व्युत्क्रम वितरण: Difference between revisions

From Vigyanwiki
(Created page with "{{Distinguish|Inverse distribution function}} {{more footnotes|date=April 2013}} संभाव्यता सिद्धांत और सांख्यिकी मे...")
 
No edit summary
 
(9 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Distinguish|Inverse distribution function}}
{{Distinguish|व्युत्क्रम वितरण फलन}}
{{more footnotes|date=April 2013}}
 
संभाव्यता सिद्धांत और सांख्यिकी में, एक व्युत्क्रम वितरण एक यादृच्छिक चर के गुणात्मक व्युत्क्रम का वितरण है। व्युत्क्रम वितरण विशेष रूप से [[पूर्व वितरण]]ों के बायेसियन अनुमान संदर्भ और पैमाने के मापदंडों के लिए [[पश्च वितरण]] के संदर्भ में उत्पन्न होते हैं। यादृच्छिक चर के बीजगणित में, व्युत्क्रम वितरण [[अनुपात वितरण]] के वर्ग के विशेष मामले हैं, जिसमें अंश यादृच्छिक चर का एक पतित वितरण होता है।
प्रायिकता सिद्धांत और सांख्यिकी में, '''व्युत्क्रम वितरण''' एक यादृच्छिक चर के व्युत्क्रम का वितरण है। व्युत्क्रम वितरण पैमाने के मापदंडों के लिए विशेष रूप से बेज़ संदर्भ में [[पूर्व वितरण|पूर्व वितरणों]] और [[पश्च वितरण|उत्तर वितरणों]] में उत्पन्न होता है। यादृच्छिक चरों के बीजगणित में व्युत्क्रम वितरण, [[अनुपात वितरण]] वर्ग की विशेष स्थितियाँ हैं, जिसमें अंश यादृच्छिक चर में एक अपभ्रष्ट वितरण होता है।


== मूल वितरण से संबंध ==
== मूल वितरण से संबंध ==


सामान्य तौर पर, कड़ाई से सकारात्मक समर्थन के साथ एक यादृच्छिक चर एक्स के संभाव्यता वितरण को देखते हुए, पारस्परिक, वाई = 1 / एक्स के वितरण को ढूंढना संभव है। यदि एक्स का वितरण संभाव्यता घनत्व समारोह एफ (एक्स) के साथ निरंतर संभावना वितरण है ) और संचयी बंटन फलन F(x), तो व्युत्क्रम का संचयी बंटन फलन, G(y), यह नोट करके पाया जाता है कि
सामान्यतः पूर्णतः धनात्मक समर्थन वाले यादृच्छिक चर ''X'' के प्रायिकता वितरण के लिए, व्युत्क्रम ''Y'' = 1 / ''X'' के वितरण को प्राप्त करना संभव है। यदि ''X'' का वितरण, घनत्व फलन ''f''(''x'') और संचयी वितरण फलन ''F''(''x'') के साथ सतत है, तो व्युत्क्रम के संचयी वितरण फलन, G(y) को इस प्रकार प्राप्त किया जाता है कि


:<math> G(y) = \Pr(Y \leq y) = \Pr\left(X  \geq \frac{1}{y}\right) = 1-\Pr\left(X<\frac{1}{y}\right) = 1 - F\left( \frac{ 1 }{ y } \right).</math>
:<math> G(y) = \Pr(Y \leq y) = \Pr\left(X  \geq \frac{1}{y}\right) = 1-\Pr\left(X<\frac{1}{y}\right) = 1 - F\left( \frac{ 1 }{ y } \right).</math>
फिर वाई का घनत्व समारोह संचयी वितरण समारोह के व्युत्पन्न के रूप में पाया जाता है:
तब ''Y'' के घनत्व फलन को संचयी वितरण फलन के अवकलज के रूप में प्राप्त किया जाता है:


: <math> g(y) = \frac{ 1 }{ y^2 } f\left( \frac{ 1 }{ y } \right)  . </math>
: <math> g(y) = \frac{ 1 }{ y^2 } f\left( \frac{ 1 }{ y } \right)  . </math>
== उदाहरण ==
== उदाहरण ==


=== [[पारस्परिक वितरण]] ===
=== व्युत्क्रम वितरण ===
पारस्परिक वितरण में प्रपत्र का घनत्व कार्य होता है।<ref name=Hamming1970>[[Richard Hamming|Hamming R. W.]] (1970) [http://lucent.com/bstj/vol49-1970/articles/bstj49-8-1609.pdf "On the distribution of numbers"], ''The Bell System Technical Journal'' 49(8) 1609–1625</ref>
[[पारस्परिक वितरण|व्युत्क्रम वितरण]] में निम्न रूप का घनत्व फलन होता है।<ref name=Hamming1970>[[Richard Hamming|Hamming R. W.]] (1970) [http://lucent.com/bstj/vol49-1970/articles/bstj49-8-1609.pdf "On the distribution of numbers"], ''The Bell System Technical Journal'' 49(8) 1609–1625</ref>
:<math>f(x) \propto x^{-1} \quad \text{ for } 0<a<x<b,  </math>
:<math>f(x) \propto x^{-1} \quad \text{ for } 0<a<x<b,  </math>
कहाँ <math>\propto \!\,</math> मतलब आनुपातिकता (गणित) | के लिए आनुपातिक है ।
जहाँ <math>\propto \!\,</math> का अर्थ "समानुपाती" है। यह इस प्रकार है कि इस स्थिति में व्युत्क्रम वितरण निम्न रूप का है
यह इस प्रकार है कि इस मामले में उलटा वितरण रूप का है
:<math>g(y) \propto y^{-1} \quad \text{ for } 0\le b^{-1}<y< a^{-1},  </math>
:<math>g(y) \propto y^{-1} \quad \text{ for } 0\le b^{-1}<y< a^{-1},  </math>
जो फिर से एक पारस्परिक वितरण है।
जो पुनः एक व्युत्क्रम वितरण है।


