दोहराए जाने वाले दशमलव: Difference between revisions
No edit summary |
No edit summary |
||
(10 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Decimal representation of a number whose digits are periodic}} | {{short description|Decimal representation of a number whose digits are periodic}}दोहरे दशमलव या आवर्ती दशमलव संख्या का [[दशमलव प्रतिनिधित्व]] करता है जिसका [[संख्यात्मक अंक]] आवधिक कार्य पर निर्भर करता है (नियमित अंतराल पर इसके मूल्यों को दोहराता है) और अनंत दोहराया भाग [[शून्य]] नहीं है। इस प्रकार इसमें यह देखा जा सकता है कि यह संख्या परिमेय संख्या है तथा यदि इसका दशमलव निरूपण दोहराया या समाप्त होता है (अर्थात बहुत से अंकों को छोड़कर सभी अंक शून्य हैं)। उदाहरण के लिए, {{sfrac|1|3}} का दशमलव प्रतिनिधित्व [[दशमलव बिंदु]] के ठीक बाद आवधिक होता है, इस प्रकार एकल अंक 3 को यह सदैव के लिए दोहराता है, अर्थात 0.333.... पर {{sfrac|3227|555}} इसका एक अधिक जटिल उदाहरण है, जिसका दशमलव दशमलव बिंदु के बाद दूसरे अंक पर आवधिक मान पूरा हो जाता है और फिर क्रमानुसार 144 को सदैव के लिए अर्थात 5.8144144144.... से दोहराता है, वर्तमान में, दशमलव को दोहराने के लिए भी सार्वभौमिक रूप से स्वीकृत संकेत नहीं होता है। | ||
{{ | |||
मुख्य रूप से दोहराए जाने वाले अंकों के अनुक्रम को 'रिपीटेंड' या 'रेप्टेंड' कहा जाता है। यदि पुनरावृत्ति शून्य होती है, तो इस दशमलव निरूपण को दोहराए जाने वाले दशमलव अतिरिक्त 'समाप्त दशमलव' कहा जाता है, क्योंकि शून्य को छोड़ा जा सकता है और दशमलव इन शून्य से पहले समाप्त हो जाता है।<ref>Courant, R. and Robbins, H. ''What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed.'' Oxford, England: Oxford University Press, 1996: p. 67.</ref> प्रत्येक समाप्ति दशमलव प्रतिनिधित्व को [[दशमलव अंश]] के रूप में लिखा जा सकता है, अंश जिसका भाजक 10 की [[शक्ति (गणित)]] है (उदा। {{nowrap|1.585 {{=}} {{sfrac|1585|1000}}}}); इसे फॉर्म के [[अनुपात]] के रूप में {{sfrac|''k''|2<sup>''n''</sup>5<sup>''m''</sup>}} भी लिखा जा सकता है (उदा {{nowrap|1.585 {{=}} {{sfrac|317|2<sup>3</sup>5<sup>2</sup>}}}}), चूंकि, समाप्ति दशमलव प्रतिनिधित्व के साथ प्रत्येक संख्या में दोहराए जाने वाले दशमलव के रूप में दूसरा, वैकल्पिक प्रतिनिधित्व भी होता है जिसका पुनरावृत्त अंक '9' होता है। यह अंतिम (सबसे दाएं) गैर-शून्य अंक को से घटाकर और 9 का दोहराव जोड़कर प्राप्त किया जाता है। इसके दो उदाहरण हैं 0.999...|{{nowrap|1.000... {{=}} 0.999...}}और {{nowrap|1.585000... {{=}} 1.584999...}}. (इस प्रकार के दोहराए जाने वाले दशमलव को लंबे विभाजन द्वारा प्राप्त किया जा सकता है यदि कोई सामान्य [[विभाजन एल्गोरिथ्म]] के संशोधित रूप का उपयोग करता है।<ref>{{citation|title=Why Does 0.999... = 1?: A Perennial Question and Number Sense|last1=Beswick|first1=Kim|journal=Australian Mathematics Teacher|volume=60|number=4|pages=7–9|year=2004}}</ref>) | |||
कोई भी संख्या जिसे दो [[पूर्णांक]] के अनुपात के रूप में व्यक्त नहीं किया जा सकता है, [[अपरिमेय संख्या]] कहलाती है। उनका दशमलव निरूपण न तो समाप्त होता है और न ही अनंत रूप से दोहराता है, बल्कि बिना दोहराव के सदैव के लिए विस्तारित होता है (देखें {{slink||प्रत्येक परिमेय संख्या या तो एक सांत या आवर्ती दशमलव होती है}}). ऐसी अपरिमेय संख्याओं के उदाहरण हैं 2 का वर्गमूल{{math|{{sqrt|2}}}} और पाई |{{pi}}| इत्यादि। | |||
कोई भी संख्या जिसे दो [[पूर्णांक]] के अनुपात के रूप में व्यक्त नहीं किया जा सकता है, [[अपरिमेय संख्या]] कहलाती है। उनका दशमलव निरूपण न तो समाप्त होता है और न ही अनंत रूप से दोहराता है, बल्कि बिना दोहराव के | |||
== पृष्ठभूमि == | == पृष्ठभूमि == | ||
=== अंकन === | === अंकन === | ||
दोहराए जाने वाले दशमलवों का प्रतिनिधित्व करने के लिए कई सांकेतिक परंपराएं हैं। उनमें से कोई भी सार्वभौमिक रूप से स्वीकार नहीं किया जाता है। | दोहराए जाने वाले दशमलवों का प्रतिनिधित्व करने के लिए कई सांकेतिक परंपराएं होती हैं। उनमें से कोई भी सार्वभौमिक रूप से स्वीकार नहीं किया जाता है। | ||
