वितरित-फीडबैक लेजर: Difference between revisions

From Vigyanwiki
(Created page with "{{Jargon|date=January 2016}} एक वितरित-फीडबैक लेजर (DFB) एक प्रकार का लेज़र डायोड, क्व...")
 
No edit summary
 
(14 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Jargon|date=January 2016}}
एक वितरित-फीडबैक लेजर (डीएफबी) एक प्रकार का [[लेज़र डायोड]], [[क्वांटम-कैस्केड लेजर]] या [[फाइबर लेजर]] है। ऑप्टिकल-फाइबर लेजर जहां डिवाइस के सक्रिय क्षेत्र में समय-समय पर संरचित तत्व या विवर्तन ग्रेटिंग होती है। संरचना एक-आयामी हस्तक्षेप ग्रेटिंग ([[ब्रैग विवर्तन]]) का निर्माण करती है, और ग्रेटिंग लेजर के लिए ऑप्टिकल प्रतिक्रिया प्रदान करती है। इस अनुदैर्ध्य विवर्तन ग्रेटिंग में [[अपवर्तक सूचकांक]] में आवधिक परिवर्तन होते हैं जो गुहा में वापस प्रतिबिंब का कारण बनते हैं। आवधिक परिवर्तन या तो अपवर्तक सूचकांक के वास्तविक भाग में या काल्पनिक भाग (लाभ या अवशोषण) में उपस्थित हो सकता है। सबसे मजबूत ग्रेटिंग पहले क्रम में संचालित होती है, जहां आवधिकता एक-आधी लहर होती है, और प्रकाश पीछे की ओर परिलक्षित होता है। डीएफबी लेजर फैब्री-पेराट इंटरफेरोमीटर की तुलना में बहुत अधिक स्थिर होते हैं। फैब्री-परोट या [[वितरित ब्रैग रिफ्लेक्टर लेजर|वितरित ब्रैग परावर्तक लेजर]] उस समय उपयोग किए जाते हैं जब स्वच्छ एकल-मोड ऑपरेशन की आवश्यकता होती है, विशेष रूप से उच्च गति वाले फाइबर-ऑप्टिक दूरसंचार में इसका प्रयोग किया जाता है। लगभग 1.55 पर [[ऑप्टिकल फीडबैक]] के सबसे कम नुकसान वाली विंडो में सेमीकंडक्टर डीएफबी लेजर,1.3 पर सबसे कम फैलाव खिड़की, μM का उपयोग छोटी दूरी पर किया जाता है।  
एक वितरित-फीडबैक लेजर (DFB) एक प्रकार का [[लेज़र डायोड]], [[क्वांटम-कैस्केड लेजर]] या [[फाइबर लेजर]] है। ऑप्टिकल-फाइबर लेजर जहां डिवाइस के सक्रिय क्षेत्र में समय-समय पर संरचित तत्व या विवर्तन झंझरी होती है।संरचना एक-आयामी हस्तक्षेप झंझरी ([[ब्रैग विवर्तन]]) का निर्माण करती है, और झंझरी लेजर के लिए ऑप्टिकल प्रतिक्रिया प्रदान करती है।इस अनुदैर्ध्य विवर्तन झंझरी में [[अपवर्तक सूचकांक]] में आवधिक परिवर्तन होते हैं जो गुहा में वापस प्रतिबिंब का कारण बनते हैं।आवधिक परिवर्तन या तो अपवर्तक सूचकांक के वास्तविक भाग में या काल्पनिक भाग (लाभ या अवशोषण) में हो सकता है।सबसे मजबूत झंझरी पहले क्रम में संचालित होती है, जहां आवधिकता एक-आधी लहर होती है, और प्रकाश पीछे की ओर परिलक्षित होता है।DFB लेजर फैब्री-पेराट इंटरफेरोमीटर की तुलना में बहुत अधिक स्थिर होते हैं। फैब्री-परोट या [[वितरित ब्रैग रिफ्लेक्टर लेजर]] और उपयोग किए जाते हैं जब स्वच्छ एकल-मोड ऑपरेशन की आवश्यकता होती है, विशेष रूप से उच्च गति वाले फाइबर-ऑप्टिक दूरसंचार में।लगभग 1.55 & nbsp पर [[ऑप्टिकल फीडबैक]] के सबसे कम नुकसान की खिड़की में सेमीकंडक्टर डीएफबी लेजर;1.3 & nbsp पर सबसे कम फैलाव खिड़की; μM का उपयोग छोटी दूरी पर किया जाता है।