=== उलटा समान वितरण ===
=== व्युत्क्रम समान वितरण ===
{{Probability distribution|
{{Probability distribution|
   name      =Inverse uniform distribution|
   name      =व्युत्क्रम समान वितरण|
   type      =density|
   type      =density|
   pdf_image  =|
   pdf_image  =|
Line 44: Line 41:
  | fisher    =
  | fisher    =
}}
}}
यदि मूल यादृच्छिक चर एक्स अंतराल (, बी) पर [[समान वितरण (निरंतर)]] है, जहां ए> 0 है, तो पारस्परिक चर वाई = 1 / एक्स में पारस्परिक वितरण होता है जो सीमा (बी) में मान लेता है<sup>-1</सुप> ,<sup>-1</sup>), और इस श्रेणी में प्रायिकता घनत्व फ़ंक्शन है
 
यदि मूल यादृच्छिक चर ''X'' को अंतराल (''a'',''b''), जहाँ ''a''>''0'' पर [[समान वितरण (निरंतर)|एकसमान वितरित]] किया जाता है, तो व्युत्क्रम चर ''Y'' = 1 / ''X'' में ऐसा व्युत्क्रम वितरण होता है जो (''b<sup>−1</sup>'',''a<sup>−1</sup>'') सीमा से मान ग्रहण करता है, और इस सीमा में प्रायिकता घनत्व फलन निम्न है


: <math> g( y ) = y^{-2} \frac{ 1 }{ b-a } ,</math>
: <math> g( y ) = y^{-2} \frac{ 1 }{ b-a } ,</math>
और कहीं शून्य है।
और अन्य कहीं यह फलन शून्य है।


व्युत्क्रम का संचयी बंटन फलन, एक ही श्रेणी के भीतर, है
समान सीमा के भीतर व्युत्क्रम का संचयी वितरण फलन निम्न है


: <math> G( y ) = \frac{ b - y^{-1} }{  b -  a } .</math>
: <math> G( y ) = \frac{ b - y^{-1} }{  b -  a } .</math>
उदाहरण के लिए, यदि X समान रूप से अंतराल (0,1) पर वितरित किया जाता है, तो Y = 1 / X में घनत्व होता है <math> g( y ) = y^{-2} </math> और संचयी वितरण समारोह <math> G( y ) = { 1 - y^{-1} }</math> कब <math>y > 1 .</math>
उदाहरण के लिए, यदि ''X'' को अंतराल (0,1) पर एकसमान वितरित किया गया है, तो ''Y'' = 1 / ''X'' में घनत्व <math> g( y ) = y^{-2} </math> और संचयी वितरण फलन <math> G( y ) = { 1 - y^{-1} }</math>, जब <math>y > 1 .</math> होता है।
=== व्युत्क्रम ''t'' वितरण ===


 
माना ''X,''  ''k'' स्वातंत्र्य कोटियों वाला ''t'' वितरित यादृच्छिक चर है। तब इसका घनत्व फलन निम्न है
=== उलटा टी वितरण ===
 
बता दें कि एक्स एक छात्र का टी-वितरण यादृच्छिक चर है जिसमें स्वतंत्रता की डिग्री है। फिर इसका घनत्व कार्य है


: <math> f( x ) = \frac{ 1 }{ \sqrt{ k \pi } } \frac{ \Gamma\left( \frac{ k + 1 }{ 2 } \right) }{ \Gamma\left( \frac{ k }{ 2 } \right) } \frac{ 1 }{ \left( 1 + \frac{ x^2 }{ k } \right)^{ \frac{ 1 + k }{ 2 } } } .</math>
: <math> f( x ) = \frac{ 1 }{ \sqrt{ k \pi } } \frac{ \Gamma\left( \frac{ k + 1 }{ 2 } \right) }{ \Gamma\left( \frac{ k }{ 2 } \right) } \frac{ 1 }{ \left( 1 + \frac{ x^2 }{ k } \right)^{ \frac{ 1 + k }{ 2 } } } .</math>
Y का घनत्व = 1/X है
''Y'' = 1 / ''X'' का घनत्व निम्न है