* [[संयुक्त राज्य अमेरिका]], [[कनाडा]], [[भारत]], [[फ्रांस]], [[जर्मनी]], [[इटली]], [[स्विट्ज़रलैंड]], चेक गणराज्य, [[स्लोवाकिया]] और [[टर्की]] में परंपरा दोहराव के ऊपर क्षैतिज रेखा (एक विनकुलम (प्रतीक | * [[संयुक्त राज्य अमेरिका]], [[कनाडा]], [[भारत]], [[फ्रांस]], [[जर्मनी]], [[इटली]], [[स्विट्ज़रलैंड]], चेक गणराज्य, [[स्लोवाकिया]] और [[टर्की]] में परंपरा दोहराव के ऊपर क्षैतिज रेखा (एक विनकुलम (प्रतीक) खींचना है। (नीचे दी गई तालिका में उदाहरण देखें, कॉलम विनकुलम।) | ||
*[[यूनाइटेड किंगडम]][[न्यूज़ीलैंड]], [[ऑस्ट्रेलिया]], भारत में, [[दक्षिण कोरिया]] और [[चीन]] में, दोहराव के सबसे बाहरी अंकों के ऊपर बिंदुओं को रखने की प्रथा है। (नीचे दी गई तालिका, कॉलम डॉट्स में उदाहरण देखें।) | *[[यूनाइटेड किंगडम]][[न्यूज़ीलैंड]], [[ऑस्ट्रेलिया]], भारत में, [[दक्षिण कोरिया]] और [[चीन]] में, दोहराव के सबसे बाहरी अंकों के ऊपर बिंदुओं को रखने की प्रथा है। (नीचे दी गई तालिका, कॉलम डॉट्स में उदाहरण देखें।) | ||
*[[यूरोप]], [[वियतनाम]] और [[रूस]] के कुछ हिस्सों में, दोहराव को कोष्ठक में संलग्न करने की प्रथा है। (नीचे तालिका में उदाहरण देखें, स्तंभ कोष्ठक।) यह [[मानक अनिश्चितता]] के लिए संकेतन के साथ भ्रम पैदा कर सकता है। | *[[यूरोप]], [[वियतनाम]] और [[रूस]] के कुछ हिस्सों में, दोहराव को कोष्ठक में संलग्न करने की प्रथा है। (नीचे तालिका में उदाहरण देखें, स्तंभ कोष्ठक।) यह [[मानक अनिश्चितता]] के लिए संकेतन के साथ भ्रम पैदा कर सकता है। | ||
*[[स्पेन]] और कुछ [[लैटिन अमेरिका]] देशों में, पुनरावृत्त पर चाप संकेतन का उपयोग विनकुलम और बिंदु संकेतन के विकल्प के रूप में भी किया जाता है। (नीचे दी गई तालिका, कॉलम आर्क में उदाहरण देखें।) | *[[स्पेन]] और कुछ [[लैटिन अमेरिका]] देशों में, पुनरावृत्त पर चाप संकेतन का उपयोग विनकुलम और बिंदु संकेतन के विकल्प के रूप में भी किया जाता है। (नीचे दी गई तालिका, कॉलम आर्क में उदाहरण देखें।) | ||
*अनौपचारिक रूप से, दोहराए जाने वाले दशमलव को अधिकांशतः दीर्घवृत्त (तीन अवधियों, 0.333...) द्वारा दर्शाया जाता है, खासकर जब पिछले संकेतन सम्मेलनों को पहली बार स्कूल में पढ़ाया जाता है। यह संकेतन अनिश्चितता का परिचय देता है कि किन अंकों को दोहराया जाना चाहिए और यहां तक कि क्या पुनरावृत्ति बिल्कुल भी हो रही है, क्योंकि इस तरह के दीर्घवृत्त भी अपरिमेय संख्याओं के लिए नियोजित होते हैं; | *अनौपचारिक रूप से, दोहराए जाने वाले दशमलव को अधिकांशतः दीर्घवृत्त (तीन अवधियों, 0.333...) द्वारा दर्शाया जाता है, खासकर जब पिछले संकेतन सम्मेलनों को पहली बार स्कूल में पढ़ाया जाता है। यह संकेतन अनिश्चितता का परिचय देता है कि किन अंकों को दोहराया जाना चाहिए और यहां तक कि क्या पुनरावृत्ति बिल्कुल भी हो रही है, क्योंकि इस तरह के दीर्घवृत्त भी अपरिमेय संख्याओं के लिए नियोजित होते हैं; पाई या π, उदाहरण के लिए, 3.14159... के रूप में प्रदर्शित किया जा सकता है। | ||
{| class="wikitable" style="margin-left: auto; margin-right: auto; border: none;" | {| class="wikitable" style="margin-left: auto; margin-right: auto; border: none;" | ||
Line 87: | Line 84: | ||
=== दशमलव विस्तार और पुनरावृत्ति अनुक्रम === | === दशमलव विस्तार और पुनरावृत्ति अनुक्रम === | ||
भिन्न के रूप में दर्शाई गई परिमेय संख्या को दशमलव रूप में | भिन्न के रूप में दर्शाई गई परिमेय संख्या को दशमलव रूप में परिवर्तित करने के लिए, दीर्घ विभाजन का उपयोग किया जा सकता है। उदाहरण के लिए, परिमेय संख्या {{sfrac|5|74}} पर विचार करें : | ||
0.0{{overline|675}} | |||
74) 5.00000 | 74) 5.00000 | ||
4.44 | |||
560 | 560 | ||
518 | |||
420 | 420 | ||
370 | |||
500 | 500 | ||
यहाँ पर ध्यान दें कि प्रत्येक चरण में हमारे पास शेष है; ऊपर प्रदर्शित क्रमिक अवशेष 56, 42, 50 हैं। जब हम शेष के रूप में 50 पर पहुंचते हैं, और 0 को नीचे लाते हैं, तो हम पाते हैं कि हम 500 को 74 से विभाजित कर रहे हैं, जो कि वही समस्या है जिससे हमने प्रारंभिक की थी। इसलिए, दशमलव दोहराता है: {{gaps|0.0675|675|675}}..... | |||
=== प्रत्येक परिमेय संख्या या तो समाप्ति या आवर्ती दशमलव === | ==== प्रत्येक परिमेय संख्या या तो समाप्ति या आवर्ती दशमलव है ==== | ||
