिक उत्पन्न करने के लिए सूत्र: | ||
:{{math|''m'' < ''n''}} के लिए, मान लीजिए {{math|''a'' {{=}} ''n''<sup>2</sup> − ''m''<sup>2</sup>}}, {{math|''b'' {{=}} 2''mn''}}, और {{math|''c'' {{=}} ''n''<sup>2</sup> + ''m''<sup>2</sup>}}; तब {{math|''a''<sup>2</sup> + ''b''<sup>2</sup> {{=}} ''c''<sup>2</sup>}}. | :{{math|''m'' < ''n''}} के लिए, मान लीजिए {{math|''a'' {{=}} ''n''<sup>2</sup> − ''m''<sup>2</sup>}}, {{math|''b'' {{=}} 2''mn''}}, और {{math|''c'' {{=}} ''n''<sup>2</sup> + ''m''<sup>2</sup>}}; तब {{math|''a''<sup>2</sup> + ''b''<sup>2</sup> {{=}} ''c''<sup>2</sup>}}. | ||
* द्विपद जो योग या [[घन (बीजगणित)]] के अंतर हैं, उन्हें बहुपद बहुपदों की छोटी-छोटी डिग्री में विभाजित किया जा सकता है: | * द्विपद जो योग या [[घन (बीजगणित)]] के अंतर हैं, उन्हें बहुपद बहुपदों की छोटी-छोटी डिग्री में विभाजित किया जा सकता है: | ||
::<math> x^3 + y^3 = (x + y)(x^2 - xy + y^2) </math> | ::<math> x^3 + y^3 = (x + y)(x^2 - xy + y^2) </math> | ||
::<math> x^3 - y^3 = (x - y)(x^2 + xy + y^2) </math> | ::<math> x^3 - y^3 = (x - y)(x^2 + xy + y^2) </math> | ||
== यह भी देखें == | == यह भी देखें == | ||
*[[वर्ग पूरा करना]] | *[[वर्ग पूरा करना]] | ||
Line 70: | Line 67: | ||
* {{cite book |first1=L. |last1=Bostock |author-link1=Linda Bostock |first2=S. |last2=Chandler |author-link2=Sue Chandler |title=Pure Mathematics 1 |isbn=0-85950-092-6 |publisher=[[Oxford University Press]] |date=1978 |page=36}} | * {{cite book |first1=L. |last1=Bostock |author-link1=Linda Bostock |first2=S. |last2=Chandler |author-link2=Sue Chandler |title=Pure Mathematics 1 |isbn=0-85950-092-6 |publisher=[[Oxford University Press]] |date=1978 |page=36}} | ||
[[Category:Collapse templates]] | |||
[[Category: | |||
[[Category:Created On 03/02/2023]] | [[Category:Created On 03/02/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Translated in Hindi]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:क्रमगुणित और द्विपद विषय]] | |||
[[Category:बीजगणित]] |
Latest revision as of 12:18, 18 September 2023
बीजगणित में, द्विपद फलन एक बहुपद है जो दो शब्दों का योग है, जिनमें से प्रत्येक एकपदी है।[1] यह एकपदी के पश्चात विरल बहुपद का सबसे सरल प्रकार है।
परिभाषा
द्विपद फलन एक बहुपद है जो दो एकपदी का योग है। एकल अनिश्चित (वेरिएबल) में द्विपद (जिसे अविभाज्य द्विपद के रूप में भी जाना जाता है) के रूप में लिखा जा सकता है
जहाँ a और b संख्याएँ हैं, और m और n विशिष्ट गैर-ऋणात्मक पूर्णांक हैं और x प्रतीक है जिसे अनिश्चित (वेरिएबल) या, ऐतिहासिक कारणों से, वेरिएबल (गणित) कहा जाता है। लॉरेंट बहुपदों के संदर्भ में, लॉरेंट द्विपद, जिसे अधिकांश द्विपद कहा जाता है, समान रूप से परिभाषित किया जाता है, लेकिन प्रतिपादक m और n ऋणात्मक हो सकता है।
अधिक सामान्यतः, द्विपद लिखा जा सकता है[2] जैसे:
उदाहरण
सरल द्विपदों पर संक्रियाएं
- द्विपद x2 − y2 को दो अन्य द्विपदों के गुणनफल के रूप में गुणनखंडित किया जा सकता है:
- यह अधिक सामान्य सूत्र की विशेष स्थिति है:
- सम्मिश्र संख्याओं पर कार्य करते समय, इसे निम्न तक भी बढ़ाया जा सकता है:
- रैखिक द्विपदों (ax + b) और (cx + d ) की जोड़ी का गुणनफल त्रिपद है:
द्विपद को nth घातांक, के रूप में प्रतिनिधित्व किया (x + y)n पास्कल के त्रिकोण का उपयोग करके, द्विपद प्रमेय के माध्यम से या समकक्ष रूप से विस्तारित किया जा सकता है। उदाहरण के लिए, वर्ग (बीजगणित) (x + y)2 द्विपद का (x + y) दो शब्दों के वर्गों के योग के बराबर है और शब्दों के उत्पाद का दोगुना है, जो है:
- इस विस्तार में पदों के लिए गुणक के रूप में दिखाई देने वाली संख्याएं (1, 2, 1) द्विपद गुणांक हैं जो पास्कल के त्रिकोण के ऊपर से दो पंक्तियां नीचे हैं। nv घात का विस्तार त्रिकोण के शीर्ष से नीचे की ओर n पंक्तियों की संख्या का उपयोग करता है।
- द्विपद के वर्ग के लिए उपरोक्त सूत्र का अनुप्रयोग है, (m, n)-पायथागॉरियन त्रिक उत्पन्न करने के लिए सूत्र:
- m < n के लिए, मान लीजिए a = n2 − m2, b = 2mn, और c = n2 + m2; तब a2 + b2 = c2.
- द्विपद जो योग या घन (बीजगणित) के अंतर हैं, उन्हें बहुपद बहुपदों की छोटी-छोटी डिग्री में विभाजित किया जा सकता है:
यह भी देखें
- वर्ग पूरा करना
- द्विपद वितरण
- तथ्यात्मक और द्विपद विषयों की सूची (जिसमें बड़ी संख्या में संबंधित लिंक शामिल हैं)
टिप्पणियाँ
- ↑ Weisstein, Eric. "Binomial". Wolfram MathWorld. Retrieved 29 March 2011.
- ↑ Sturmfels, Bernd (2002). Solving Systems of Polynomial Equations. p. 62. ISBN 9780821889411.
{{cite book}}
:|journal=
ignored (help)
संदर्भ
- Bostock, L.; Chandler, S. (1978). Pure Mathematics 1. Oxford University Press. p. 36. ISBN 0-85950-092-6.