: <math> g( y ) = \frac{ 1 }{ \sqrt{ k \pi } } \frac{ \Gamma\left( \frac{ k + 1 }{ 2 } \right) }{ \Gamma\left( \frac{ k }{ 2 } \right) } \frac{ 1 }{ y^2 \left( 1 + \frac{ 1 }{ y^2 k } \right)^{ \frac{ 1 + k }{ 2 } } } .</math>
: <math> g( y ) = \frac{ 1 }{ \sqrt{ k \pi } } \frac{ \Gamma\left( \frac{ k + 1 }{ 2 } \right) }{ \Gamma\left( \frac{ k }{ 2 } \right) } \frac{ 1 }{ y^2 \left( 1 + \frac{ 1 }{ y^2 k } \right)^{ \frac{ 1 + k }{ 2 } } } .</math>
K = 1 के साथ, X और / X के वितरण समान हैं (X तब [[कॉची वितरण]] (0,1) है)। यदि k > 1 है तो / X का बंटन द्विआयामी है।{{citation needed|date=April 2013}}
''k'' = 1 के साथ, ''X'' और 1 / ''X'' के वितरण समान हैं (''X'' तब [[कॉची वितरण|कैशी वितरण]] (0,1) है)। यदि ''k'' > 1, तो 1 / ''X'' का वितरण द्विबहुलक है।{{citation needed|date=April 2013}}
 
=== व्युत्क्रम प्रसामान्य वितरण ===
{{see also|अनिश्चितता का संचरण#व्युत्क्रम और स्थानांतरित व्युत्क्रम}}


=== पारस्परिक सामान्य वितरण ===
यदि चर ''X'' एक [[सामान्य वितरण|प्रसामान्य वितरण]] <math>\mathcal{N}(\mu,\sigma^2)</math> का अनुसरण करता है, तो व्युत्क्रम ''Y''=1/''X'', एक व्युत्क्रम प्रसामान्य वितरण का अनुसरण करता है:<ref name=Johnson/>
{{see also|Propagation of uncertainty#Reciprocal and shifted reciprocal}}
यदि चर X एक [[सामान्य वितरण]] का अनुसरण करता है <math>\mathcal{N}(\mu,\sigma^2)</math>,
तो व्युत्क्रम Y=1/X एक पारस्परिक सामान्य वितरण का अनुसरण करता है:<ref name=Johnson/>


: <math> f(y) = \frac{1}{\sqrt{2\pi} \sigma y^2} e^{-\frac{1}{2}\left(\frac{1/y-\mu}{\sigma}\right)^2} .</math>
: <math> f(y) = \frac{1}{\sqrt{2\pi} \sigma y^2} e^{-\frac{1}{2}\left(\frac{1/y-\mu}{\sigma}\right)^2} .</math>


[[File:Graph of inverse of the normal distribution.png|thumb|मानक सामान्य वितरण के व्युत्क्रम का ग्राफ]]यदि चर X एक [[मानक सामान्य वितरण]] का अनुसरण करता है <math>\mathcal{N}(0, 1)</math>,
[[File:Graph of inverse of the normal distribution.png|thumb|मानक प्रसामान्य वितरण के व्युत्क्रम का आलेख|217x217px]]यदि चर ''X'' एक [[मानक सामान्य वितरण|मानक प्रसामान्य वितरण]] <math>\mathcal{N}(0, 1)</math> का अनुसरण करता है, तो ''Y'' = 1/''X'' एक व्युत्क्रम <math>\pm\tfrac{1}{\sqrt{2}}</math> पर बहुलक वाले [[भारी पूंछ वाला वितरण|हैवी-टेल्ड]] और [[बिमोडल वितरण|द्विबहुलक वितरण]],<ref name="Johnson">{{cite book
तो वाई = 1/एक्स एक पारस्परिक मानक सामान्य वितरण का पालन करता है,
[[भारी पूंछ वाला वितरण]]|हैवी-टेल्ड और [[बिमोडल वितरण]],<ref name=Johnson>{{cite book
   | last1 = Johnson | first1 = Norman L.
   | last1 = Johnson | first1 = Norman L.
   | last2 = Kotz    | first2 = Samuel
   | last2 = Kotz    | first2 = Samuel
Line 84: Line 76:
   | isbn=0-471-58495-9
   | isbn=0-471-58495-9
   | pages = 171
   | pages = 171
   }}</ref>
   }}</ref> ''व्युत्क्रम मानक प्रसामान्य वितरण'' का अनुसरण करता है, जिसका घनत्व निम्न है
मोड के साथ <math>\pm\tfrac{1}{\sqrt{2}}</math> और घनत्व


<math>f(y)=\frac{e^{-\frac{1}{2y^2}}}{\sqrt{2\pi}y^2}</math>
<math>f(y)=\frac{e^{-\frac{1}{2y^2}}}{\sqrt{2\pi}y^2}</math>
और पहले और उच्च क्रम के क्षण मौजूद नहीं हैं।<ref name=Johnson/>इस तरह के व्युत्क्रम वितरण के लिए और अनुपात वितरण के लिए, अभी भी अंतराल के लिए परिभाषित संभावनाएँ हो सकती हैं, जो या तो [[मोंटे कार्लो सिमुलेशन]] द्वारा या कुछ मामलों में, गीरी-हिंकले परिवर्तन का उपयोग करके गणना की जा सकती हैं।<ref name="HayyaJ1975On">{{Cite journal
 