किसी दिए गए भाजक के लिए, केवल परिमित रूप से अनेक भिन्न अवशेष हो सकते हैं। ऊपर दिए गए उदाहरण में, 74 संभावित अवशेष 0, 1, 2, ..., 73 हैं। यदि विभाजन के किसी भी बिंदु पर शेष 0 है, तो विस्तार उस बिंदु पर समाप्त हो जाता है। फिर दोहराव की लंबाई, जिसे अवधि भी कहा जाता है, को 0 के रूप में परिभाषित किया गया है। | किसी दिए गए भाजक के लिए, केवल परिमित रूप से अनेक भिन्न अवशेष हो सकते हैं। ऊपर दिए गए उदाहरण में, 74 संभावित अवशेष 0, 1, 2, ..., 73 हैं। यदि विभाजन के किसी भी बिंदु पर शेष 0 है, तो विस्तार उस बिंदु पर समाप्त हो जाता है। फिर दोहराव की लंबाई, जिसे अवधि भी कहा जाता है, को 0 के रूप में परिभाषित किया गया है। | ||
यदि 0 कभी भी शेष के रूप में नहीं आता है, तो विभाजन प्रक्रिया | यदि 0 कभी भी शेष के रूप में नहीं आता है, तो विभाजन प्रक्रिया सदैव के लिए जारी रहती है, और अंत में, शेष अवश्य होना चाहिए जो पहले हुआ हो। विभाजन में अगला चरण भागफल में वही नया अंक देगा, और वही नया शेषफल, जैसा कि पिछली बार का शेष समान था। इसलिए, निम्न विभाजन उसी परिणाम को दोहराएगा। अंकों के दोहराव क्रम को दोहराव कहा जाता है जिसकी निश्चित लंबाई 0 से अधिक होती है, जिसे अवधि भी कहा जाता है।<ref>For a base ''b'' and a divisor ''n'', in terms of group theory [[Carmichael function#Order of elements modulo n|this length]] divides | ||
:<math>\operatorname{ord}_n(b) := \min\{ L \in \N \, \mid \, b^L \equiv 1 \text{ mod } n \}</math> | :<math>\operatorname{ord}_n(b) := \min\{ L \in \N \, \mid \, b^L \equiv 1 \text{ mod } n \}</math> | ||
(with [[modular arithmetic]] {{nowrap|≡ 1 mod ''n''}}) which divides the Carmichael function | (with [[modular arithmetic]] {{nowrap|≡ 1 mod ''n''}}) which divides the Carmichael function | ||
Line 108: | Line 105: | ||
which again divides [[Euler's totient function]] ''φ''(''n'').</ref> | which again divides [[Euler's totient function]] ''φ''(''n'').</ref> | ||
==== प्रत्येक दोहराव या समाप्ति दशमलव परिमेय संख्या है ==== | |||
=== प्रत्येक दोहराव या समाप्ति दशमलव परिमेय संख्या === | प्रत्येक दोहराई जाने वाली दशमलव संख्या पूर्णांक गुणांकों के साथ [[रेखीय समीकरण]] को संतुष्ट करती है, और इसका अनूठा समाधान परिमेय संख्या है। बाद के बिंदुओं को स्पष्ट करने के लिए, संख्या {{nowrap|''α'' {{=}} 5.8144144144...}} उपरोक्त समीकरण को {{nowrap|10000''α'' − 10''α'' {{=}} 58144.144144... − 58.144144... {{=}} 58086}} संतुष्ट करता है, जिसका मान {{nowrap|''α'' {{=}} {{sfrac|58086|9990}} {{=}} {{sfrac|3227|555}}}} है, इन पूर्णांक गुणांकों को खोजने की प्रक्रिया का वर्णन किया गया है दोहराए जाने वाले दशमलव को भिन्नों में परिवर्तित करता हैं। | ||
प्रत्येक दोहराई जाने वाली दशमलव संख्या पूर्णांक गुणांकों के साथ [[रेखीय समीकरण]] को संतुष्ट करती है, और इसका अनूठा समाधान परिमेय संख्या है। बाद के | |||
== मूल्यों की तालिका == | == मूल्यों की तालिका == | ||
<div><ul> | <div><ul> <!-- The <div><ul><li> code displays tables side by side when window width allows it --> | ||
{|class="wikitable" | {|class="wikitable" | ||
!{{verth|''fraction''|va=bot}} | !{{verth|''fraction''|va=bot}} | ||
Line 213: | Line 208: | ||
|0.0001 | |0.0001 | ||
|0 | |0 | ||
|} | |} | ||
{|class="wikitable" | {|class="wikitable" | ||
!{{verth|''fraction''|va=bot}} | !{{verth|''fraction''|va=bot}} | ||
Line 280: | Line 274: | ||
|0.{{overline|032258064516129}} | |0.{{overline|032258064516129}} | ||
| style="text-align:right" | 15 | | style="text-align:right" | 15 | ||
|} | |} | ||
{|class="wikitable" | {|class="wikitable" | ||
!{{verth|''fraction''|va=bot}} | !{{verth|''fraction''|va=bot}} | ||
Line 347: | Line 340: | ||
|0.0{{overline|2173913043478260869565}} | |0.0{{overline|2173913043478260869565}} | ||
| style="text-align:right" | 22 | | style="text-align:right" | 22 | ||
|} | |} </ul></div> | ||
</ul></div> | इस प्रकार अंश एक [[इकाई अंश]] है {{sfrac|1|''n''}} और ℓ<sub>10</sub> (दशमलव) दोहराव की लंबाई होती है। | ||
इस प्रकार अंश [[इकाई अंश]] है {{sfrac|1|''n''}} और ℓ<sub>10</sub> (दशमलव) दोहराव की लंबाई है। | |||