एक लेजर का सबसे सरल प्रकार एक फैब्री-पेरोट लेजर है, जहां लासिंग [[ऑप्टिकल गुहा]] के दो छोरों पर दो ब्रॉड-बैंड रिफ्लेक्टर हैं।प्रकाश इन दो दर्पणों के बीच आगे और पीछे उछलता है और अनुदैर्ध्य मोड, या खड़ी तरंगों को बनाता है।बैक रिफ्लेक्टर में आम तौर पर उच्च परावर्तनता होती है, और सामने वाले दर्पण में कम परावर्तनता होती है।प्रकाश तब सामने के दर्पण से बाहर लीक होता है और लेजर डायोड के आउटपुट को बनाता है।चूंकि दर्पण आम तौर पर ब्रॉड-बैंड होते हैं और कई तरंग दैर्ध्य को दर्शाते हैं, लेजर कई अनुदैर्ध्य मोड, या खड़ी तरंगों का समर्थन करता है, साथ ही साथ मल्टीमोड और लार्स मल्टीमोड, या आसानी से अनुदैर्ध्य मोड के बीच कूदता है।यदि एक अर्धचालक फैब्री -पेरोट लेजर का तापमान बदल जाता है, तो लासिंग माध्यम द्वारा प्रवर्धित तरंग दैर्ध्य तेजी से भिन्न होते हैं।इसी समय, लेजर के अनुदैर्ध्य मोड भी भिन्न होते हैं, क्योंकि अपवर्तक सूचकांक भी तापमान का एक कार्य है।यह स्पेक्ट्रम अस्थिर और अत्यधिक तापमान-निर्भर होने का कारण बनता है।1.55 & nbsp; μM और 1.3 & nbsp; μM के महत्वपूर्ण तरंग दैर्ध्य पर, चोटी का लाभ आम तौर पर 0.4 & nbsp; एनएम को लंबे समय तक तरंग दैर्ध्य तक ले जाता है क्योंकि तापमान बढ़ता है, जबकि अनुदैर्ध्य मोड लगभग 0.1 & nbsp; nm से अधिक तरंग दैर्ध्य तक शिफ्ट होते हैं।
एक लेजर का सबसे सरल प्रकार एक फैब्री-पेरोट लेजर है, जहां लासिंग [[ऑप्टिकल गुहा]] के दो छोरों पर दो विस्तृत स्तरीय बैंड परावर्तक हैं। प्रकाश इन दो दर्पणों के बीच आगे और पीछे उछलता है और अनुदैर्ध्य मोड, या खड़ी तरंगों को निर्मित करता है। बैक परावर्तक में सामान्यतः उच्च परावर्तनीयता होती है, और सामने वाले दर्पण में कम परावर्तनीयता होती है। प्रकाश तब सामने के दर्पण से बाहर क्षरण होता है और लेजर डायोड के आउटपुट को निर्मित करता है। चूंकि दर्पण सामान्यतः विस्तृत स्तरीय बैंड होते हैं और कई तरंग दैर्ध्य को दर्शाते हैं, लेजर कई अनुदैर्ध्य मोड या खड़ी तरंगों का समर्थन करता है, साथ ही साथ मल्टीमोड और लार्स मल्टीमोड, या आसानी से अनुदैर्ध्य मोड के बीच संयोजित होता है। यदि एक अर्धचालक फैब्री -पेरोट लेजर का तापमान बदल जाता है, तो लासिंग माध्यम द्वारा प्रवर्धित तरंग दैर्ध्य तेजी से भिन्न होते हैं। इसी समय, लेजर के अनुदैर्ध्य मोड भी भिन्न होते हैं, क्योंकि अपवर्तक सूचकांक भी तापमान का एक कार्य है। यह वर्णक्रम अस्थिर और अत्यधिक तापमान-निर्भर होने का कारण बनता है। 1.55 μM और 1.3 μM के महत्वपूर्ण तरंग दैर्ध्य पर, सर्वोच्च मान का लाभ सामान्यतः 0.4 nm को लंबे समय तक तरंग दैर्ध्य तक ले जाता है क्योंकि तापमान उच्च हो जाता है, जबकि अनुदैर्ध्य मोड लगभग 0.1 nm से अधिक तरंग दैर्ध्य तक स्थानान्तरित होते हैं।


यदि इन अंत दर्पणों में से एक या दोनों को एक विवर्तन झंझरी के साथ बदल दिया जाता है, तो संरचना को तब डीबीआर लेजर (वितरित ब्रैग रिफ्लेक्टर) के रूप में जाना जाता है।ये अनुदैर्ध्य विवर्तन-ग्रेटिंग मिरर गुहा में प्रकाश को वापस दर्शाते हैं, बहुत कुछ [[ढांकता हुआ दर्पण]] की तरह | बहु-परत दर्पण कोटिंग।विवर्तन-ग्रैटिंग मिरर सामान्य अंत दर्पणों की तुलना में तरंग दैर्ध्य के एक संकीर्ण बैंड को प्रतिबिंबित करते हैं, और यह खड़ी तरंगों की संख्या को सीमित करता है जो गुहा में लाभ द्वारा समर्थित हो सकता है।इसलिए डीबीआर लेजर ब्रॉडबैंड कोटिंग्स के साथ फैब्री -पेरोट लेज़रों की तुलना में अधिक स्पेक्ट्रेटिक रूप से स्थिर होता है।फिर भी, लेजर में तापमान या वर्तमान परिवर्तन के रूप में, डिवाइस मोड-हॉप कर सकता है, एक खड़े लहर से दूसरे में कूद सकता है।तापमान के साथ समग्र बदलाव, हालांकि, डीबीआर लेज़रों के साथ कम हैं, क्योंकि दर्पण निर्धारित करते हैं कि अनुदैर्ध्य मोड कौन से हैं, और वे अपवर्तक सूचकांक के साथ शिफ्ट करते हैं न कि शिखर लाभ।
यदि इन अंत दर्पणों में से एक या दोनों को एक विवर्तन ग्रेटिंग के साथ बदल दिया जाता है, तो संरचना को तब डीबीआर लेजर (वितरित ब्रैग परावर्तक) के रूप में जाना जाता है। ये अनुदैर्ध्य विवर्तन-ग्रेटिंग दर्पण गुहा में बहुत कुछ [[ढांकता हुआ दर्पण|विलेपन]] की तरह प्रकाश को वापस दर्शाते हैं। बहु-परत दर्पण विलेपन विवर्तन-ग्रैटिंग दर्पण सामान्य अंत दर्पणों की तुलना में तरंग दैर्ध्य के एक संकीर्ण बैंड को प्रतिबिंबित करते हैं, और यह खड़ी तरंगों की संख्या को सीमित करता है जो गुहा में उच्चतम लाभ द्वारा समर्थित हो सकता है। इसलिए डीबीआर लेजर विस्तृत स्तरीय बैंड विलेपन के साथ फैब्री -पेरोट लेज़रों की तुलना में अधिक स्पेक्ट्रेटिक रूप से स्थिर होता है। फिर भी, लेजर में तापमान या वर्तमान परिवर्तन के रूप में, डिवाइस पद प्रणाली कर सकता है, एक स्थिर लहर से दूसरे में सम्मिलित हो सकता है। तापमान के साथ समग्र बदलाव हालांकि, डीबीआर लेज़रों के साथ कम हैं, क्योंकि दर्पण निर्धारित करते हैं कि अनुदैर्ध्य मोड कौन से हैं, और वे अपवर्तक सूचकांक के साथ स्थानान्तरित करते हैं न कि शिखर लाभ के साथ।