और प्रथम एवं उच्च क्रम के आघूर्णों का अस्तित्व नहीं हैं।<ref name="Johnson" /> ऐसे व्युत्क्रम वितरणों और अनुपात वितरणों के लिए, अभी भी ऐसे अंतरालों के लिए प्रायिकताएँ परिभाषित हो सकती हैं, जिनकी गणना या तो [[मोंटे कार्लो सिमुलेशन|मॉन्टे कार्लो सिमुलेशन]] द्वारा या कुछ स्थितियों में गियरी-हिंकले रूपान्तरण का उपयोग करके की जा सकती है।<ref name="HayyaJ1975On">{{Cite journal
  | last1 = Hayya
  | last1 = Hayya
  | first1 = Jack
  | first1 = Jack
Line 106: Line 98:
| doi-access = free
| doi-access = free
  }}</ref>
  }}</ref>
हालांकि, स्थानांतरित पारस्परिक कार्य के अधिक सामान्य मामले में <math>1/(p-B)</math>, के लिए <math>B=N(\mu,\sigma)</math> एक सामान्य सामान्य वितरण के बाद, यदि ध्रुव के बीच का अंतर है, तो माध्य और विचरण आँकड़े एक [[प्रमुख मूल्य]] अर्थ में मौजूद हैं <math>p</math> और मतलब <math>\mu</math> वास्तविक मूल्यवान है। इस परिवर्तित यादृच्छिक चर (पारस्परिक स्थानांतरित सामान्य वितरण) का मतलब वास्तव में डॉसन का कार्य है:<ref name=lecomte2013exact>{{Cite journal
 
हालाँकि, विस्थापित व्युत्क्रम फलन <math>1/(p-B)</math> की अधिक सामान्य स्थिति में, एक सामान्य प्रसामान्य वितरण के बाद <math>B=N(\mu,\sigma)</math> के लिए, माध्य और प्रसरण सांख्यिकी एक [[प्रमुख मूल्य|मुख्य मान]] अर्थ में अस्तित्व में होते हैं, यदि ध्रुव <math>p</math> और माध्य <math>\mu</math> के बीच का अंतर का मान वास्तविक है। इस रूपांतरित यादृच्छिक चर (''व्युत्क्रम विस्थापित प्रसामान्य वितरण'') का अर्थ वास्तव में सोपानी डॉसन का फलन है:<ref name="lecomte2013exact">{{Cite journal
| last1= Lecomte
| last1= Lecomte
| first1 = Christophe
| first1 = Christophe
Line 116: Line 109:
| pages = 2750–2776
| pages = 2750–2776
| doi = 10.1016/j.jsv.2012.12.009
| doi = 10.1016/j.jsv.2012.12.009
}}</ref> :<math>\frac{\sqrt{2}}{\sigma} F \left(\frac{p-\mu}{\sqrt{2}\sigma}\right)</math>.
}}</ref>


इसके विपरीत, यदि शिफ्ट <math>p-\mu</math> विशुद्ध रूप से जटिल है, माध्य मौजूद है और एक स्केल्ड [[फदीवा समारोह]] है, जिसकी सटीक अभिव्यक्ति काल्पनिक भाग के संकेत पर निर्भर करती है, <math>\operatorname{Im}(p-\mu)</math>.
<math>\frac{\sqrt{2}}{\sigma} F \left(\frac{p-\mu}{\sqrt{2}\sigma}\right)</math>.
दोनों ही मामलों में, विचरण माध्य का एक सरल कार्य है।<ref>{{Cite journal
 
इसके विपरीत, यदि विस्थापन <math>p-\mu</math> शुद्ध सम्मिश्र है, तो माध्य का अस्तित्व है और यह एक सोपानी [[फदीवा समारोह|फदीवा फलन]] है, जिसका यथार्थ व्यंजक काल्पनिक भाग के चिह्न पर निर्भर करता है। दोनों ही स्थितियों में, प्रसरण माध्य का एक साधारण फलन है।<ref>{{Cite journal
| last1= Lecomte
| last1= Lecomte
| first1 = Christophe
| first1 = Christophe
Line 129: Line 123:
| at = Section (4.1.1)
| at = Section (4.1.1)
| doi = 10.1016/j.jsv.2012.12.009
| doi = 10.1016/j.jsv.2012.12.009
}}</ref> इसलिए, भिन्नता को एक प्रमुख मूल्य अर्थ में माना जाना चाहिए <math>p-\mu</math> वास्तविक है, जबकि इसका अस्तित्व काल्पनिक भाग है <math>p-\mu</math> गैर-शून्य है। ध्यान दें कि ये साधन और प्रसरण सटीक हैं, क्योंकि वे अनुपात के रेखीयकरण की पुनरावृत्ति नहीं करते हैं। विभिन्न ध्रुवों की एक जोड़ी के साथ दो अनुपातों का सटीक सहप्रसरण <math>p_1</math> और <math>p_2</math> इसी प्रकार उपलब्ध है।<ref>{{Cite journal
}}</ref> इसलिए यदि <math>p-\mu</math> वास्तविक है, तो प्रसरण को एक मुख्य मान अर्थ में माना जाना चाहिए, जबकि इसका अस्तित्व होता है यदि <math>p-\mu</math> का काल्पनिक भाग अशून्य है। ध्यान दें कि ये माध्य और प्रसरण यथार्थ हैं, क्योंकि ये अनुपात के रेखीयकरण की पुनरावृत्ति नहीं करते हैं। विभिन्न ध्रुवों <math>p_1</math> और <math>p_2</math> के एक युग्म के साथ दो अनुपातों का यथार्थ सहप्रसरण समान रूप से उपलब्ध है।<ref>{{Cite journal
| last1= Lecomte
| last1= Lecomte
| first1 = Christophe
| first1 = Christophe
Line 139: Line 133:
| at = Eq.(39)-(40)
| at = Eq.(39)-(40)
| doi = 10.1016/j.jsv.2012.12.009
| doi = 10.1016/j.jsv.2012.12.009
}}</ref>
}}</ref> एक [[जटिल सामान्य चर|सम्मिश्र प्रसामान्य चर]] <math>B</math> के व्युत्क्रम की स्थिति (विस्थापित या नहीं) विभिन्न विशेषताओं को प्रदर्शित करती है।<ref name="lecomte2013exact" />
एक [[जटिल सामान्य चर]] के व्युत्क्रम का मामला <math>B</math>, स्थानांतरित या नहीं, विभिन्न विशेषताओं को प्रदर्शित करता है।<ref name=lecomte2013exact />
=== व्युत्क्रम चरघातांकीय वितरण ===
यदि <math>X</math>, दर पैमाने <math>\lambda</math> के साथ एक घातीय रूप से वितरित यादृच्छिक चर है , तब <math>Y=1/X</math> में निम्नलिखित संचयी वितरण फलन है: <math>F_Y(y) = e^{-\lambda/y}</math>, <math>y> 0</math> के लिए। ध्यान दें कि इस यादृच्छिक चर के अपेक्षित मान का अस्तित्व नहीं है। व्युत्क्रम चरघातांकीय वितरण का उपयोग मंदन तारहीन संचार प्रणालियों के विश्लेषण में देखा जा सकता है।