लंबाई ℓ<sub>10</sub>(एन) के दशमलव | लंबाई ℓ<sub>10</sub>(एन) के दशमलव दोहराने की {{sfrac|1|''n''}}, n = 1, 2, 3, ..., हैं: | ||
: 0, 0, 1, 0, 0, 1, 6, 0, 1, 0, 2, 1, 6, 6, 1, 0, 16, 1, 18, 0, 6, 2, 22, 1, 0 , 6, 3, 6, 28, 1, 15, 0, 2, 16, 6, 1, 3, 18, 6, 0, 5, 6, 21, 2, 1, 22, 46, 1, 42, 0 , 16, 6, 13, 3, 2, 6, 18, 28, 58, 1, 60, 15, 6, 0, 6, 2, 33, 16, 22, 6, 35, 1, 8, 3, 1 , ... {{OEIS|A051626}}. | : 0, 0, 1, 0, 0, 1, 6, 0, 1, 0, 2, 1, 6, 6, 1, 0, 16, 1, 18, 0, 6, 2, 22, 1, 0 , 6, 3, 6, 28, 1, 15, 0, 2, 16, 6, 1, 3, 18, 6, 0, 5, 6, 21, 2, 1, 22, 46, 1, 42, 0 , 16, 6, 13, 3, 2, 6, 18, 28, 58, 1, 60, 15, 6, 0, 6, 2, 33, 16, 22, 6, 35, 1, 8, 3, 1 , ... {{OEIS|A051626}}. | ||
लंबाई कीℓ<sub>2</sub>(n) तुलना के लिए,बाइनरी संख्या का # प्रतिनिधित्व भिन्नों का दोहराव {{sfrac|1|''n''}}, n = 1, 2, 3, ...,होता हैं: | |||
: 0, 0, 2, 0, 4, 2, 3, 0, 6, 4, 10, 2, 12, 3, 4, 0, 8, 6, 18, 4, 6, 10, 11, 2, 20 , 12, 18, 3, 28, 4, 5, 0, 10, 8, 12, 6, 36, 18, 12, 4, 20, 6, 14, 10, 12, 11, ... (={{OEIS link|A007733}}[एन], यदि एन 2 की शक्ति नहीं है और =0)। | : 0, 0, 2, 0, 4, 2, 3, 0, 6, 4, 10, 2, 12, 3, 4, 0, 8, 6, 18, 4, 6, 10, 11, 2, 20 , 12, 18, 3, 28, 4, 5, 0, 10, 8, 12, 6, 36, 18, 12, 4, 20, 6, 14, 10, 12, 11, ... (={{OEIS link|A007733}}[एन], यदि एन 2 की शक्ति नहीं है और =0)। | ||
दशमलव की पुनरावृत्ति होती है {{sfrac|1|''n''}}, n = 1, 2, 3, ..., | दशमलव की पुनरावृत्ति होती है {{sfrac|1|''n''}}, n = 1, 2, 3, ..., हैं। , 384615, 037, 571428, 0344827586206896551724137931, 3, ... {{OEIS|id=A036275}}. | ||
दशमलव दोहराव की लंबाई {{sfrac|1|''p''}}, p = 2, 3, 5, ... (nth अभाज्य), हैं: | दशमलव दोहराव की लंबाई {{sfrac|1|''p''}}, p = 2, 3, 5, ... (nth अभाज्य), हैं: | ||
: 0, 1, 0, 6, 2, 6, 16, 18, 22, 28, 15, 3, 5, 21, 46, 13, 58, 60, 33, 35, 8, 13, 41, 44, 96 , 4, 34, 53, 108, 112, 42, 130, 8, 46, 148, 75, 78, 81, 166, 43, 178, 180, 95, 192, 98, 99, 30, 222, 113, 228 , 232, 7, 30, 50, 256, 262, 268, 5, 69, 28, ... {{OEIS|id=A002371}} | : 0, 1, 0, 6, 2, 6, 16, 18, 22, 28, 15, 3, 5, 21, 46, 13, 58, 60, 33, 35, 8, 13, 41, 44, 96 , 4, 34, 53, 108, 112, 42, 130, 8, 46, 148, 75, 78, 81, 166, 43, 178, 180, 95, 192, 98, 99, 30, 222, 113, 228 , 232, 7, 30, 50, 256, 262, 268, 5, 69, 28, ... {{OEIS|id=A002371}} | ||
जिसके लिए कम से कम | जिसके लिए कम से कम परिमेय संख्या p {{sfrac|1|''p''}} दशमलव पुनरावृत्त लंबाई n, n = 1, 2, 3, ..., हैं। जिसका मान 859, 757, 29, 3191, 211, ... होता हैं {{OEIS|id=A007138}} | ||
जिसके लिए कम से कम | जिसके लिए कम से कम परिमेय संख्या p {{sfrac|''k''|''p''}} के लिए अलग-अलग चक्र हैं जिसका मान ({{nowrap|1 ≤ ''k'' ≤ ''p''−1}}), n = 1, 2, 3, ..., के बीच होता हैं: | ||
:7, 3, 103, 53, 11, 79, 211, 41, 73, 281, 353, 37, 2393, 449, 3061, 1889, 137, 2467, 16189, 641, 3109, 4973, 11087, 1321, 101 , 7151, 7669, 757, 38629, 1231, ... {{OEIS|id=A054471}}. | :7, 3, 103, 53, 11, 79, 211, 41, 73, 281, 353, 37, 2393, 449, 3061, 1889, 137, 2467, 16189, 641, 3109, 4973, 11087, 1321, 101 , 7151, 7669, 757, 38629, 1231, ... {{OEIS|id=A054471}}. | ||
== प्रधान भाजक के साथ अंश == | == प्रधान भाजक के साथ अंश == | ||
2 या 5 (अर्थात् 10 के सहअभाज्य) के अतिरिक्त [[अभाज्य संख्या]] भाजक के साथ [[सबसे कम शब्दों में]] अंश | 2 या 5 (अर्थात् 10 के सहअभाज्य) के अतिरिक्त [[अभाज्य संख्या]] भाजक के साथ [[सबसे कम शब्दों में]] अंश सदैव दोहराए जाने वाले दशमलव का उत्पादन करता है। दोहराव की लंबाई (दोहराए जाने वाले दशमलव खंड की अवधि)। {{sfrac|1|''p''}} 10 प्रारूपो के लिए p के [[गुणक क्रम]] के बराबर होता है। यदि 10 [[आदिम रूट मॉड्यूलो एन]] मॉड्यूलो पी है, तो पुनरावृत्त लंबाई p − 1 के बराबर है; यदि नहीं, तो पुनरावृत्त लंबाई p − 1 का कारक है। इस परिणाम को Fermat की छोटी प्रमेय से निकाला जा सकता है, जो बताता है कि {{nowrap|10<sup>''p''−1</sup> ≡ 1 (mod ''p'')}}. | ||
