असिम्प्टोटिक विश्लेषण: Difference between revisions
m (Abhishek moved page स्पर्शोन्मुख विश्लेषण to असिम्प्टोटिक विश्लेषण without leaving a redirect) |
No edit summary |
||
(6 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Description of limiting behavior of a function}} | {{short description|Description of limiting behavior of a function}} | ||
{{about| | {{about|इनपुट के रूप में कार्यों का व्यवहार अनंत या कुछ अन्य सीमा मूल्य तक पहुंचता है|एसिम्पटोट्स में [[ज्यामिति]]|अनंतस्पर्शी}} | ||
[[गणितीय विश्लेषण]] में, एसिम्प्टोटिक विश्लेषण, जिसे एसिम्प्टोटिक्स के रूप में भी जाना जाता है, | [[गणितीय विश्लेषण]] में, '''एसिम्प्टोटिक विश्लेषण''', जिसे एसिम्प्टोटिक्स के रूप में भी जाना जाता है, सीमा (गणित) व्यवहार का वर्णन करने की विधि है। | ||
उदाहरण के रूप में, मान लीजिए कि हम फलन {{math|''f'' (''n'')}} के गुणों में रूचि रखते हैं क्योंकि {{mvar|n}} बहुत बड़ा हो जाता है। यदि {{math|1=''f''(''n'') = ''n''<sup>2</sup> + 3''n''}}, तो {{mvar|n}} बहुत बड़ा हो जाता है, पद {{math|3''n''}}, {{math|''n''<sup>2</sup>}} की तुलना में महत्वहीन हो जाता है। फलन {{math|''f''(''n'')}} को "एसिम्प्टोटिक्स रूप से {{math|''n''<sup>2</sup>}} के समतुल्य, जैसा कि {{math|''n'' → ∞}} कहा जाता है। इसे अधिकांशतः प्रतीकात्मक रूप से {{math|''f'' (''n'') ~ ''n''<sup>2</sup>}},के रूप में लिखा जाता है, जिसे {{math|''f''(''n'')}}, के लिए {{math|''n''<sup>2</sup>}} असिम्प्टोटिक है के रूप में पढ़ा जाता है। | |||
एक महत्वपूर्ण उपगामी परिणाम का | एक महत्वपूर्ण उपगामी परिणाम का उदाहरण अभाज्य संख्या प्रमेय है। मान लीजिए {{math|π(''x'')}} [[प्राइम-काउंटिंग फंक्शन|अभाज्य-गणना फलन]] को दर्शाता है (जो सीधे स्थिर pi से संबंधित नहीं है), अर्थात {{math|π(''x'')}} उन [[अभाज्य संख्या]]ओं की संख्या है जो {{mvar|x}} से कम या उसके बराबर हैं। | ||
<math display="block">\pi(x)\sim\frac{x}{\ln x}.</math> | <math display="block">\pi(x)\sim\frac{x}{\ln x}.</math> | ||
एसिम्प्टोटिक विश्लेषण | एसिम्प्टोटिक विश्लेषण सामान्यतः [[कंप्यूटर विज्ञान]] में कलन विधि के विश्लेषण के हिस्से के रूप में उपयोग किया जाता है और [[बिग ओ नोटेशन|बड़े ओ संकेतन]] के संदर्भ में व्यक्त किया जाता है। | ||
== परिभाषा == | == परिभाषा == | ||
औपचारिक रूप से, दिए गए | औपचारिक रूप से, दिए गए फलन {{math|''f'' (''x'')}} और {{math|''g''(''x'')}}, द्विआधारी संबंध को परिभाषित करते हैं | ||
<math display="block">f(x) \sim g(x) \quad (\text{as } x\to\infty)</math> | <math display="block">f(x) \sim g(x) \quad (\text{as } x\to\infty)</math> | ||
यदि और केवल यदि {{Harv|डी ब्रुजन |1981| loc= §1.4}} | |||
<math display="block">\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1.</math> | <math display="block">\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1.</math> | ||
प्रतीक {{math|~}} [[टिल्ड]] है। संबंध | प्रतीक {{math|~}} [[टिल्ड|टिल्डे]] है। संबंध {{mvar|x}} के कार्यों के समुच्चय पर तुल्यता संबंध है; फलन {{mvar|f}} और {{mvar|g}} को असम्बद्ध रूप से समतुल्य कहा जाता है। {{mvar|f}} और {{mvar|g}} का प्रांत कोई भी समुच्चय हो सकता है जिसके लिए सीमा परिभाषित है: उदाहरण वास्तविक संख्याएं, जटिल संख्याएं, धनात्मक पूर्णांक है। | ||
इसी संकेतन का उपयोग किसी सीमा तक जाने के अन्य तरीकों के लिए भी किया जाता है: | इसी संकेतन का उपयोग किसी सीमा तक जाने के अन्य तरीकों के लिए भी किया जाता है: उदाहरण {{math|''x'' → 0}}, {{math|''x'' ↓ 0}}, {{math|{{abs|''x''}} → 0}}, सीमा पार करने का तरीका अधिकांशतः स्पष्ट रूप से नहीं बताया जाता है, यदि यह संदर्भ से स्पष्ट है। | ||
चूंकि उपरोक्त परिभाषा साहित्य में आम है, यह समस्याग्रस्त है यदि {{math|''g''(''x'')}} शून्य असीम रूप से अधिकांशतः होता है क्योंकि {{mvar|x}} सीमित मान पर जाता है। इस कारण से, कुछ लेखक वैकल्पिक परिभाषा का उपयोग करते हैं। वैकल्पिक परिभाषा, छोटे-ओ संकेतन में, यह है कि {{math|''f'' ~ ''g''}} यदि और केवल यदि | |||