=== व्युत्क्रम कैशी वितरण ===


=== उलटा घातीय वितरण ===
यदि ''X'' एक कैशी वितरित (''μ'', ''σ'') यादृच्छिक चर है, तो 1 / ''X'' एक कैशी (''μ'' / ''C'', ''σ'' / ''C'' ) यादृच्छिक चर होता है जहाँ ''C'' = ''μ<sup>2</sup>'' + ''σ<sup>2</sup>'' है।
अगर <math>X</math> दर पैरामीटर के साथ एक घातीय रूप से वितरित यादृच्छिक चर है <math>\lambda</math>, तब <math>Y=1/X</math> निम्नलिखित संचयी वितरण समारोह है: <math>F_Y(y) = e^{-\lambda/y}</math>के लिए <math>y> 0</math>. ध्यान दें कि इस यादृच्छिक चर का अपेक्षित मान मौजूद नहीं है। पारस्परिक घातीय वितरण लुप्त होती वायरलेस संचार प्रणालियों के विश्लेषण में उपयोग पाता है।


=== उलटा कॉची वितरण ===
=== व्युत्क्रम F वितरण ===


यदि X एक कॉची वितरण (μ, σ) यादृच्छिक चर है, तो 1 / X एक कॉची (μ / C, σ / C ) यादृच्छिक चर है जहाँ C = μ<sup>2</sup> + पृ<sup>2</उप>
यदि ''X'' एक F(''ν<sub>1</sub>'', ''ν<sub>2</sub>'') वितरित यादृच्छिक चर है तो 1 / ''X'' एक F(''ν<sub>2</sub>'', ''ν<sub>1</sub>'') यादृच्छिक चर होता है।


=== उलटा एफ वितरण ===
=== द्विपद वितरण का व्युत्क्रम ===


यदि X एक F बंटन है|F(ν<sub>1</sub>, एन<sub>2</sub> ) वितरित यादृच्छिक चर तब 1 / X एक F(ν<sub>2</sub>, एन<sub>1</sub> ) अनियमित परिवर्तनशील वस्तु।
इस वितरण के लिए कोई संवृत रूप ज्ञात नहीं है। माध्य के लिए एक उपगामी सन्निकटन ज्ञात है।<ref name="Cribari-Neto2000">Cribari-Neto F, Lopes Garcia N, Vasconcellos KLP (2000) A note on inverse moments of binomial variates. Brazilian Review of Econometrics 20 (2)
 
=== द्विपद बंटन का व्युत्क्रम ===
 
इस वितरण के लिए कोई बंद रूप ज्ञात नहीं है। माध्य के लिए एक स्पर्शोन्मुख सन्निकटन ज्ञात है।<ref name=Cribari-Neto2000>Cribari-Neto F, Lopes Garcia N, Vasconcellos KLP (2000) A note on inverse moments of binomial variates. Brazilian Review of Econometrics 20 (2)
</ref>
</ref>


<math> E[ ( 1 + X )^a ] = O( ( np )^{ -a } ) + o( n^{ -a } ) </math>
<math> E[ ( 1 + X )^a ] = O( ( np )^{ -a } ) + o( n^{ -a } ) </math>
जहां ई [] उम्मीद ऑपरेटर है, एक्स एक यादृच्छिक चर है, ओ () और ओ () बड़े और छोटे [[बिग ओ नोटेशन]] हैं, एन नमूना आकार है, पी सफलता की संभावना है और एक चर है जो हो सकता है धनात्मक या ऋणात्मक, पूर्णांक या भिन्नात्मक हो।