5 से बड़ी किसी भी अभाज्य संख्या के व्युत्क्रम की पुनरावृत्ति का आधार-10 [[डिजिटल जड़]] 9 से विभाज्य है।<ref>Gray, Alexander J., "Digital roots and reciprocals of primes", ''[[Mathematical Gazette]]'' 84.09, March 2000, p. 86.</ref> | 5 से बड़ी किसी भी अभाज्य संख्या के व्युत्क्रम की पुनरावृत्ति का आधार-10 [[डिजिटल जड़]] 9 से विभाज्य है।<ref>Gray, Alexander J., "Digital roots and reciprocals of primes", ''[[Mathematical Gazette]]'' 84.09, March 2000, p. 86.</ref> | ||
यदि दोहराव की लंबाई {{sfrac|1|''p''}} अभाज्य p के लिए p − 1 के बराबर है तो पूर्णांक के रूप में अभिव्यक्त दोहराव को 'चक्रीय संख्या' कहा जाता है। | यदि दोहराव की लंबाई {{sfrac|1|''p''}} अभाज्य p के लिए p − 1 के बराबर होती है तो पूर्णांक के रूप में अभिव्यक्त दोहराव को 'चक्रीय संख्या' कहा जाता है। | ||
=== चक्रीय संख्या === | === चक्रीय संख्या === | ||
Line 390: | Line 380: | ||
सूची भिन्नों को सम्मलित करने के लिए आगे बढ़ सकती है {{sfrac|1|109}}, {{sfrac|1|113}}, {{sfrac|1|131}}, {{sfrac|1|149}}, {{sfrac|1|167}}, {{sfrac|1|179}}, {{sfrac|1|181}}, {{sfrac|1|193}}, वगैरह। {{OEIS|id=A001913}}. | सूची भिन्नों को सम्मलित करने के लिए आगे बढ़ सकती है {{sfrac|1|109}}, {{sfrac|1|113}}, {{sfrac|1|131}}, {{sfrac|1|149}}, {{sfrac|1|167}}, {{sfrac|1|179}}, {{sfrac|1|181}}, {{sfrac|1|193}}, वगैरह। {{OEIS|id=A001913}}. | ||
चक्रीय संख्या का प्रत्येक उचित गुणक (अर्थात, अंकों की समान संख्या वाला गुणक) घूर्णन है: | चक्रीय संख्या का प्रत्येक उचित गुणक (अर्थात, अंकों की समान संख्या वाला गुणक) घूर्णन होता है: | ||
*{{sfrac|1|7}} = 1 × 0.142857... = 0.142857... | *{{sfrac|1|7}} = 1 × 0.142857... = 0.142857... | ||
Line 399: | Line 389: | ||
*{{sfrac|6|7}} = 6 × 0.142857... = 0.857142... | *{{sfrac|6|7}} = 6 × 0.142857... = 0.857142... | ||
चक्रीय व्यवहार का कारण लंबे विभाजन के अंकगणितीय अभ्यास से स्पष्ट है {{sfrac|1|7}}: अनुक्रमिक अवशेष चक्रीय अनुक्रम हैं {{nowrap|{1, 3, 2, 6, 4, 5}|}}. इस चक्रीय संख्या के अधिक गुणों के लिए लेख 142,857 भी | चक्रीय व्यवहार का कारण लंबे विभाजन के अंकगणितीय अभ्यास से स्पष्ट होता है {{sfrac|1|7}}: अनुक्रमिक अवशेष चक्रीय अनुक्रम होते हैं {{nowrap|{1, 3, 2, 6, 4, 5}|}}. इस चक्रीय संख्या के अधिक गुणों के लिए लेख 142,857 भी देखते हैं।एक अंश जो चक्रीय है, इस प्रकार समान लंबाई का आवर्ती दशमलव होता है जो दो अनुक्रमों में नाइन के पूरक रूप में विभाजित होता है। उदाहरण के लिए {{sfrac|1|7}} '142' प्रारंभ होता है और उसके बाद '857' होता है {{sfrac|6|7}} (घूर्णन द्वारा) '857' प्रारंभ होता है और उसके बाद इसके नौ ' पूरक '142' होते हैं। | ||
एक | एक चक्रीय संख्या के दोहराव का रोटेशन सदैव इस तरह से होता है कि प्रत्येक उत्तरोत्तर पुनरावृत्ति पिछले से बड़ी संख्या होती है। उपरोक्त क्रम में, उदाहरण के लिए, हम देखते हैं कि 0.142857... < 0.285714... < 0.428571... < 0.571428... < 0.714285... < 0.857142.... यह, लंबे दोहराव वाले चक्रीय अंशों के लिए, हमें आसानी से यह अनुमान लगाने की अनुमति देता है कि किसी भी प्राकृतिक संख्या n से अंश को गुणा करने का परिणाम क्या होगा, जब तक कि पुनरावृत्ति ज्ञात हो। | ||
एक उचित अभाज्य p अभाज्य होता है जो आधार 10 में अंक 1 पर समाप्त होता है और जिसके व्युत्क्रम आधार 10 में लंबाई p − 1 के साथ दोहराव होता है। ऐसे अभाज्यों में, प्रत्येक अंक 0, 1,..., 9 दोहराव में दिखाई देता है उतनी ही बार इसे अनुक्रमित किया जाता है जितनी बार दूसरे अंक को देता है वे (अर्थात्, {{sfrac|''p'' − 1|10}} टाइम्स)हैं।<ref>Dickson, L. E., ''History of the Theory of Numbers'', Volume 1, Chelsea Publishing Co., 1952.</ref>{{rp|166}} | |||
एक उचित अभाज्य अभाज्य | |||
:61, 131, 181, 461, 491, 541, 571, 701, 811, 821, 941, 971, 1021, 1051, 1091, 1171, 1181, 1291, 1301, 1349, 1381, 1531, 1571, 1621, 1741, 1811, 1829, 1861,... {{OEIS|id=A073761}}. | :61, 131, 181, 461, 491, 541, 571, 701, 811, 821, 941, 971, 1021, 1051, 1091, 1171, 1181, 1291, 1301, 1349, 1381, 1531, 1571, 1621, 1741, 1811, 1829, 1861,... {{OEIS|id=A073761}}. | ||