<math display="block">f(x)=g(x)(1+o(1)).</math> | <math display="block">f(x)=g(x)(1+o(1)).</math> | ||
यह परिभाषा पूर्व परिभाषा के | यह परिभाषा पूर्व परिभाषा के समतुल्य है यदि {{math|''g''(''x'')}} सीमित मान के कुछ [[पड़ोस (गणित)|निकटतम (गणित)]] में शून्य नहीं है।<ref>{{SpringerEOM |id=Asymptotic_equality| title=Asymptotic equality}}</ref><ref>{{Harvtxt|Estrada|Kanwal|2002| loc=§1.2}}</ref> | ||
== गुण == | == गुण == | ||
यदि <math>f(x) \sim g(x)</math> और <math>a(x) \sim b(x)</math>, जैसा <math> x \to \infty</math>, तो निम्नलिखित विचार करें: | |||
* <math>f^r \sim g^r</math>, हर | * <math>f^r \sim g^r</math>, हर वास्तविक {{mvar|r}} के लिए | ||
* <math>\log(f) \sim \log(g)</math> | * <math>\log(f) \sim \log(g)</math> यदि <math>\lim g \neq 1 </math> | ||
* <math>f\times a \sim g\times b</math> | * <math>f\times a \sim g\times b</math> | ||
* <math>f / a \sim g / b</math> | * <math>f / a \sim g / b</math> | ||
इस तरह के गुण कई बीजगणितीय अभिव्यक्तियों में असीमित-समतुल्य कार्यों को स्वतंत्र रूप से आदान-प्रदान करने की अनुमति देते हैं। | इस तरह के गुण कई बीजगणितीय अभिव्यक्तियों में असीमित-समतुल्य कार्यों को स्वतंत्र रूप से आदान-प्रदान करने की अनुमति देते हैं। ध्यान दें कि वे गुण केवल और केवल तभी सही हैं <math> x </math> अनंत की ओर जाता है (दूसरे शब्दों में, वे गुण केवल पर्याप्त रूप से बड़े मान के लिए लागू होते हैं <math> x </math>)। यदि <math> x </math> अनंत की ओर नहीं जाता है, बल्कि इसके बजाय कुछ मनमाना परिमित स्थिरांक <math> c </math> होता है , तो उपरोक्त परिभाषा से निम्न सीमा: | ||
<math>\lim_{x \to c} \frac{f(x)}{g(x)}</math> ≠ 1, कुछ स्थिरांक <math> c </math> के लिए | |||
इसी तरह: | इसी तरह: | ||
<math>\lim_{x \to c} \frac{a(x)}{b(x)}</math> ≠ 1, कुछ स्थिरांक <math> c </math> के लिए | |||
इस प्रकार, वे संबंधित कार्य अब असिम्प्टोटिक-समतुल्य नहीं हैं और गुणों के ऊपर लागू नहीं किए जा सकते हैं। | |||
इस प्रकार, वे संबंधित कार्य अब | |||
इसके लिए सरल उदाहरण, आइए <math>f(x) = {x^3} + 2x</math> और <math>g(x) = {x^3}</math>, हम देख सकते हैं कि: | |||
<math>\lim_{x \to\infty} \frac{{x^3} + 2x}{x^3} = 1 </math> | |||
हालाँकि: | हालाँकि: | ||
<math>\lim_{x \to 0.5} \frac{{x^3} + 2x}{x^3} = 9 </math> | |||
इस तरह, <math>f(x)</math> और <math> g(x) </math> के रूप में असम्बद्ध रूप से समकक्ष नहीं हैं <math> x \to 0.5 </math>. | इस तरह, <math>f(x)</math> और <math> g(x) </math> के रूप में असम्बद्ध रूप से समकक्ष नहीं हैं <math> x \to 0.5 </math>. | ||
== | == असिम्प्टोटिक सूत्रों के उदाहरण == | ||
* [[कारख़ाने का]] <math display="block">n! \sim \sqrt{2\pi n}\left(\frac{n}{e}\right)^n</math> —यह स्टर्लिंग का सन्निकटन है | * [[कारख़ाने का|क्रमगुणित]] <math display="block">n! \sim \sqrt{2\pi n}\left(\frac{n}{e}\right)^n</math> —यह स्टर्लिंग का सन्निकटन है | ||
* विभाजन | * विभाजन फलन धनात्मक पूर्णांक ''n'' के लिए, विभाजन फलन, ''p''(''n''), पूर्णांक ''n'' को धनात्मक पूर्णांकों के योग के रूप में लिखने के तरीकों की संख्या देता है, जहाँ योग के क्रम पर विचार नहीं किया जाता है।<math display="block">p(n)\sim \frac{1}{4n\sqrt{3}} e^{\pi\sqrt{\frac{2n}{3}}}</math> | ||
* [[हवादार समारोह]] | * [[हवादार समारोह|एयरी फलन]] | ||
* [[हैंकेल कार्य करता है]] <math display="block">\begin{align} | *ऐयरी फलन Ai(''x''), अवकल समीकरण {{math|1=''y″'' − ''xy'' = 0}}; का समाधान है; भौतिकी में इसके कई अनुप्रयोग हैं।<math display="block">\operatorname{Ai}(x) \sim \frac{e^{-\frac{2}{3} x^\frac{3}{2}}}{2\sqrt{\pi} x^{1/4}}</math> | ||
* [[हैंकेल कार्य करता है|हैंकेल फलन]] <math display="block">\begin{align} | |||
H_\alpha^{(1)}(z) &\sim \sqrt{\frac{2}{\pi z}} e^{ i\left(z - \frac{2\pi\alpha - \pi}{4}\right)} \\ | H_\alpha^{(1)}(z) &\sim \sqrt{\frac{2}{\pi z}} e^{ i\left(z - \frac{2\pi\alpha - \pi}{4}\right)} \\ | ||