एक DFB लेजर में, झंझरी और प्रतिबिंब आम तौर पर गुहा के साथ निरंतर होता है, बजाय इसके कि केवल दो छोरों पर होता है।यह मोडल व्यवहार को काफी बदल देता है और लेजर को अधिक स्थिर बनाता है।DFB लेज़रों के विभिन्न डिजाइन हैं, जिनमें से प्रत्येक में थोड़ा अलग गुण हैं।
एक डीएफबी लेजर में, ग्रेटिंग और प्रतिबिंब सामान्यतः गुहा के साथ निरंतर होता है, बजाय इसके कि यह केवल दो छोरों पर होता है। यह मोडल व्यवहार को काफी बदल देता है और लेजर को अधिक स्थिर निर्मित करता है। डीएफबी लेज़रों के विभिन्न डिजाइन हैं, जिनमें से प्रत्येक में कुछ अलग गुण हैं।  


यदि झंझरी आवधिक और निरंतर है, और लेजर के छोर विरोधी प्रतिबिंब (एआर/एआर) लेपित हैं, तो कोई प्रतिक्रिया नहीं है ओखुद झंझरी की तुलना में, फिर इस तरह की संरचना दो अनुदैर्ध्य (पतित) मोड का समर्थन करती है और लगभग हमेशा दो तरंग दैर्ध्य पर ले जाती है।जाहिर है कि एक दो-मोडेड लेजर आमतौर पर वांछनीय नहीं है।इसलिए इस पतन को तोड़ने के विभिन्न तरीके हैं।
यदि ग्रेटिंग आवधिक और निरंतर है, और लेजर के छोर विरोधी प्रतिबिंब (एआर/एआर) लेपित हैं, तो कोई प्रतिक्रिया नहीं है तो ऐसी संरचना दो अनुदैर्ध्य (पतित) मोड का समर्थन करती है और लगभग सदैव दो तरंग दैर्ध्य पर लेस होती है। जाहिर तौर पर दो-मोड वाला लेजर सामान्यतः वांछनीय नहीं होता है। तो इस "विकृति" के विभंजन के कई तरीके हैं।


पहला गुहा में एक चौथाई-लहर शिफ्ट को प्रेरित करके है।यह चरण-शिफ्ट एक दोष की तरह काम करता है और परावर्तकता बैंडविड्थ या स्टॉप-बैंड के केंद्र में एक प्रतिध्वनि बनाता है।लेजर तब इस प्रतिध्वनि पर ले जाता है और बेहद स्थिर होता है।तापमान और वर्तमान परिवर्तन के रूप में, झंझरी और गुहा अपवर्तक-सूचकांक परिवर्तन की निचली दर पर एक साथ शिफ्ट हो जाते हैं, और कोई मोड हॉप नहीं हैं।हालांकि, प्रकाश को लेज़रों के दोनों ओर से उत्सर्जित किया जाता है, और आम तौर पर एक तरफ से प्रकाश बर्बाद हो जाता है।इसके अलावा, एक सटीक क्वार्टर-वेव शिफ्ट बनाना तकनीकी रूप से प्राप्त करना मुश्किल हो सकता है, और अक्सर सीधे लिखित [[इलेक्ट्रॉन-बीम लिथोग्राफी]] की आवश्यकता होती है।अक्सर, गुहा के केंद्र में एक एकल तिमाही-लहर चरण शिफ्ट के बजाय, विभिन्न स्थानों पर गुहा में वितरित कई छोटे बदलाव जो अनुदैर्ध्य रूप से मोड को फैलाते हैं और उच्च आउटपुट पावर देते हैं।
प्रथम गुहा में एक चौथाई-लहर स्थानांतरण का प्रमुख कारण है। यह चरण-स्थानान्तरित एक दोष की तरह काम करता है और परावर्तकता बैंड विस्तार या विराम बैंड के केंद्र में एक प्रतिध्वनि निर्मित करता है। लेजर इस प्रतिध्वनि पर ले जाता है और तब बेहद स्थिर होता है। तापमान और वर्तमान परिवर्तन के रूप में, ग्रेटिंग और गुहा अपवर्तक-सूचकांक परिवर्तन की निचली दर पर एक साथ स्थानान्तरित हो जाते हैं, और इसमें कोई मोड हॉप निहित नहीं हैं। हालांकि, प्रकाश को लेज़रों के दोनों ओर से उत्सर्जित किया जाता है, और सामान्यतः एक तरफ से प्रकाश निष्क्रिय हो जाता है। इसके अलावा, एक सटीक क्वार्टर-वेव स्थानान्तरित बनाना तकनीकी रूप से प्राप्त करना मुश्किल हो सकता है, और प्रायः सीधे लिखित [[इलेक्ट्रॉन-बीम लिथोग्राफी]] की आवश्यकता होती है। प्रायः, गुहा के केंद्र में एक एकल तिमाही-लहर चरण स्थानान्तरित के बजाय, विभिन्न स्थानों पर गुहा में वितरित कई छोटे बदलाव जो अनुदैर्ध्य रूप से मोड को फैलाते हैं और उच्च आउटपुट पावर देते हैं।  