एक प्राइम उचित प्राइम है यदि | एक प्राइम उचित प्राइम होते है और यदि केवल यह 1 मॉड 10 के लिए पूर्ण रीप्टेड प्राइम और [[मॉड्यूलर अंकगणित]]ीय होते है। | ||
यदि अभाज्य p पूर्ण रीप्टेड अभाज्य और सुरक्षित अभाज्य दोनों है, तब {{sfrac|1|''p''}} p − 1 छद्म-यादृच्छिक संख्याओं|छद्म-यादृच्छिक अंकों की धारा उत्पन्न | यदि अभाज्य p पूर्ण रीप्टेड अभाज्य और सुरक्षित अभाज्य दोनों है, तब {{sfrac|1|''p''}} p − 1 छद्म-यादृच्छिक संख्याओं|छद्म-यादृच्छिक अंकों की धारा उत्पन्न करता है। और वे अभाज्य हैं | ||
:7, 23, 47, 59, 167, 179, 263, 383, 503, 863, 887, 983, 1019, 1367, 1487, 1619, 1823,... {{OEIS|id=A000353}}. | :7, 23, 47, 59, 167, 179, 263, 383, 503, 863, 887, 983, 1019, 1367, 1487, 1619, 1823,... {{OEIS|id=A000353}}. | ||
Line 427: | Line 415: | ||
{{OEIS|id=A006559}} | {{OEIS|id=A006559}} | ||
कारण यह है कि 3 9 का भाजक है, 11 99 का भाजक है, 41 99999 का भाजक है, आदि। | कारण यह है कि 3 9 का भाजक है, 11 99 का भाजक है, 41 99999 का भाजक है, आदि। | ||
की अवधि ज्ञात करना {{sfrac|1|''p''}}, हम जाँच कर सकते हैं कि क्या अभाज्य p किसी संख्या 999...999 को विभाजित करता है जिसमें अंकों की संख्या p − 1 को विभाजित | की अवधि ज्ञात करना {{sfrac|1|''p''}}, हम जाँच कर सकते हैं कि क्या अभाज्य p किसी संख्या 999...999 को विभाजित करता है जिसमें अंकों की संख्या p − 1 को विभाजित किया जाता है है। चूंकि अवधि कभी भी p − 1 से अधिक नहीं होती है,तब हम गणना करके इसे प्राप्त कर सकते हैं {{sfrac|10<sup>''p''−1</sup> − 1|''p''}}. उदाहरण के लिए, हमें संख्या 11 मिलती है। | ||
:<math>\frac{10^{11-1}-1}{11}= 909090909</math> | :<math>\frac{10^{11-1}-1}{11}= 909090909</math> | ||
और फिर निरीक्षण द्वारा 09 की पुनरावृत्ति और 2 की अवधि ज्ञात | और फिर निरीक्षण द्वारा 09 की पुनरावृत्ति और 2 की अवधि ज्ञात करते है। | ||
अभाज्य संख्याओं के उन व्युत्क्रमों को दोहराए जाने वाले दशमलव के कई क्रमों से जोड़ा जा सकता है। उदाहरण के लिए, के गुणक {{sfrac|1|13}} अलग-अलग पुनरावृत्तियों के साथ दो सेटों में विभाजित किया जा सकता है। पहला सेट है: | अभाज्य संख्याओं के उन व्युत्क्रमों को दोहराए जाने वाले दशमलव के कई क्रमों से जोड़ा जा सकता है। उदाहरण के लिए,संख्या के गुणक {{sfrac|1|13}} अलग-अलग पुनरावृत्तियों के साथ दो सेटों में विभाजित किया जा सकता है। पहला सेट है: | ||
*{{sfrac|1|13}} = 0.076923... | *{{sfrac|1|13}} = 0.076923... | ||
Line 440: | Line 428: | ||
*{{sfrac|4|13}} = 0.307692..., | *{{sfrac|4|13}} = 0.307692..., | ||
जहां प्रत्येक अंश की पुनरावृत्ति 076923 की चक्रीय पुन: व्यवस्था है। दूसरा सेट है: | जहां प्रत्येक अंश की पुनरावृत्ति 076923 की चक्रीय पुन: व्यवस्था होती है। जिसमें दूसरा सेट है: | ||
*{{sfrac|2|13}} = 0.153846... | *{{sfrac|2|13}} = 0.153846... | ||
Line 451: | Line 439: | ||
जहां प्रत्येक अंश की पुनरावृत्ति 153846 की चक्रीय पुन: व्यवस्था है। | जहां प्रत्येक अंश की पुनरावृत्ति 153846 की चक्रीय पुन: व्यवस्था है। | ||
सामान्यतः, प्राइम पी के व्युत्क्रम उचित गुणकों के सेट में n उपसमुच्चय होते हैं, जिनमें से प्रत्येक की पुनरावृत्ति लंबाई k होती है, जहां nk = p − 1 होता है। | |||
=== कुल नियम === | === कुल नियम === | ||
एक स्वेच्छ पूर्णांक n के लिए, लंबाई L(n) के दशमलव दोहराव का {{sfrac|1|''n''}} φ(n) को विभाजित करता है, जहाँ φ कुल कार्य है। लम्बाई के बराबर है {{nowrap|''φ''(''n'')}} यदि और केवल यदि 10 आदिम रूट मॉड्यूलो n है।<ref>William E. Heal. Some Properties of Repetends. Annals of Mathematics, Vol. 3, No. 4 (Aug., 1887), pp. 97–103</ref> | एक स्वेच्छ पूर्णांक n के लिए, लंबाई L(n) के दशमलव दोहराव का {{sfrac|1|''n''}} φ(n) को विभाजित करता है, जहाँ φ कुल कार्य है। लम्बाई के बराबर है {{nowrap|''φ''(''n'')}} यदि और केवल यदि 10 आदिम रूट मॉड्यूलो n है।<ref>William E. Heal. Some Properties of Repetends. Annals of Mathematics, Vol. 3, No. 4 (Aug., 1887), pp. 97–103</ref> | ||