H_\alpha^{(2)}(z) &\sim \sqrt{\frac{2}{\pi z}} e^{-i\left(z - \frac{2\pi\alpha - \pi}{4}\right)} | H_\alpha^{(2)}(z) &\sim \sqrt{\frac{2}{\pi z}} e^{-i\left(z - \frac{2\pi\alpha - \pi}{4}\right)} | ||
\end{align}</math> | \end{align}</math> | ||
== असिम्प्टोटिक विस्तार == | |||
{{main|असिम्प्टोटिक विस्तार}} | |||
[[परिमित क्षेत्र]] {{math|''f''(''x'')}} का [[स्पर्शोन्मुख विस्तार|असिम्प्टोटिक विस्तार]] [[श्रृंखला (गणित)]] के संदर्भ में उस फलन की अभिव्यक्ति है, जिसके [[आंशिक योग]] आवश्यक रूप से अभिसरण नहीं करते हैं, लेकिन ऐसा है कि कोई भी प्रारंभिक आंशिक योग {{mvar|f}} के लिए असिम्प्टोटिक सूत्र प्रदान करता है। विचार यह है कि क्रमिक शब्द {{mvar|f}} के विकास के क्रम का सटीक विवरण प्रदान करते हैं। | |||
प्रतीकों में, इसका मतलब है कि हमारे पास है <math>f \sim g_1,</math> लेकिन <math>f - g_1 \sim g_2</math> और <math>f - g_1 - \cdots - g_{k-1} \sim g_{k}</math> प्रत्येक निश्चित k के लिए हैं। की परिभाषा को ध्यान में रखते हुए <math>\sim</math> प्रतीक, अंतिम समीकरण का अर्थ है छोटा-ओ संकेतन में<math>f - (g_1 + \cdots + g_k) = o(g_k)</math>, अर्थात, <math>f - (g_1 + \cdots + g_k)</math>, <math>g_k.</math> से बहुत छोटा है। | |||
संबंध <math>f - g_1 - \cdots - g_{k-1} \sim g_{k}</math> इसका पूरा अर्थ लेता है यदि <math>g_{k+1} = o(g_k)</math> सभी k के लिए, जिसका अर्थ है <math>g_k</math> [[स्पर्शोन्मुख पैमाने|असिम्प्टोटिक पैमाने]] बनाएं। उस मामले में, कुछ लेखक संकेतन लिखने का दुरुपयोग कर सकते हैं <math>f \sim g_1 + \cdots + g_k</math> कथन को निरूपित करने के लिए <math>f - (g_1 + \cdots + g_k) = o(g_k).</math> चूंकि किसी को सावधान रहना चाहिए कि यह इसका मानक उपयोग नहीं है <math>\sim</math> प्रतीक, और यह कि यह दी गई {{section link||परिभाषा}} के अनुरूप नहीं है। | |||
= | वर्तमान स्थिति में, यह संबंध <math>g_{k} = o(g_{k-1})</math> वास्तव में चरण ''k'' और ''k''−1 के संयोजन से अनुसरण करता है; घटाकर <math>f - g_1 - \cdots - g_{k-2} = g_{k-1} + o(g_{k-1})</math> | ||
{ | |||
से <math>f - g_1 - \cdots - g_{k-2} - g_{k-1} = g_{k} + o(g_{k}),</math> मिलता है <math>g_{k} + o(g_{k})=o(g_{k-1}),</math> अर्थात <math>g_{k} = o(g_{k-1}).</math> मिलता है। | |||
यदि असिम्प्टोटिक विस्तार अभिसरण नहीं करता है, तो तर्क के किसी विशेष मान के लिए विशेष आंशिक योग होगा जो सर्वोत्तम सन्निकटन प्रदान करता है और अतिरिक्त शब्द जोड़ने से सटीकता कम हो जाएगी। इस इष्टतम आंशिक योग में सामान्यतः अधिक शर्तें होंगी क्योंकि तर्क सीमा मान तक पहुंचता है। | |||
यदि | |||
=== | === असिम्प्टोटिक विस्तार के उदाहरण === | ||
* [[गामा समारोह]] <math display="block">\frac{e^x}{x^x \sqrt{2\pi x}} \Gamma(x+1) \sim 1+\frac{1}{12x}+\frac{1}{288x^2}-\frac{139}{51840x^3}-\cdots | * [[गामा समारोह|गामा फलन]] <math display="block">\frac{e^x}{x^x \sqrt{2\pi x}} \Gamma(x+1) \sim 1+\frac{1}{12x}+\frac{1}{288x^2}-\frac{139}{51840x^3}-\cdots | ||
\ (x \to \infty)</math> | \ (x \to \infty)</math> | ||
* [[घातीय अभिन्न]] <math display="block">xe^xE_1(x) \sim \sum_{n=0}^\infty \frac{(-1)^nn!}{x^n} \ (x \to \infty) </math> | * [[घातीय अभिन्न]] <math display="block">xe^xE_1(x) \sim \sum_{n=0}^\infty \frac{(-1)^nn!}{x^n} \ (x \to \infty) </math> | ||
* [[त्रुटि समारोह]] <math display="block"> \sqrt{\pi}x e^{x^2}\operatorname{erfc}(x) \sim 1+\sum_{n=1}^\infty (-1)^n \frac{(2n-1)!!}{n!(2x^2)^n} \ (x \to \infty)</math> | * [[त्रुटि समारोह|त्रुटि फलन]] <math display="block"> \sqrt{\pi}x e^{x^2}\operatorname{erfc}(x) \sim 1+\sum_{n=1}^\infty (-1)^n \frac{(2n-1)!!}{n!(2x^2)^n} \ (x \to \infty)</math> जहाँ {{math|''m''!!}} [[डबल फैक्टोरियल|दोहरा भाज्य]] है। | ||
=== | === कार्य उदाहरण === | ||
असिम्प्टोटिक विस्तार अधिकांशतः तब होता है जब औपचारिक अभिव्यक्ति मेंक साधारण श्रृंखला का उपयोग किया जाता है जो अभिसरण के अपने प्रांत के बाहर मान को लेने के लिए मजबूर करता है। उदाहरण के लिए, हम साधारण श्रृंखला से शुरुआत कर सकते हैं | |||
<math display="block">\frac{1}{1-w}=\sum_{n=0}^\infty w^n</math> | <math display="block">\frac{1}{1-w}=\sum_{n=0}^\infty w^n</math> | ||