इस पतन को तोड़ने का एक वैकल्पिक तरीका लेजर के पीछे के छोर को एक उच्च परावर्तन (एचआर) के लिए कोटिंग करके है।इस अंत परावर्तक की सटीक स्थिति को सटीक रूप से नियंत्रित नहीं किया जा सकता है, और इसलिए एक झंझरी और अंत दर्पण की सटीक स्थिति के बीच एक यादृच्छिक चरण बदलाव प्राप्त करता है।कभी-कभी यह एक आदर्श चरण शिफ्ट की ओर जाता है, जहां प्रभावी रूप से एक चौथाई-लहर चरण स्थानांतरित डीएफबी को स्वयं परिलक्षित किया जाता है।इस मामले में सभी प्रकाश सामने के पहलू से बाहर निकलते हैं, और एक बहुत ही स्थिर लेजर प्राप्त करता है।अन्य समय में, हालांकि, झंझरी और उच्च-रिफ्लेक्टर बैक मिरर के बीच चरण बदलाव इष्टतम नहीं है, और एक फिर से दो-मोडेड लेज़रों के साथ समाप्त होता है।इसके अतिरिक्त, क्लीव का चरण तरंग दैर्ध्य को प्रभावित करता है, और इस प्रकार विनिर्माण में लेज़रों के एक बैच के आउटपुट तरंग दैर्ध्य को नियंत्रित करना एक चुनौती हो सकती है।<ref>See for example: {{cite book |first=Amnon |last=Yariv |year=1985 |title=Quantum Electronics |edition=3rd |publisher=Holt, Reinhart and Wilson |location=New York |pages=421–429}}</ref> इस प्रकार HR/AR DFB लेज़रों में कम उपज होती है और उपयोग से पहले जांच की जानी चाहिए।कोटिंग्स और चरण बदलावों के विभिन्न संयोजन हैं जिन्हें शक्ति और उपज के लिए अनुकूलित किया जा सकता है, और आम तौर पर प्रत्येक निर्माता के पास प्रदर्शन और उपज को अनुकूलित करने के लिए अपनी तकनीक होती है।
इस विकृति को विभंजन का एक वैकल्पिक तरीका लेजर के पीछे के छोर को एक उच्च परावर्तन (एचआर) के लिए विलेपन करके '''प्रयोग किया जाता है।''' इस अंत परावर्तक की सटीक स्थिति को सटीक रूप से नियंत्रित नहीं किया जा सकता है, और इसलिए एक ग्रेटिंग और अंत दर्पण की सटीक स्थिति के बीच एक यादृच्छिक चरण बदलाव प्राप्त करता है। कभी-कभी यह एक आदर्श चरण स्थानान्तरित की ओर जाता है, जहां प्रभावी रूप से एक चौथाई-लहर चरण स्थानांतरित डीएफबी को स्वयं परिलक्षित किया जाता है। इस मामले में सभी प्रकाश सामने के पहलू से बाहर निकलते हैं, और एक बहुत ही स्थिर लेजर प्राप्त करता है। अन्य समय में, हालांकि, ग्रेटिंग और उच्च-परावर्तक बैक दर्पण के बीच चरण बदलाव इष्टतम नहीं है, और एक फिर से दो-मोडेड लेज़रों के साथ समाप्त होता है। इसके अतिरिक्त, क्लीव का चरण तरंग दैर्ध्य को प्रभावित करता है, और इस प्रकार विनिर्माण में लेज़रों के एक बैच के आउटपुट तरंग दैर्ध्य को नियंत्रित करना एक चुनौती हो सकती है। <ref>See for example: {{cite book |first=Amnon |last=Yariv |year=1985 |title=Quantum Electronics |edition=3rd |publisher=Holt, Reinhart and Wilson |location=New York |pages=421–429}}</ref> इस प्रकार HR/AR डीएफबी लेज़रों में कम उपज होती है और उपयोग से पहले जांच की जानी चाहिए। विलेपन और चरण बदलावों के विभिन्न संयोजन हैं जिन्हें शक्ति और उपज के लिए अनुकूलित किया जा सकता है, और सामान्यतः प्रत्येक निर्माता के पास प्रदर्शन और उपज को अनुकूलित करने के लिए अपनी तकनीक होती है।  