===त्रिकोणीय बंटन का व्युत्क्रम===
जहाँ E[] प्रत्याशा संकारक है, ''X'' एक यादृच्छिक चर है, O() और o() बड़े और छोटे  [[बिग ओ नोटेशन|o क्रम के फलन]] हैं, n प्रतिदर्श का आकार है, p सफलता की प्रायिकता है और a एक ऐसा चर है जो धनात्मक या ऋणात्मक, पूर्णांक या भिन्नात्मक हो सकता है।


निम्न सीमा a, ऊपरी सीमा b और मोड c वाले [[त्रिकोणीय वितरण]] के लिए, जहां a < b और a ≤ c ≤ b, व्युत्क्रम का माध्य निम्न द्वारा दिया जाता है
===त्रिभुजाकार वितरण का व्युत्क्रम===
 
निम्न सीमा ''a'', उच्च सीमा ''b'' और बहुलक ''c, जहाँ a < b और a ≤ c ≤ b,'' वाले [[त्रिकोणीय वितरण|त्रिभुजाकार वितरण]] के लिए व्युत्क्रम का माध्य


<math> \mu = \frac{2 \left( \frac{ a\, \mathrm{ln} \left(\frac{a}{c}\right) }{a-c} + \frac{ b\, \mathrm{ln}\left(\frac{c}{b}\right) }{b-c} \right)}{a-b}</math>
<math> \mu = \frac{2 \left( \frac{ a\, \mathrm{ln} \left(\frac{a}{c}\right) }{a-c} + \frac{ b\, \mathrm{ln}\left(\frac{c}{b}\right) }{b-c} \right)}{a-b}</math>
और द्वारा भिन्नता
 
द्वारा और प्रसरण


<math> \sigma^2 = \frac{2 \left( \frac{ \mathrm{ln} \left(\frac{c}{a}\right) }{a-c} + \frac{ \mathrm{ln} \left(\frac{b}{c}\right) }{b-c} \right)}{a-b} - \mu^2</math>.
<math> \sigma^2 = \frac{2 \left( \frac{ \mathrm{ln} \left(\frac{c}{a}\right) }{a-c} + \frac{ \mathrm{ln} \left(\frac{b}{c}\right) }{b-c} \right)}{a-b} - \mu^2</math>.


व्युत्क्रम के दोनों क्षणों को केवल तभी परिभाषित किया जाता है जब त्रिभुज शून्य को पार नहीं करता है, अर्थात जब a, b, और c या तो सभी धनात्मक या सभी ऋणात्मक होते हैं।
द्वारा दिया जाता है। व्युत्क्रम के दोनों आघूर्णों को केवल तभी परिभाषित किया जाता है जब त्रिभुज शून्य को पार नहीं करता है, अर्थात् जब ''a'', ''b'', और ''c,'' या तो सभी धनात्मक या सभी ऋणात्मक होते हैं।


=== अन्य उलटा वितरण ===
=== अन्य व्युत्क्रम वितरण ===


अन्य उलटा वितरण में शामिल हैं<br>
अन्य व्युत्क्रम वितरणों में निम्न सम्मिलित हैं
: उलटा-ची-वर्ग वितरण
: व्युत्क्रम-चाई-वर्ग वितरण
: [[उलटा-गामा वितरण]]
: [[उलटा-गामा वितरण|व्युत्क्रम-गामा वितरण]]
: [[उलटा-विशार्ट वितरण]]
: [[उलटा-विशार्ट वितरण|व्युत्क्रम-विशार्ट वितरण]]
: [[उलटा मैट्रिक्स गामा वितरण]]
: [[उलटा मैट्रिक्स गामा वितरण|व्युत्क्रम आव्यूह गामा वितरण]]


== अनुप्रयोग ==
== अनुप्रयोग ==


पैमाने के मापदंडों के लिए बायेसियन अनुमान में पूर्व वितरण के रूप में व्युत्क्रम वितरण का व्यापक रूप से उपयोग किया जाता है।
पैमाने के मापदंडों के लिए बेज़ निष्कर्ष में व्युत्क्रम वितरण का व्यापक रूप से उपयोग पूर्व वितरण के रूप में किया जाता है।


== यह भी देखें ==
== यह भी देखें ==


*[[अनुकूल माध्य]]
*[[अनुकूल माध्य|हरात्मक माध्य]]
* अनुपात वितरण
* अनुपात वितरण
*संभाव्यता बंटन के बीच संबंध#एक यादृच्छिक चर का व्युत्क्रम|स्व-पारस्परिक बंटन
*स्व-व्युत्क्रम वितरण


==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}
[[Category: यादृच्छिक चर का बीजगणित]] [[Category: संभाव्यता वितरण के प्रकार]]


[[Category: Machine Translated Page]]
[[Category:All articles with unsourced statements]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with unsourced statements from April 2013]]
[[Category:Created On 07/02/2023]]
[[Category:Created On 07/02/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:यादृच्छिक चर का बीजगणित]]
[[Category:संभाव्यता वितरण के प्रकार]]