बाईं ओर की अभिव्यक्ति पूरे | बाईं ओर की अभिव्यक्ति पूरे सम्मिश्र समतल पर मान्य है <math>w \ne 1</math>, जबकि दाहिनी ओर केवल के लिए अभिसरित होता है <math>|w|< 1</math>. से गुणा करना <math>e^{-w/t}</math> और दोनों पक्षों को एकीकृत करने से प्रतिफल प्राप्त होता है | ||
<math display="block"> \int_0^\infty \frac{e^{-\frac{w}{t}}}{1 - w} \, dw = \sum_{n=0}^\infty t^{n+1} \int_0^\infty e^{-u} u^n \, du</math> | <math display="block"> \int_0^\infty \frac{e^{-\frac{w}{t}}}{1 - w} \, dw = \sum_{n=0}^\infty t^{n+1} \int_0^\infty e^{-u} u^n \, du</math> | ||
बाईं ओर के समाकल को चरघातांकी समाकल के रूप में व्यक्त किया जा सकता है। प्रतिस्थापन के बाद दाहिने हाथ की ओर अभिन्न <math>u=w/t</math>, को गामा | बाईं ओर के समाकल को चरघातांकी समाकल के रूप में व्यक्त किया जा सकता है। प्रतिस्थापन के बाद दाहिने हाथ की ओर अभिन्न <math>u=w/t</math>, को गामा फलन के रूप में पहचाना जा सकता है। दोनों का मूल्यांकन करने पर, व्यक्ति असिम्प्टोटिक विस्तार प्राप्त करता है | ||
<math display="block">e^{-\frac{1}{t}} \operatorname{Ei}\left(\frac{1}{t}\right) = \sum _{n=0}^\infty n! \; t^{n+1} </math> | <math display="block">e^{-\frac{1}{t}} \operatorname{Ei}\left(\frac{1}{t}\right) = \sum _{n=0}^\infty n! \; t^{n+1} </math> | ||
यहाँ, t के किसी भी | यहाँ, ''t'' के किसी भी अशून्य मान के लिए दाहिनी ओर स्पष्ट रूप से अभिसारी नहीं है। चूंकि, ''t'' को छोटा रखते हुए, और शब्दों की सीमित संख्या के दाईं ओर श्रृंखला को छोटा करके, एक के मान के लिए काफी अच्छा सन्निकटन प्राप्त कर सकता है <math>\operatorname{Ei}(1/t)</math>. स्थानापन्न <math>x = -1/t</math> और यह ध्यान में रखते हुए <math>\operatorname{Ei}(x) = -E_1(-x)</math> इस लेख में पहले दिए गए असिम्प्टोटिक विस्तार का परिणाम है। | ||
== | == असिम्प्टोटिक वितरण == | ||
{{main| | {{main|असिम्प्टोटिक वितरण}} | ||
स्पर्शोन्मुख वितरण का | गणितीय आँकड़ों में, [[स्पर्शोन्मुख वितरण|असिम्प्टोटिक वितरण]] काल्पनिक वितरण है जो एक अर्थ में वितरण के अनुक्रम का "सीमित" वितरण है। वितरण {{math|1=''i'' = 1, …, ''n''}} कुछ धनात्मक पूर्णांक {{math|''n''}} के लिए यादृच्छिक चर {{math|''Z''<sub>''i''</sub>}} का आदेशित समुच्चय है। असिम्प्टोटिक वितरण {{math|''i''}} को बिना सीमा के सीमा की अनुमति देता है, अर्थात {{math|''n''}} अनंत है। | ||
असिम्प्टोटिक वितरण का विशेष मामला तब होता है जब देर से प्रविष्टियाँ शून्य पर जाती हैं - अर्थात, {{math|''Z''<sub>''i''</sub>}} के रूप में 0 पर जाएं {{math|''i''}} अनंत तक जाता है। असिम्प्टोटिक वितरण के कुछ उदाहरण केवल इस विशेष मामले को संदर्भित करते हैं। | |||
यह [[asymptotic|असिम्प्टोटिक]] फलन की धारणा पर आधारित है जो स्थिर मान ([[अनंतस्पर्शी|एसिम्प्टोट]]) तक पहुंचता है क्योंकि स्वतंत्र चर अनंत तक जाता है; इस अर्थ में "स्वच्छ" का अर्थ है कि किसी भी वांछित निकटता एप्सिलॉन के लिए स्वतंत्र चर का कुछ मान होता है जिसके बाद फलन कभी भी स्थिरांक से एप्सिलॉन से अधिक भिन्न नहीं होता है। | |||
असिम्प्टोटिक एक सीधी रेखा है जो वक्र तक पहुँचती है लेकिन कभी मिलती या पार नहीं करती है। अनौपचारिक रूप से, कोई व्यक्ति "अनंत पर" असिम्प्टोटिक से मिलने वाले वक्र के बारे में बात कर सकता है, चूंकि यह सटीक परिभाषा नहीं है। समीकरण में <math>y = \frac{1}{x},</math> x बढ़ने पर y परिमाण में मनमाने ढंग से छोटा हो जाता है। | |||
== अनुप्रयोग == | == अनुप्रयोग == | ||
कई [[गणितीय विज्ञान]] | कई [[गणितीय विज्ञान]] में असिम्प्टोटिक विश्लेषण का उपयोग किया जाता है। आँकड़ों में, असिम्प्टोटिक सिद्धांत नमूना आँकड़ों के संभाव्यता वितरण के सीमित अनुमान प्रदान करता है, जैसे कि [[संभावना-अनुपात परीक्षण]] आँकड़ा और [[विचलन (सांख्यिकी)]] का [[अपेक्षित मूल्य|अपेक्षित मान]] है। चूंकि, असिम्प्टोटिक सिद्धांत नमूना आँकड़ों के परिमित-नमूना वितरण के मूल्यांकन की विधि प्रदान नहीं करता है। [[सन्निकटन सिद्धांत]] के तरीकों द्वारा गैर-असिम्प्टोटिक सीमाएं प्रदान की जाती हैं। | ||