फाइबर-ऑप्टिक संचार के लिए एक डीएफबी लेजर पर डेटा को एनकोड करने के लिए, आमतौर पर इलेक्ट्रिक ड्राइव वर्तमान प्रकाश की तीव्रता को संशोधित करने के लिए विविध होता है।ये DMLs (सीधे संशोधित लेजर) सबसे सरल प्रकार हैं और विभिन्न फाइबर-ऑप्टिक सिस्टम में पाए जाते हैं।एक लेजर को सीधे संशोधित करने का नुकसान यह है कि तीव्रता की शिफ्ट (लेजर [[कलरव]]) के साथ मिलकर जुड़ी आवृत्ति बदलाव हैं।ये आवृत्ति शिफ्ट, फाइबर में फैलाव के साथ, कुछ दूरी के बाद संकेत को कम करने का कारण बनती है, बैंडविड्थ और रेंज को सीमित करती है।एक वैकल्पिक संरचना एक इलेक्ट्रो-अवशोषण मॉड्यूलेटेड लेजर (ईएमएल) है जो लेजर को लगातार चलाता है और एक अलग खंड है जो सामने एकीकृत है जो या तो अवशोषित करता है या प्रकाश को प्रसारित करता है{{snd}} एक ऑप्टिकल शटर की तरह।ये EML उच्च गति से काम कर सकते हैं और बहुत कम चिरप हो सकते हैं।बहुत उच्च-प्रदर्शन सुसंगत ऑप्टिकल संचार प्रणालियों में, DFB लेजर को लगातार चलाया जाता है और इसके बाद एक चरण न्यूनाधिक द्वारा किया जाता है।प्राप्त अंत पर, एक स्थानीय थरथरानवाला DFB प्राप्त सिग्नल के साथ हस्तक्षेप करता है और मॉड्यूलेशन को डिकोड करता है।
फाइबर-ऑप्टिक संचार के लिए एक डीएफबी लेजर पर डेटा को एनकोड करने के लिए, सामान्यतः इलेक्ट्रिक ड्राइव वर्तमान प्रकाश की तीव्रता को संशोधित करने के लिए विविध होता है। ये DMLs (सीधे संशोधित लेजर) सबसे सरल प्रकार हैं और विभिन्न फाइबर-ऑप्टिक सिस्टम में पाए जाते हैं। एक लेजर को सीधे संशोधित करने का नुकसान यह है कि तीव्रता की स्थानान्तरित (लेजर [[कलरव]]) के साथ मिलकर जुड़ी आवृत्ति बदलाव हैं। ये आवृत्ति स्थानान्तरित, फाइबर में फैलाव के साथ, कुछ दूरी के बाद संकेत को कम करने का कारण बनती है, बैंड विस्तार और रेंज को सीमित करती है। एक वैकल्पिक संरचना एक इलेक्ट्रो-अवशोषण मॉड्यूलेटेड लेजर (ईएमएल) है जो लेजर को लगातार चलाता है और एक अलग खंड है जो सामने एकीकृत है जो या तो अवशोषित करता है या प्रकाश को प्रसारित करता है{{snd}} एक ऑप्टिकल शटर की तरह। ये EML उच्च गति से काम कर सकते हैं और बहुत कम चिरप हो सकते हैं। बहुत उच्च-प्रदर्शन सुसंगत ऑप्टिकल संचार प्रणालियों में, डीएफबी लेजर को लगातार चलाया जाता है और इसके बाद एक चरण न्यूनाधिक द्वारा किया जाता है। प्राप्त अंत पर, एक स्थानीय थरथरानवाला डीएफबी प्राप्त सिग्नल के साथ हस्तक्षेप करता है और मॉड्यूलेशन को डिकोड करता है।  


एक वैकल्पिक दृष्टिकोण एक चरण-शिफ्ट किए गए DFB लेजर है।इस मामले में दोनों पहलू एंटी-परावर्तक कोटिंग हैं। [[परावर्तक - विरोधी लेप]], और गुहा में एक चरण बदलाव होता है।इस तरह के उपकरणों में तरंग दैर्ध्य में और सैद्धांतिक रूप से सभी एकल मोड में बहुत बेहतर प्रजनन क्षमता होती है।
एक वैकल्पिक दृष्टिकोण एक चरण-स्थानान्तरित किए गए डीएफबी लेजर है। इस मामले में दोनों पहलू एंटी-परावर्तक विलेपन हैं। [[परावर्तक - विरोधी लेप]], और गुहा में एक चरण बदलाव होता है। इस तरह के उपकरणों में तरंग दैर्ध्य में और सैद्धांतिक रूप से सभी एकल मोड में बहुत बेहतर प्रजनन क्षमता होती है।  


DFB फाइबर लेज़रों में [[फाइबर ब्रैग झंझरी]] (जो इस मामले में भी लेजर की गुहा है) में एक चरण-शिफ्ट है जो प्रतिबिंब बैंड के एक ही एक बहुत ही संकीर्ण ट्रांसमिशन पायदान पर केंद्रित है, जो एक फैब्री-पेरेटर इंटरफेरोमीटर के एक बहुत ही संकीर्ण ट्रांसमिशन पायदान पर है।जब ठीक से कॉन्फ़िगर किया जाता है, तो ये लेजर एक एकल अनुदैर्ध्य मोड पर संचालित होते हैं, जो दसियों किलोमीटर से अधिक के साथ सामंजस्य की लंबाई के साथ होता है, अनिवार्य रूप से स्व-हेटेरोडाइन कोहेरेंस डिटेक्शन तकनीक द्वारा प्रेरित अस्थायी शोर द्वारा सीमित किया जाता है जो कि सुसंगतता को मापने के लिए उपयोग किया जाता है।
डीएफबी फाइबर लेज़रों में [[फाइबर ब्रैग झंझरी|फाइबर ब्रैग ग्रेटिंग]] (जो इस मामले में भी लेजर की गुहा है) में एक चरण-स्थानान्तरित है जो प्रतिबिंब बैंड के एक ही एक बहुत ही संकीर्ण ट्रांसमिशन पायदान पर केंद्रित है, जो एक फैब्री-पेरेटर इंटरफेरोमीटर के एक बहुत ही संकीर्ण ट्रांसमिशन पायदान पर है। जब ठीक से कॉन्फ़िगर किया जाता है, तो ये लेजर एक एकल अनुदैर्ध्य मोड पर संचालित होते हैं, जो दसियों किलोमीटर से अधिक के साथ सामंजस्य की लंबाई के साथ होता है, अनिवार्य रूप से स्व-हेटेरोडाइन कोहेरेंस डिटेक्शन तकनीक द्वारा प्रेरित अस्थायी शोर द्वारा सीमित किया जाता है जो कि सुसंगतता को मापने के लिए उपयोग किया जाता है।  
इन DFB फाइबर लेजर का उपयोग अक्सर संवेदन अनुप्रयोगों में किया जाता है जहां चरम संकीर्ण [[लेजर लाइनविड्थ]] की आवश्यकता होती है।
इन डीएफबी फाइबर लेजर का उपयोग प्रायः संवेदन अनुप्रयोगों में किया जाता है जहां चरम संकीर्ण [[लेजर लाइनविड्थ]] की आवश्यकता होती है।  