Latest revision as of 12:22, 13 September 2023

प्रायिकता सिद्धांत और सांख्यिकी में, व्युत्क्रम वितरण एक यादृच्छिक चर के व्युत्क्रम का वितरण है। व्युत्क्रम वितरण पैमाने के मापदंडों के लिए विशेष रूप से बेज़ संदर्भ में पूर्व वितरणों और उत्तर वितरणों में उत्पन्न होता है। यादृच्छिक चरों के बीजगणित में व्युत्क्रम वितरण, अनुपात वितरण वर्ग की विशेष स्थितियाँ हैं, जिसमें अंश यादृच्छिक चर में एक अपभ्रष्ट वितरण होता है।

मूल वितरण से संबंध

सामान्यतः पूर्णतः धनात्मक समर्थन वाले यादृच्छिक चर X के प्रायिकता वितरण के लिए, व्युत्क्रम Y = 1 / X के वितरण को प्राप्त करना संभव है। यदि X का वितरण, घनत्व फलन f(x) और संचयी वितरण फलन F(x) के साथ सतत है, तो व्युत्क्रम के संचयी वितरण फलन, G(y) को इस प्रकार प्राप्त किया जाता है कि

तब Y के घनत्व फलन को संचयी वितरण फलन के अवकलज के रूप में प्राप्त किया जाता है:

उदाहरण

व्युत्क्रम वितरण

व्युत्क्रम वितरण में निम्न रूप का घनत्व फलन होता है।[1]

जहाँ का अर्थ "समानुपाती" है। यह इस प्रकार है कि इस स्थिति में व्युत्क्रम वितरण निम्न रूप का है

जो पुनः एक व्युत्क्रम वितरण है।

व्युत्क्रम समान वितरण

व्युत्क्रम समान वितरण
Parameters
Support
PDF
CDF
Mean
Median
Variance

यदि मूल यादृच्छिक चर X को अंतराल (a,b), जहाँ a>0 पर एकसमान वितरित किया जाता है, तो व्युत्क्रम चर Y = 1 / X में ऐसा व्युत्क्रम वितरण होता है जो (b−1,a−1) सीमा से मान ग्रहण करता है, और इस सीमा में प्रायिकता घनत्व फलन निम्न है

और अन्य कहीं यह फलन शून्य है।

समान सीमा के भीतर व्युत्क्रम का संचयी वितरण फलन निम्न है

उदाहरण के लिए, यदि X को अंतराल (0,1) पर एकसमान वितरित किया गया है, तो Y = 1 / X में घनत्व और संचयी वितरण फलन , जब होता है।

व्युत्क्रम t वितरण

माना X, k स्वातंत्र्य कोटियों वाला t वितरित यादृच्छिक चर है। तब इसका घनत्व फलन निम्न है

Y = 1 / X का घनत्व निम्न है

k = 1 के साथ, X और 1 / X के वितरण समान हैं (X तब कैशी वितरण (0,1) है)। यदि k > 1, तो 1 / X का वितरण द्विबहुलक है।[citation needed]

व्युत्क्रम प्रसामान्य वितरण

यदि चर X एक प्रसामान्य वितरण का अनुसरण करता है, तो व्युत्क्रम Y=1/X, एक व्युत्क्रम प्रसामान्य वितरण का अनुसरण करता है:[2]

मानक प्रसामान्य वितरण के व्युत्क्रम का आलेख

यदि चर X एक मानक प्रसामान्य वितरण का अनुसरण करता है, तो Y = 1/X एक व्युत्क्रम पर बहुलक वाले हैवी-टेल्ड और द्विबहुलक वितरण,[2] व्युत्क्रम मानक प्रसामान्य वितरण का अनुसरण करता है, जिसका घनत्व निम्न है

और प्रथम एवं उच्च क्रम के आघूर्णों का अस्तित्व नहीं हैं।[2] ऐसे व्युत्क्रम वितरणों और अनुपात वितरणों के लिए, अभी भी ऐसे अंतरालों के लिए प्रायिकताएँ परिभाषित हो सकती हैं, जिनकी गणना या तो मॉन्टे कार्लो सिमुलेशन द्वारा या कुछ स्थितियों में गियरी-हिंकले रूपान्तरण का उपयोग करके की जा सकती है।[3]

हालाँकि, विस्थापित व्युत्क्रम फलन की अधिक सामान्य स्थिति में, एक सामान्य प्रसामान्य वितरण के बाद के लिए, माध्य और प्रसरण सांख्यिकी एक मुख्य मान अर्थ में अस्तित्व में होते हैं, यदि ध्रुव और माध्य के बीच का अंतर का मान वास्तविक है। इस रूपांतरित यादृच्छिक चर (व्युत्क्रम विस्थापित प्रसामान्य वितरण) का अर्थ वास्तव में सोपानी डॉसन का फलन है:[4]

.