अनुप्रयोगों के उदाहरण निम्नलिखित हैं। | अनुप्रयोगों के उदाहरण निम्नलिखित हैं। | ||
* अनुप्रयुक्त गणित में, | * अनुप्रयुक्त गणित में, असिम्प्टोटिक विश्लेषण का उपयोग अनुमानित [[समीकरण]] समाधान के लिए संख्यात्मक तरीकों का निर्माण करने के लिए किया जाता है। | ||
* गणितीय आँकड़ों और संभाव्यता सिद्धांत में, | * गणितीय आँकड़ों और संभाव्यता सिद्धांत में, असिम्प्टोटिक का उपयोग यादृच्छिक चर और अनुमानकों के दीर्घकालिक या बड़े-नमूना व्यवहार के विश्लेषण में किया जाता है। | ||
* | * कलन विधि के विश्लेषण में कंप्यूटर विज्ञान में, कलन विधि के प्रदर्शन पर विचार करना। भौतिक प्रणालियों का व्यवहार, उदाहरण [[सांख्यिकीय]] यांत्रिकी है। | ||
* [[दुर्घटना विश्लेषण]] में जब निश्चित समय और स्थान में बड़ी संख्या में दुर्घटना गणना के साथ गणना मॉडलिंग के माध्यम से दुर्घटना के कारण की पहचान की जाती है। | |||
* | |||
असिम्प्टोटिक विश्लेषण सामान्य और आंशिक अंतर समीकरणों की खोज के लिए महत्वपूर्ण उपकरण है जो वास्तविक दुनिया की घटनाओं के गणितीय मॉडलिंग में उत्पन्न होता है।<ref name="Howison">Howison, S. (2005), ''[https://books.google.com/books?id=A2Hy_54Y1MsC&printsec=frontcover#v=onepage&q=%22asymptotic%20analysis%22&f=false Practical Applied Mathematics]'', [[Cambridge University Press]]</ref> तरल प्रवाह को नियंत्रित करने वाले पूर्ण [[नेवियर-स्टोक्स समीकरण]] से सीमा परत समीकरणों की व्युत्पत्ति उदाहरण है। कई स्थितियों में, असिम्प्टोटिक विस्तार छोटे मापदण्ड ε की शक्ति में होता है: सीमा परत के मामले में, यह समस्या की विशिष्ट लंबाई के पैमाने पर सीमा परत की मोटाई का [[आयामी विश्लेषण]] अनुपात है। दरअसल, गणितीय मॉडलिंग में असिम्प्टोटिक विश्लेषण के अनुप्रयोग अधिकांशतः<ref name="Howison" />गैर-आयामी मापदण्ड के आसपास केंद्रित होते हैं, जो समस्या के पैमाने पर विचार के माध्यम से दिखाया गया है, या छोटा माना जाता है। | |||
स्पर्शोन्मुख विस्तार | स्पर्शोन्मुख विस्तार सामान्यतः कुछ पूर्ण सांख्यिक (लाप्लास की विधि, [[सैडल-पॉइंट विधि]], स्टीपेस्ट डिसेंट की विधि) या प्रायिकता वितरण (एडगेवर्थ श्रृंखला) के सन्निकटन में उत्पन्न होते हैं। [[क्वांटम क्षेत्र सिद्धांत]] में [[फेनमैन रेखांकन]] असिम्प्टोटिक विस्तार का एक और उदाहरण है जो अधिकांशतः अभिसरण नहीं करते हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
{{div col|colwidth=30em}} | {{div col|colwidth=30em}} | ||
* | * असिम्प्टोटिक | ||
* [[ | * [[असिम्प्टोटिक कम्प्यूटेशनल जटिलता]] | ||
* [[ | * [[असिम्प्टोटिक घनत्व]] (संख्या सिद्धांत में) | ||
* [[ | * [[असिम्प्टोटिक सिद्धांत (सांख्यिकी)]] | ||
* [[ | * [[असिम्प्टोटिक]] | ||
* बिग ओ नोटेशन | * बिग ओ नोटेशन | ||
* [[अग्रणी-आदेश अवधि]] | * [[अग्रणी-आदेश अवधि]] | ||
*[[प्रमुख संतुलन की विधि]] ( | *[[प्रमुख संतुलन की विधि]] (ओडीई के लिए) | ||
*[[मिलान | *[[मिलान असिम्प्टोटिक विस्तार की विधि]] | ||
* वाटसन की लेम्मा | * वाटसन की लेम्मा | ||
{{div col end}} | {{div col end}} | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
<references /> | <references /> | ||
==संदर्भ== | ==संदर्भ== | ||
* {{citation | title= From Divergent Power Series To Analytic Functions | last= Balser | first= W. | year= 1994 | publisher= [[Springer-Verlag]]|url=https://books.google.com/books?id=V-17CwAAQBAJ| isbn= 9783540485940 }} | * {{citation | title= From Divergent Power Series To Analytic Functions | last= Balser | first= W. | year= 1994 | publisher= [[Springer-Verlag]]|url=https://books.google.com/books?id=V-17CwAAQBAJ| isbn= 9783540485940 }} | ||
Line 141: | Line 135: | ||
* {{citation | last= Murray | first = J. D. | title = Asymptotic Analysis | year = 1984 | publisher = Springer | url = https://books.google.com/books?id=PC3rBwAAQBAJ | isbn= 9781461211228 }} | * {{citation | last= Murray | first = J. D. | title = Asymptotic Analysis | year = 1984 | publisher = Springer | url = https://books.google.com/books?id=PC3rBwAAQBAJ | isbn= 9781461211228 }} | ||