==संदर्भ==
==संदर्भ==
<references/>
<references/>
* B. Mroziewicz, "Physics of Semiconductor Lasers", pp. 348–364. 1991.
* B. Mroziewicz, "Physics of Semiconductor Lasers", pp. 348–364. 1991.
* J. Carroll, J. Whiteaway and D. Plumb, "Distributed Feedback Semiconductor Lasers", IEE Circuits, Devices and Systems Series 10, London (1998)
* J. Carroll, J. Whiteaway and D. Plumb, "Distributed Feedback Semiconductor Lasers", IEE Circuits, Devices and Systems Series 10, London (1998)




==बाहरी कड़ियाँ==
==बाहरी कड़ियाँ==
* [http://www.mdpi.com/1424-8220/10/4/2492/ DFB Lasers Between 760&nbsp;nm and 16&nbsp;μm for Sensing Applications]
* [http://www.mdpi.com/1424-8220/10/4/2492/ डीएफबी Lasers Between 760&nbsp;nm and 16&nbsp;μm for Sensing Applications]


{{DEFAULTSORT:Distributed Feedback Laser}}
{{DEFAULTSORT:Distributed Feedback Laser}}


{{Semiconductor laser}}
[[Category:Created On 01/02/2023|Distributed Feedback Laser]]
[[Category: अर्धचालक लेजर]] [[Category: इजरायली आविष्कार]]  
[[Category:Machine Translated Page|Distributed Feedback Laser]]
 
[[Category:Templates Vigyan Ready|Distributed Feedback Laser]]
 
[[Category:अर्धचालक लेजर|Distributed Feedback Laser]]
 
[[Category:इजरायली आविष्कार|Distributed Feedback Laser]]
[[Category: Machine Translated Page]]
[[Category:Created On 01/02/2023]]

Latest revision as of 17:11, 12 February 2023

एक वितरित-फीडबैक लेजर (डीएफबी) एक प्रकार का लेज़र डायोड, क्वांटम-कैस्केड लेजर या फाइबर लेजर है। ऑप्टिकल-फाइबर लेजर जहां डिवाइस के सक्रिय क्षेत्र में समय-समय पर संरचित तत्व या विवर्तन ग्रेटिंग होती है। संरचना एक-आयामी हस्तक्षेप ग्रेटिंग (ब्रैग विवर्तन) का निर्माण करती है, और ग्रेटिंग लेजर के लिए ऑप्टिकल प्रतिक्रिया प्रदान करती है। इस अनुदैर्ध्य विवर्तन ग्रेटिंग में अपवर्तक सूचकांक में आवधिक परिवर्तन होते हैं जो गुहा में वापस प्रतिबिंब का कारण बनते हैं। आवधिक परिवर्तन या तो अपवर्तक सूचकांक के वास्तविक भाग में या काल्पनिक भाग (लाभ या अवशोषण) में उपस्थित हो सकता है। सबसे मजबूत ग्रेटिंग पहले क्रम में संचालित होती है, जहां आवधिकता एक-आधी लहर होती है, और प्रकाश पीछे की ओर परिलक्षित होता है। डीएफबी लेजर फैब्री-पेराट इंटरफेरोमीटर की तुलना में बहुत अधिक स्थिर होते हैं। फैब्री-परोट या वितरित ब्रैग परावर्तक लेजर उस समय उपयोग किए जाते हैं जब स्वच्छ एकल-मोड ऑपरेशन की आवश्यकता होती है, विशेष रूप से उच्च गति वाले फाइबर-ऑप्टिक दूरसंचार में इसका प्रयोग किया जाता है। लगभग 1.55 पर ऑप्टिकल फीडबैक के सबसे कम नुकसान वाली विंडो में सेमीकंडक्टर डीएफबी लेजर,1.3 पर सबसे कम फैलाव खिड़की, μM का उपयोग छोटी दूरी पर किया जाता है।

एक लेजर का सबसे सरल प्रकार एक फैब्री-पेरोट लेजर है, जहां लासिंग ऑप्टिकल गुहा के दो छोरों पर दो विस्तृत स्तरीय बैंड परावर्तक हैं। प्रकाश इन दो दर्पणों के बीच आगे और पीछे उछलता है और अनुदैर्ध्य मोड, या खड़ी तरंगों को निर्मित करता है। बैक परावर्तक में सामान्यतः उच्च परावर्तनीयता होती है, और सामने वाले दर्पण में कम परावर्तनीयता होती है। प्रकाश तब सामने के दर्पण से बाहर क्षरण होता है और लेजर डायोड के आउटपुट को निर्मित करता है। चूंकि दर्पण सामान्यतः विस्तृत स्तरीय बैंड होते हैं और कई तरंग दैर्ध्य को दर्शाते हैं, लेजर कई अनुदैर्ध्य मोड या खड़ी तरंगों का समर्थन करता है, साथ ही साथ मल्टीमोड और लार्स मल्टीमोड, या आसानी से अनुदैर्ध्य मोड के बीच संयोजित होता है। यदि एक अर्धचालक फैब्री -पेरोट लेजर का तापमान बदल जाता है, तो लासिंग माध्यम द्वारा प्रवर्धित तरंग दैर्ध्य तेजी से भिन्न होते हैं। इसी समय, लेजर के अनुदैर्ध्य मोड भी भिन्न होते हैं, क्योंकि अपवर्तक सूचकांक भी तापमान का एक कार्य है। यह वर्णक्रम अस्थिर और अत्यधिक तापमान-निर्भर होने का कारण बनता है। 1.55 μM और 1.3 μM के महत्वपूर्ण तरंग दैर्ध्य पर, सर्वोच्च मान का लाभ सामान्यतः 0.4 nm को लंबे समय तक तरंग दैर्ध्य तक ले जाता है क्योंकि तापमान उच्च हो जाता है, जबकि अनुदैर्ध्य मोड लगभग 0.1 nm से अधिक तरंग दैर्ध्य तक स्थानान्तरित होते हैं।