इसके विपरीत, यदि विस्थापन शुद्ध सम्मिश्र है, तो माध्य का अस्तित्व है और यह एक सोपानी फदीवा फलन है, जिसका यथार्थ व्यंजक काल्पनिक भाग के चिह्न पर निर्भर करता है। दोनों ही स्थितियों में, प्रसरण माध्य का एक साधारण फलन है।[5] इसलिए यदि वास्तविक है, तो प्रसरण को एक मुख्य मान अर्थ में माना जाना चाहिए, जबकि इसका अस्तित्व होता है यदि का काल्पनिक भाग अशून्य है। ध्यान दें कि ये माध्य और प्रसरण यथार्थ हैं, क्योंकि ये अनुपात के रेखीयकरण की पुनरावृत्ति नहीं करते हैं। विभिन्न ध्रुवों और के एक युग्म के साथ दो अनुपातों का यथार्थ सहप्रसरण समान रूप से उपलब्ध है।[6] एक सम्मिश्र प्रसामान्य चर के व्युत्क्रम की स्थिति (विस्थापित या नहीं) विभिन्न विशेषताओं को प्रदर्शित करती है।[4]

व्युत्क्रम चरघातांकीय वितरण

यदि , दर पैमाने के साथ एक घातीय रूप से वितरित यादृच्छिक चर है , तब में निम्नलिखित संचयी वितरण फलन है: , के लिए। ध्यान दें कि इस यादृच्छिक चर के अपेक्षित मान का अस्तित्व नहीं है। व्युत्क्रम चरघातांकीय वितरण का उपयोग मंदन तारहीन संचार प्रणालियों के विश्लेषण में देखा जा सकता है।

व्युत्क्रम कैशी वितरण

यदि X एक कैशी वितरित (μ, σ) यादृच्छिक चर है, तो 1 / X एक कैशी (μ / C, σ / C ) यादृच्छिक चर होता है जहाँ C = μ2 + σ2 है।

व्युत्क्रम F वितरण

यदि X एक F(ν1, ν2) वितरित यादृच्छिक चर है तो 1 / X एक F(ν2, ν1) यादृच्छिक चर होता है।

द्विपद वितरण का व्युत्क्रम

इस वितरण के लिए कोई संवृत रूप ज्ञात नहीं है। माध्य के लिए एक उपगामी सन्निकटन ज्ञात है।[7]

जहाँ E[] प्रत्याशा संकारक है, X एक यादृच्छिक चर है, O() और o() बड़े और छोटे o क्रम के फलन हैं, n प्रतिदर्श का आकार है, p सफलता की प्रायिकता है और a एक ऐसा चर है जो धनात्मक या ऋणात्मक, पूर्णांक या भिन्नात्मक हो सकता है।

त्रिभुजाकार वितरण का व्युत्क्रम

निम्न सीमा a, उच्च सीमा b और बहुलक c, जहाँ a < b और a ≤ c ≤ b, वाले त्रिभुजाकार वितरण के लिए व्युत्क्रम का माध्य

द्वारा और प्रसरण

.

द्वारा दिया जाता है। व्युत्क्रम के दोनों आघूर्णों को केवल तभी परिभाषित किया जाता है जब त्रिभुज शून्य को पार नहीं करता है, अर्थात् जब a, b, और c, या तो सभी धनात्मक या सभी ऋणात्मक होते हैं।

अन्य व्युत्क्रम वितरण

अन्य व्युत्क्रम वितरणों में निम्न सम्मिलित हैं

व्युत्क्रम-चाई-वर्ग वितरण
व्युत्क्रम-गामा वितरण
व्युत्क्रम-विशार्ट वितरण
व्युत्क्रम आव्यूह गामा वितरण

अनुप्रयोग

पैमाने के मापदंडों के लिए बेज़ निष्कर्ष में व्युत्क्रम वितरण का व्यापक रूप से उपयोग पूर्व वितरण के रूप में किया जाता है।

यह भी देखें

संदर्भ

  1. Hamming R. W. (1970) "On the distribution of numbers", The Bell System Technical Journal 49(8) 1609–1625
  2. 2.0 2.1 2.2 Johnson, Norman L.; Kotz, Samuel; Balakrishnan, Narayanaswamy (1994). Continuous Univariate Distributions, Volume 1. Wiley. p. 171. ISBN 0-471-58495-9.
  3. Hayya, Jack; Armstrong, Donald; Gressis, Nicolas (July 1975). "A Note on the Ratio of Two Normally Distributed Variables". Management Science. 21 (11): 1338–1341. doi:10.1287/mnsc.21.11.1338. JSTOR 2629897.
  4. 4.0 4.1 Lecomte, Christophe (May 2013). "Exact statistics of systems with uncertainties: an analytical theory of rank-one stochastic dynamic systems". Journal of Sound and Vibration. 332 (11): 2750–2776. doi:10.1016/j.jsv.2012.12.009.
  5. Lecomte, Christophe (May 2013). "Exact statistics of systems with uncertainties: an analytical theory of rank-one stochastic dynamic systems". Journal of Sound and Vibration. 332 (11). Section (4.1.1). doi:10.1016/j.jsv.2012.12.009.
  6. Lecomte, Christophe (May 2013). "Exact statistics of systems with uncertainties: an analytical theory of rank-one stochastic dynamic systems". Journal of Sound and Vibration. 332 (11). Eq.(39)-(40). doi:10.1016/j.jsv.2012.12.009.
  7. Cribari-Neto F, Lopes Garcia N, Vasconcellos KLP (2000) A note on inverse moments of binomial variates. Brazilian Review of Econometrics 20 (2)