* {{citation|last1=Paris|first1= R. B.|last2= Kaminsky|first2= D. |year=2001| title= Asymptotics and Mellin-Barnes Integrals| publisher= [[Cambridge University Press]]|url=https://www.researchgate.net/publication/39064661}} | * {{citation|last1=Paris|first1= R. B.|last2= Kaminsky|first2= D. |year=2001| title= Asymptotics and Mellin-Barnes Integrals| publisher= [[Cambridge University Press]]|url=https://www.researchgate.net/publication/39064661}} | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
*[https://www.iospress.nl/journal/asymptotic-analysis/ ''Asymptotic Analysis''] —home page of the journal, which is published by [[IOS Press]] | *[https://www.iospress.nl/journal/asymptotic-analysis/ ''Asymptotic Analysis''] —home page of the journal, which is published by [[IOS Press]] | ||
* [https://web.archive.org/web/20070422145944/http://swan.econ.ohio-state.edu/econ840/note4.pdf A paper on time series analysis using asymptotic distribution] | * [https://web.archive.org/web/20070422145944/http://swan.econ.ohio-state.edu/econ840/note4.pdf A paper on time series analysis using asymptotic distribution] | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Created On 03/02/2023]] | [[Category:Created On 03/02/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Multi-column templates]] | |||
[[Category:Pages using div col with small parameter]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Templates using under-protected Lua modules]] | |||
[[Category:Wikipedia fully protected templates|Div col]] | |||
[[Category:गणितीय श्रृंखला]] | |||
[[Category:स्पर्शोन्मुख विश्लेषण| स्पर्शोन्मुख विश्लेषण ]] |
Latest revision as of 11:07, 28 August 2023
गणितीय विश्लेषण में, एसिम्प्टोटिक विश्लेषण, जिसे एसिम्प्टोटिक्स के रूप में भी जाना जाता है, सीमा (गणित) व्यवहार का वर्णन करने की विधि है।
उदाहरण के रूप में, मान लीजिए कि हम फलन f (n) के गुणों में रूचि रखते हैं क्योंकि n बहुत बड़ा हो जाता है। यदि f(n) = n2 + 3n, तो n बहुत बड़ा हो जाता है, पद 3n, n2 की तुलना में महत्वहीन हो जाता है। फलन f(n) को "एसिम्प्टोटिक्स रूप से n2 के समतुल्य, जैसा कि n → ∞ कहा जाता है। इसे अधिकांशतः प्रतीकात्मक रूप से f (n) ~ n2,के रूप में लिखा जाता है, जिसे f(n), के लिए n2 असिम्प्टोटिक है के रूप में पढ़ा जाता है।
एक महत्वपूर्ण उपगामी परिणाम का उदाहरण अभाज्य संख्या प्रमेय है। मान लीजिए π(x) अभाज्य-गणना फलन को दर्शाता है (जो सीधे स्थिर pi से संबंधित नहीं है), अर्थात π(x) उन अभाज्य संख्याओं की संख्या है जो x से कम या उसके बराबर हैं।
परिभाषा
औपचारिक रूप से, दिए गए फलन f (x) और g(x), द्विआधारी संबंध को परिभाषित करते हैं
इसी संकेतन का उपयोग किसी सीमा तक जाने के अन्य तरीकों के लिए भी किया जाता है: उदाहरण x → 0, x ↓ 0, |x| → 0, सीमा पार करने का तरीका अधिकांशतः स्पष्ट रूप से नहीं बताया जाता है, यदि यह संदर्भ से स्पष्ट है।
चूंकि उपरोक्त परिभाषा साहित्य में आम है, यह समस्याग्रस्त है यदि g(x) शून्य असीम रूप से अधिकांशतः होता है क्योंकि x सीमित मान पर जाता है। इस कारण से, कुछ लेखक वैकल्पिक परिभाषा का उपयोग करते हैं। वैकल्पिक परिभाषा, छोटे-ओ संकेतन में, यह है कि f ~ g यदि और केवल यदि
गुण
यदि और , जैसा , तो निम्नलिखित विचार करें:
- , हर वास्तविक r के लिए
- यदि
इस तरह के गुण कई बीजगणितीय अभिव्यक्तियों में असीमित-समतुल्य कार्यों को स्वतंत्र रूप से आदान-प्रदान करने की अनुमति देते हैं। ध्यान दें कि वे गुण केवल और केवल तभी सही हैं अनंत की ओर जाता है (दूसरे शब्दों में, वे गुण केवल पर्याप्त रूप से बड़े मान के लिए लागू होते हैं )। यदि अनंत की ओर नहीं जाता है, बल्कि इसके बजाय कुछ मनमाना परिमित स्थिरांक होता है , तो उपरोक्त परिभाषा से निम्न सीमा:
≠ 1, कुछ स्थिरांक के लिए
इसी तरह:
≠ 1, कुछ स्थिरांक के लिए
इस प्रकार, वे संबंधित कार्य अब असिम्प्टोटिक-समतुल्य नहीं हैं और गुणों के ऊपर लागू नहीं किए जा सकते हैं।
इसके लिए सरल उदाहरण, आइए और , हम देख सकते हैं कि:
हालाँकि:
इस तरह, और के रूप में असम्बद्ध रूप से समकक्ष नहीं हैं .