यदि इन अंत दर्पणों में से एक या दोनों को एक विवर्तन ग्रेटिंग के साथ बदल दिया जाता है, तो संरचना को तब डीबीआर लेजर (वितरित ब्रैग परावर्तक) के रूप में जाना जाता है। ये अनुदैर्ध्य विवर्तन-ग्रेटिंग दर्पण गुहा में बहुत कुछ विलेपन की तरह प्रकाश को वापस दर्शाते हैं। बहु-परत दर्पण विलेपन विवर्तन-ग्रैटिंग दर्पण सामान्य अंत दर्पणों की तुलना में तरंग दैर्ध्य के एक संकीर्ण बैंड को प्रतिबिंबित करते हैं, और यह खड़ी तरंगों की संख्या को सीमित करता है जो गुहा में उच्चतम लाभ द्वारा समर्थित हो सकता है। इसलिए डीबीआर लेजर विस्तृत स्तरीय बैंड विलेपन के साथ फैब्री -पेरोट लेज़रों की तुलना में अधिक स्पेक्ट्रेटिक रूप से स्थिर होता है। फिर भी, लेजर में तापमान या वर्तमान परिवर्तन के रूप में, डिवाइस पद प्रणाली कर सकता है, एक स्थिर लहर से दूसरे में सम्मिलित हो सकता है। तापमान के साथ समग्र बदलाव हालांकि, डीबीआर लेज़रों के साथ कम हैं, क्योंकि दर्पण निर्धारित करते हैं कि अनुदैर्ध्य मोड कौन से हैं, और वे अपवर्तक सूचकांक के साथ स्थानान्तरित करते हैं न कि शिखर लाभ के साथ।

एक डीएफबी लेजर में, ग्रेटिंग और प्रतिबिंब सामान्यतः गुहा के साथ निरंतर होता है, बजाय इसके कि यह केवल दो छोरों पर होता है। यह मोडल व्यवहार को काफी बदल देता है और लेजर को अधिक स्थिर निर्मित करता है। डीएफबी लेज़रों के विभिन्न डिजाइन हैं, जिनमें से प्रत्येक में कुछ अलग गुण हैं।

यदि ग्रेटिंग आवधिक और निरंतर है, और लेजर के छोर विरोधी प्रतिबिंब (एआर/एआर) लेपित हैं, तो कोई प्रतिक्रिया नहीं है तो ऐसी संरचना दो अनुदैर्ध्य (पतित) मोड का समर्थन करती है और लगभग सदैव दो तरंग दैर्ध्य पर लेस होती है। जाहिर तौर पर दो-मोड वाला लेजर सामान्यतः वांछनीय नहीं होता है। तो इस "विकृति" के विभंजन के कई तरीके हैं।

प्रथम गुहा में एक चौथाई-लहर स्थानांतरण का प्रमुख कारण है। यह चरण-स्थानान्तरित एक दोष की तरह काम करता है और परावर्तकता बैंड विस्तार या विराम बैंड के केंद्र में एक प्रतिध्वनि निर्मित करता है। लेजर इस प्रतिध्वनि पर ले जाता है और तब बेहद स्थिर होता है। तापमान और वर्तमान परिवर्तन के रूप में, ग्रेटिंग और गुहा अपवर्तक-सूचकांक परिवर्तन की निचली दर पर एक साथ स्थानान्तरित हो जाते हैं, और इसमें कोई मोड हॉप निहित नहीं हैं। हालांकि, प्रकाश को लेज़रों के दोनों ओर से उत्सर्जित किया जाता है, और सामान्यतः एक तरफ से प्रकाश निष्क्रिय हो जाता है। इसके अलावा, एक सटीक क्वार्टर-वेव स्थानान्तरित बनाना तकनीकी रूप से प्राप्त करना मुश्किल हो सकता है, और प्रायः सीधे लिखित इलेक्ट्रॉन-बीम लिथोग्राफी की आवश्यकता होती है। प्रायः, गुहा के केंद्र में एक एकल तिमाही-लहर चरण स्थानान्तरित के बजाय, विभिन्न स्थानों पर गुहा में वितरित कई छोटे बदलाव जो अनुदैर्ध्य रूप से मोड को फैलाते हैं और उच्च आउटपुट पावर देते हैं।