विशेष रूप से, यह इस प्रकार है {{nowrap|1=''L''(''p'') = ''p'' − 1}} [[अगर और केवल अगर|यदि और केवल यदि]] पी प्रमुख है और 10 आदिम रूट मॉड्यूलो पी है। फिर, के दशमलव विस्तार {{sfrac|''n''|''p''}} n = 1, 2, ..., p − 1 के लिए, सभी की अवधि p − 1 है और केवल चक्रीय क्रमपरिवर्तन से भिन्न है। ऐसी संख्या p को पूर्ण पुनरावर्ती अभाज्य कहते हैं। | विशेष रूप से, यह इस प्रकार है {{nowrap|1=''L''(''p'') = ''p'' − 1}} [[अगर और केवल अगर|यदि और केवल यदि]] पी प्रमुख है और 10 आदिम रूट मॉड्यूलो पी है। फिर, के दशमलव विस्तार {{sfrac|''n''|''p''}} n = 1, 2, ..., p − 1 के लिए, सभी की अवधि p − 1 है और केवल चक्रीय क्रमपरिवर्तन से भिन्न है। ऐसी संख्या p को पूर्ण पुनरावर्ती अभाज्य कहते हैं। | ||
समग्र पूर्णांकों का व्युत्क्रम 10 का सहअभाज्य है | समग्र पूर्णांकों का व्युत्क्रम 10 का सहअभाज्य है | ||
यदि p 2 या 5 के अतिरिक्त कोई अभाज्य संख्या है, तो भिन्न का दशमलव निरूपण {{sfrac|1|''p''<sup>2</sup>}} | यदि p 2 या 5 के अतिरिक्त कोई अभाज्य संख्या होती है,तो भिन्न का दशमलव निरूपण {{sfrac|1|''p''<sup>2</sup>}} दोहराया जाता है: | ||
:{{sfrac|1|'''49'''}} = 0.{{overline|020408163265306122448979591836734693877551}}. | :{{sfrac|1|'''49'''}} = 0.{{overline|020408163265306122448979591836734693877551}}. | ||
Line 466: | Line 454: | ||
प्रत्येक पूर्णांक a के लिए जो n का सहअभाज्य है। | प्रत्येक पूर्णांक a के लिए जो n का सहअभाज्य है। | ||
अवधि {{sfrac|1|''p''<sup>2</sup>}} सामान्यतः पीटी है<sub>''p''</sub>, जहां टी<sub>''p''</sub> की अवधि है {{sfrac|1|''p''}}. ऐसे तीन ज्ञात अभाज्य हैं जिनके लिए यह सत्य नहीं है, और उनके लिए अवधि {{sfrac|1|''p''<sup>2</sup>}} की अवधि के समान है {{sfrac|1|''p''}} क्योंकि प<sup>2</sup> 10 को विभाजित करता है<sup>पी−1</sup>−1. ये तीन अभाज्य संख्याएँ 3, 487 और 56598313 हैं {{OEIS|id=A045616}}.<ref>Albert H. Beiler, ''Recreations in the Theory of Numbers'', p. 79</ref> | |||
इसी प्रकार, | इसी प्रकार, अवधि {{sfrac|1|''p''<sup>''k''</sup>}} सामान्यतः पी है<sup>k–1</sup>टी<sub>''p''</sub> | ||
यदि p और q 2 या 5 के अतिरिक्त अन्य अभाज्य संख्याएँ हैं, तो भिन्न का दशमलव निरूपण {{sfrac|1|''pq''}} दोहराता है। उदाहरण है {{sfrac|1|119}}: | यदि p और q 2 या 5 के अतिरिक्त अन्य अभाज्य संख्याएँ हैं, तो भिन्न का दशमलव निरूपण {{sfrac|1|''pq''}} दोहराता है। उदाहरण है {{sfrac|1|119}}: | ||
: 119 = 7 × | : 119 = 7 × 1 | ||
:''λ''(7 × 17) = लघुत्तम समापवर्त्य(''λ''(7), ''λ''(17)) = लघुत्तम समापवर्त्य (6, 16) = 48, | :''λ''(7 × 17) = लघुत्तम समापवर्त्य(''λ''(7), ''λ''(17)) = लघुत्तम समापवर्त्य (6, 16) = 48, | ||
Line 486: | Line 474: | ||
==पूर्णांकों का व्युत्क्रम 10== का सहअभाज्य नहीं है | ==पूर्णांकों का व्युत्क्रम 10== का सहअभाज्य नहीं है | ||
एक पूर्णांक जो 10 से सहअभाज्य नहीं है, लेकिन 2 या 5 के अतिरिक्त प्रमुख कारक है, पारस्परिक है जो अंततः आवधिक है, लेकिन दोहराए जाने वाले भाग से पहले अंकों के गैर-दोहराए जाने वाले अनुक्रम के | एक पूर्णांक जो 10 से सहअभाज्य नहीं है, लेकिन 2 या 5 के अतिरिक्त प्रमुख कारक है,और यह पारस्परिक है जो अंततः आवधिक है, लेकिन दोहराए जाने वाले भाग से पहले अंकों के गैर-दोहराए जाने वाले अनुक्रम के साथ होते हैं।और पारस्परिक रूप से व्यक्त किया जा सकता है: | ||
:<math>\frac{1}{2^a 5^b p^k q^\ell \cdots}\, ,</math> | :<math>\frac{1}{2^a 5^b p^k q^\ell \cdots}\, ,</math> | ||
जहाँ a और b दोनों शून्य नहीं हैं। | जहाँ a और b दोनों शून्य नहीं हैं। | ||
Line 499: | Line 487: | ||
दशमलव में है: | दशमलव में है: | ||
*दशमलव बिंदु के बाद अधिकतम (ए, बी) अंकों का प्रारंभिक | *दशमलव बिंदु के बाद अधिकतम (ए, बी) अंकों का प्रारंभिक संक्रमण होता है। क्षणिक में कुछ या सभी अंक शून्य हो सकते हैं। | ||
* बाद का दोहराव जो भिन्न के समान | * बाद का दोहराव जो भिन्न के ही समान है {{sfrac|1|''p<sup>k</sup>'' ''q<sup>ℓ</sup>'' ⋯}}. | ||
उदाहरण के लिए {{sfrac|1|28}} = 0.03{{overline|571428}}: | उदाहरण के लिए {{sfrac|1|28}} = 0.03{{overline|571428}}: | ||
Line 545: | Line 533: | ||
x &= \frac{1}{10^7-1} = \frac{1}{9999999} | x &= \frac{1}{10^7-1} = \frac{1}{9999999} | ||
\end{align}</math> | \end{align}</math> | ||