असिम्प्टोटिक सूत्रों के उदाहरण
- क्रमगुणित —यह स्टर्लिंग का सन्निकटन है
- विभाजन फलन धनात्मक पूर्णांक n के लिए, विभाजन फलन, p(n), पूर्णांक n को धनात्मक पूर्णांकों के योग के रूप में लिखने के तरीकों की संख्या देता है, जहाँ योग के क्रम पर विचार नहीं किया जाता है।
- एयरी फलन
- ऐयरी फलन Ai(x), अवकल समीकरण y″ − xy = 0; का समाधान है; भौतिकी में इसके कई अनुप्रयोग हैं।
- हैंकेल फलन
असिम्प्टोटिक विस्तार
परिमित क्षेत्र f(x) का असिम्प्टोटिक विस्तार श्रृंखला (गणित) के संदर्भ में उस फलन की अभिव्यक्ति है, जिसके आंशिक योग आवश्यक रूप से अभिसरण नहीं करते हैं, लेकिन ऐसा है कि कोई भी प्रारंभिक आंशिक योग f के लिए असिम्प्टोटिक सूत्र प्रदान करता है। विचार यह है कि क्रमिक शब्द f के विकास के क्रम का सटीक विवरण प्रदान करते हैं।
प्रतीकों में, इसका मतलब है कि हमारे पास है लेकिन और प्रत्येक निश्चित k के लिए हैं। की परिभाषा को ध्यान में रखते हुए प्रतीक, अंतिम समीकरण का अर्थ है छोटा-ओ संकेतन में, अर्थात, , से बहुत छोटा है।
संबंध इसका पूरा अर्थ लेता है यदि सभी k के लिए, जिसका अर्थ है असिम्प्टोटिक पैमाने बनाएं। उस मामले में, कुछ लेखक संकेतन लिखने का दुरुपयोग कर सकते हैं कथन को निरूपित करने के लिए चूंकि किसी को सावधान रहना चाहिए कि यह इसका मानक उपयोग नहीं है प्रतीक, और यह कि यह दी गई § परिभाषा के अनुरूप नहीं है।
वर्तमान स्थिति में, यह संबंध वास्तव में चरण k और k−1 के संयोजन से अनुसरण करता है; घटाकर
से मिलता है अर्थात मिलता है।
यदि असिम्प्टोटिक विस्तार अभिसरण नहीं करता है, तो तर्क के किसी विशेष मान के लिए विशेष आंशिक योग होगा जो सर्वोत्तम सन्निकटन प्रदान करता है और अतिरिक्त शब्द जोड़ने से सटीकता कम हो जाएगी। इस इष्टतम आंशिक योग में सामान्यतः अधिक शर्तें होंगी क्योंकि तर्क सीमा मान तक पहुंचता है।
असिम्प्टोटिक विस्तार के उदाहरण
- गामा फलन
- घातीय अभिन्न
- त्रुटि फलन जहाँ m!! दोहरा भाज्य है।
कार्य उदाहरण
असिम्प्टोटिक विस्तार अधिकांशतः तब होता है जब औपचारिक अभिव्यक्ति मेंक साधारण श्रृंखला का उपयोग किया जाता है जो अभिसरण के अपने प्रांत के बाहर मान को लेने के लिए मजबूर करता है। उदाहरण के लिए, हम साधारण श्रृंखला से शुरुआत कर सकते हैं
असिम्प्टोटिक वितरण
गणितीय आँकड़ों में, असिम्प्टोटिक वितरण काल्पनिक वितरण है जो एक अर्थ में वितरण के अनुक्रम का "सीमित" वितरण है। वितरण i = 1, …, n कुछ धनात्मक पूर्णांक n के लिए यादृच्छिक चर Zi का आदेशित समुच्चय है। असिम्प्टोटिक वितरण i को बिना सीमा के सीमा की अनुमति देता है, अर्थात n अनंत है।
असिम्प्टोटिक वितरण का विशेष मामला तब होता है जब देर से प्रविष्टियाँ शून्य पर जाती हैं - अर्थात, Zi के रूप में 0 पर जाएं i अनंत तक जाता है। असिम्प्टोटिक वितरण के कुछ उदाहरण केवल इस विशेष मामले को संदर्भित करते हैं।
यह असिम्प्टोटिक फलन की धारणा पर आधारित है जो स्थिर मान (एसिम्प्टोट) तक पहुंचता है क्योंकि स्वतंत्र चर अनंत तक जाता है; इस अर्थ में "स्वच्छ" का अर्थ है कि किसी भी वांछित निकटता एप्सिलॉन के लिए स्वतंत्र चर का कुछ मान होता है जिसके बाद फलन कभी भी स्थिरांक से एप्सिलॉन से अधिक भिन्न नहीं होता है।
असिम्प्टोटिक एक सीधी रेखा है जो वक्र तक पहुँचती है लेकिन कभी मिलती या पार नहीं करती है। अनौपचारिक रूप से, कोई व्यक्ति "अनंत पर" असिम्प्टोटिक से मिलने वाले वक्र के बारे में बात कर सकता है, चूंकि यह सटीक परिभाषा नहीं है। समीकरण में x बढ़ने पर y परिमाण में मनमाने ढंग से छोटा हो जाता है।
अनुप्रयोग