इस विकृति को विभंजन का एक वैकल्पिक तरीका लेजर के पीछे के छोर को एक उच्च परावर्तन (एचआर) के लिए विलेपन करके प्रयोग किया जाता है। इस अंत परावर्तक की सटीक स्थिति को सटीक रूप से नियंत्रित नहीं किया जा सकता है, और इसलिए एक ग्रेटिंग और अंत दर्पण की सटीक स्थिति के बीच एक यादृच्छिक चरण बदलाव प्राप्त करता है। कभी-कभी यह एक आदर्श चरण स्थानान्तरित की ओर जाता है, जहां प्रभावी रूप से एक चौथाई-लहर चरण स्थानांतरित डीएफबी को स्वयं परिलक्षित किया जाता है। इस मामले में सभी प्रकाश सामने के पहलू से बाहर निकलते हैं, और एक बहुत ही स्थिर लेजर प्राप्त करता है। अन्य समय में, हालांकि, ग्रेटिंग और उच्च-परावर्तक बैक दर्पण के बीच चरण बदलाव इष्टतम नहीं है, और एक फिर से दो-मोडेड लेज़रों के साथ समाप्त होता है। इसके अतिरिक्त, क्लीव का चरण तरंग दैर्ध्य को प्रभावित करता है, और इस प्रकार विनिर्माण में लेज़रों के एक बैच के आउटपुट तरंग दैर्ध्य को नियंत्रित करना एक चुनौती हो सकती है। [1] इस प्रकार HR/AR डीएफबी लेज़रों में कम उपज होती है और उपयोग से पहले जांच की जानी चाहिए। विलेपन और चरण बदलावों के विभिन्न संयोजन हैं जिन्हें शक्ति और उपज के लिए अनुकूलित किया जा सकता है, और सामान्यतः प्रत्येक निर्माता के पास प्रदर्शन और उपज को अनुकूलित करने के लिए अपनी तकनीक होती है।

फाइबर-ऑप्टिक संचार के लिए एक डीएफबी लेजर पर डेटा को एनकोड करने के लिए, सामान्यतः इलेक्ट्रिक ड्राइव वर्तमान प्रकाश की तीव्रता को संशोधित करने के लिए विविध होता है। ये DMLs (सीधे संशोधित लेजर) सबसे सरल प्रकार हैं और विभिन्न फाइबर-ऑप्टिक सिस्टम में पाए जाते हैं। एक लेजर को सीधे संशोधित करने का नुकसान यह है कि तीव्रता की स्थानान्तरित (लेजर कलरव) के साथ मिलकर जुड़ी आवृत्ति बदलाव हैं। ये आवृत्ति स्थानान्तरित, फाइबर में फैलाव के साथ, कुछ दूरी के बाद संकेत को कम करने का कारण बनती है, बैंड विस्तार और रेंज को सीमित करती है। एक वैकल्पिक संरचना एक इलेक्ट्रो-अवशोषण मॉड्यूलेटेड लेजर (ईएमएल) है जो लेजर को लगातार चलाता है और एक अलग खंड है जो सामने एकीकृत है जो या तो अवशोषित करता है या प्रकाश को प्रसारित करता है – एक ऑप्टिकल शटर की तरह। ये EML उच्च गति से काम कर सकते हैं और बहुत कम चिरप हो सकते हैं। बहुत उच्च-प्रदर्शन सुसंगत ऑप्टिकल संचार प्रणालियों में, डीएफबी लेजर को लगातार चलाया जाता है और इसके बाद एक चरण न्यूनाधिक द्वारा किया जाता है। प्राप्त अंत पर, एक स्थानीय थरथरानवाला डीएफबी प्राप्त सिग्नल के साथ हस्तक्षेप करता है और मॉड्यूलेशन को डिकोड करता है।

एक वैकल्पिक दृष्टिकोण एक चरण-स्थानान्तरित किए गए डीएफबी लेजर है। इस मामले में दोनों पहलू एंटी-परावर्तक विलेपन हैं। परावर्तक - विरोधी लेप, और गुहा में एक चरण बदलाव होता है। इस तरह के उपकरणों में तरंग दैर्ध्य में और सैद्धांतिक रूप से सभी एकल मोड में बहुत बेहतर प्रजनन क्षमता होती है।

डीएफबी फाइबर लेज़रों में फाइबर ब्रैग ग्रेटिंग (जो इस मामले में भी लेजर की गुहा है) में एक चरण-स्थानान्तरित है जो प्रतिबिंब बैंड के एक ही एक बहुत ही संकीर्ण ट्रांसमिशन पायदान पर केंद्रित है, जो एक फैब्री-पेरेटर इंटरफेरोमीटर के एक बहुत ही संकीर्ण ट्रांसमिशन पायदान पर है। जब ठीक से कॉन्फ़िगर किया जाता है, तो ये लेजर एक एकल अनुदैर्ध्य मोड पर संचालित होते हैं, जो दसियों किलोमीटर से अधिक के साथ सामंजस्य की लंबाई के साथ होता है, अनिवार्य रूप से स्व-हेटेरोडाइन कोहेरेंस डिटेक्शन तकनीक द्वारा प्रेरित अस्थायी शोर द्वारा सीमित किया जाता है जो कि सुसंगतता को मापने के लिए उपयोग किया जाता है। इन डीएफबी फाइबर लेजर का उपयोग प्रायः संवेदन अनुप्रयोगों में किया जाता है जहां चरम संकीर्ण लेजर लाइनविड्थ की आवश्यकता होती है।

संदर्भ

  1. See for example: Yariv, Amnon (1985). Quantum Electronics (3rd ed.). New York: Holt, Reinhart and Wilson. pp. 421–429.
  • B. Mroziewicz, "Physics of Semiconductor Lasers", pp. 348–364. 1991.
  • J. Carroll, J. Whiteaway and D. Plumb, "Distributed Feedback Semiconductor Lasers", IEE Circuits, Devices and Systems Series 10, London (1998)


बाहरी कड़ियाँ