कई गणितीय विज्ञान में असिम्प्टोटिक विश्लेषण का उपयोग किया जाता है। आँकड़ों में, असिम्प्टोटिक सिद्धांत नमूना आँकड़ों के संभाव्यता वितरण के सीमित अनुमान प्रदान करता है, जैसे कि संभावना-अनुपात परीक्षण आँकड़ा और विचलन (सांख्यिकी) का अपेक्षित मान है। चूंकि, असिम्प्टोटिक सिद्धांत नमूना आँकड़ों के परिमित-नमूना वितरण के मूल्यांकन की विधि प्रदान नहीं करता है। सन्निकटन सिद्धांत के तरीकों द्वारा गैर-असिम्प्टोटिक सीमाएं प्रदान की जाती हैं।
अनुप्रयोगों के उदाहरण निम्नलिखित हैं।
- अनुप्रयुक्त गणित में, असिम्प्टोटिक विश्लेषण का उपयोग अनुमानित समीकरण समाधान के लिए संख्यात्मक तरीकों का निर्माण करने के लिए किया जाता है।
- गणितीय आँकड़ों और संभाव्यता सिद्धांत में, असिम्प्टोटिक का उपयोग यादृच्छिक चर और अनुमानकों के दीर्घकालिक या बड़े-नमूना व्यवहार के विश्लेषण में किया जाता है।
- कलन विधि के विश्लेषण में कंप्यूटर विज्ञान में, कलन विधि के प्रदर्शन पर विचार करना। भौतिक प्रणालियों का व्यवहार, उदाहरण सांख्यिकीय यांत्रिकी है।
- दुर्घटना विश्लेषण में जब निश्चित समय और स्थान में बड़ी संख्या में दुर्घटना गणना के साथ गणना मॉडलिंग के माध्यम से दुर्घटना के कारण की पहचान की जाती है।
असिम्प्टोटिक विश्लेषण सामान्य और आंशिक अंतर समीकरणों की खोज के लिए महत्वपूर्ण उपकरण है जो वास्तविक दुनिया की घटनाओं के गणितीय मॉडलिंग में उत्पन्न होता है।[3] तरल प्रवाह को नियंत्रित करने वाले पूर्ण नेवियर-स्टोक्स समीकरण से सीमा परत समीकरणों की व्युत्पत्ति उदाहरण है। कई स्थितियों में, असिम्प्टोटिक विस्तार छोटे मापदण्ड ε की शक्ति में होता है: सीमा परत के मामले में, यह समस्या की विशिष्ट लंबाई के पैमाने पर सीमा परत की मोटाई का आयामी विश्लेषण अनुपात है। दरअसल, गणितीय मॉडलिंग में असिम्प्टोटिक विश्लेषण के अनुप्रयोग अधिकांशतः[3]गैर-आयामी मापदण्ड के आसपास केंद्रित होते हैं, जो समस्या के पैमाने पर विचार के माध्यम से दिखाया गया है, या छोटा माना जाता है।
स्पर्शोन्मुख विस्तार सामान्यतः कुछ पूर्ण सांख्यिक (लाप्लास की विधि, सैडल-पॉइंट विधि, स्टीपेस्ट डिसेंट की विधि) या प्रायिकता वितरण (एडगेवर्थ श्रृंखला) के सन्निकटन में उत्पन्न होते हैं। क्वांटम क्षेत्र सिद्धांत में फेनमैन रेखांकन असिम्प्टोटिक विस्तार का एक और उदाहरण है जो अधिकांशतः अभिसरण नहीं करते हैं।
यह भी देखें
- असिम्प्टोटिक
- असिम्प्टोटिक कम्प्यूटेशनल जटिलता
- असिम्प्टोटिक घनत्व (संख्या सिद्धांत में)
- असिम्प्टोटिक सिद्धांत (सांख्यिकी)
- असिम्प्टोटिक
- बिग ओ नोटेशन
- अग्रणी-आदेश अवधि
- प्रमुख संतुलन की विधि (ओडीई के लिए)
- मिलान असिम्प्टोटिक विस्तार की विधि
- वाटसन की लेम्मा
टिप्पणियाँ
- ↑ "Asymptotic equality", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- ↑ Estrada & Kanwal (2002, §1.2)
- ↑ 3.0 3.1 Howison, S. (2005), Practical Applied Mathematics, Cambridge University Press
संदर्भ
- Balser, W. (1994), From Divergent Power Series To Analytic Functions, Springer-Verlag, ISBN 9783540485940
- de Bruijn, N. G. (1981), Asymptotic Methods in Analysis, Dover Publications, ISBN 9780486642215
- Estrada, R.; Kanwal, R. P. (2002), A Distributional Approach to Asymptotics, Birkhäuser, ISBN 9780817681302
- Miller, P. D. (2006), Applied Asymptotic Analysis, American Mathematical Society, ISBN 9780821840788
- Murray, J. D. (1984), Asymptotic Analysis, Springer, ISBN 9781461211228
- Paris, R. B.; Kaminsky, D. (2001), Asymptotics and Mellin-Barnes Integrals, Cambridge University Press
बाहरी संबंध
- Asymptotic Analysis —home page of the journal, which is published by IOS Press
- A paper on time series analysis using asymptotic distribution