तो यह विशेष रूप से दोहराए जाने वाला दशमलव अंश के अनुरूप है {{sfrac|1|10<sup>''n''</sup> − 1}}, जहां भाजक वह संख्या है जिसे n 9s के रूप में लिखा जाता है। बस इतना ही जानते हुए, सामान्य दोहराए जाने वाले दशमलव को समीकरण को हल किए बिना अंश के रूप में व्यक्त किया जा सकता है। उदाहरण के लिए, कोई कारण हो सकता है: | तो यह विशेष रूप से दोहराए जाने वाला दशमलव अंश के अनुरूप है {{sfrac|1|10<sup>''n''</sup> − 1}}, जहां भाजक वह संख्या होती है जिसे n 9s के रूप में लिखा जाता है। बस इतना ही जानते हुए, सामान्य दोहराए जाने वाले दशमलव को समीकरण को हल किए बिना अंश के रूप में व्यक्त किया जा सकता है। उदाहरण के लिए, कोई कारण हो सकता है: | ||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
Line 554: | Line 542: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
दशमलव बिंदु के ठीक बाद, अंश के रूप में प्रारंभ करते हुए, n-अंकीय अवधि (दोहराव लंबाई) के साथ दोहराए जाने वाले दशमलव को व्यक्त करने वाला सामान्य सूत्र प्राप्त करना संभव है: | दशमलव बिंदु के ठीक बाद, अंश के रूप में प्रारंभ करते हुए, n-अंकीय अवधि (दोहराव लंबाई) के साथ दोहराए जाने वाले दशमलव को व्यक्त करने वाला सामान्य सूत्र प्राप्त करना संभव होता है: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 562: | Line 550: | ||
x &= \frac{a_1 a_2 \cdots a_n}{10^n - 1} = \frac{a_1 a_2 \cdots a_n}{99 \cdots 99} | x &= \frac{a_1 a_2 \cdots a_n}{10^n - 1} = \frac{a_1 a_2 \cdots a_n}{99 \cdots 99} | ||
\end{align}</math> | \end{align}</math> | ||
अधिक स्पष्ट रूप से, निम्नलिखित मामलों को प्राप्त | अधिक स्पष्ट रूप से, निम्नलिखित मामलों को प्राप्त किया जाता है: | ||
यदि दोहराए जाने वाला दशमलव 0 और 1 के बीच है, और दोहराए जाने वाला ब्लॉक n अंक लंबा है, पहले दशमलव बिंदु के ठीक बाद होता है, | यदि दोहराए जाने वाला दशमलव 0 और 1 के बीच होती है,और दोहराए जाने वाला ब्लॉक n अंक लंबा है,तो पहले दशमलव बिंदु के ठीक बाद होता है,तब अंश (आवश्यक रूप से कम नहीं) एन-डिजिट ब्लॉक द्वारा विभाजित पूर्णांक संख्या होती है। n 9s द्वारा प्रतिनिधित्व किया। उदाहरण के लिए, | ||
*0.444444... = {{sfrac|4|9}} चूंकि दोहराए जाने वाला ब्लॉक 4 है (1 अंकों का ब्लॉक), | *0.444444... = {{sfrac|4|9}} चूंकि दोहराए जाने वाला ब्लॉक 4 है (1 अंकों का ब्लॉक), | ||
*0.565656... = {{sfrac|56|99}} चूंकि दोहराए जाने वाला ब्लॉक 56 (एक 2-अंकीय ब्लॉक) है, | *0.565656... = {{sfrac|56|99}} चूंकि दोहराए जाने वाला ब्लॉक 56 (एक 2-अंकीय ब्लॉक) है, | ||
Line 570: | Line 558: | ||
*0.999999... = {{sfrac|9|9}} = 1, क्योंकि दोहराए जाने वाला ब्लॉक 9 है (1 अंकों का ब्लॉक भी) | *0.999999... = {{sfrac|9|9}} = 1, क्योंकि दोहराए जाने वाला ब्लॉक 9 है (1 अंकों का ब्लॉक भी) | ||
यदि दोहराव वाला दशमलव ऊपर जैसा है, | यदि दोहराव वाला दशमलव ऊपर जैसा है,यथार्थ इसके कि दशमलव बिंदु और दोहराए जाने वाले एन-डिजिट ब्लॉक के बीच k (अतिरिक्त) अंक 0 हैं, तो हर के n अंक 9 के बाद बस k अंक 0 जोड़ सकते हैं (और, जैसा कि पहले, अंश बाद में सरलीकृत किया जा सकता है)। उदाहरण के लिए, | ||
*0.000444... = {{sfrac|4|9000}} चूंकि दोहराए जाने वाला ब्लॉक 4 है और यह ब्लॉक 3 शून्य से पहले है, | *0.000444... = {{sfrac|4|9000}} चूंकि दोहराए जाने वाला ब्लॉक 4 है और यह ब्लॉक 3 शून्य से पहले है, | ||
*0.005656... = {{sfrac|56|9900}} चूंकि दोहराए जाने वाला ब्लॉक 56 है और इसके पहले 2 शून्य हैं, | *0.005656... = {{sfrac|56|9900}} चूंकि दोहराए जाने वाला ब्लॉक 56 है और इसके पहले 2 शून्य हैं, | ||
Line 584: | Line 572: | ||
*0.3789789... = {{sfrac|3789 − 3|9990}} = {{sfrac|3786|9990}} (हर में तीन 9 और 0 होता है क्योंकि तीन अंकों की पुनरावृत्ति होती है और दशमलव बिंदु के बाद गैर-दोहराव वाला अंक होता है) | *0.3789789... = {{sfrac|3789 − 3|9990}} = {{sfrac|3786|9990}} (हर में तीन 9 और 0 होता है क्योंकि तीन अंकों की पुनरावृत्ति होती है और दशमलव बिंदु के बाद गैर-दोहराव वाला अंक होता है) | ||
यह इस प्रकार है कि आवधिक फ़ंक्शन n के साथ कोई दोहराए जाने वाला दशमलव, और दशमलव बिंदु के बाद k अंक जो दोहराए जाने वाले भाग से संबंधित नहीं है, | यह इस प्रकार है कि आवधिक फ़ंक्शन n के साथ कोई दोहराए जाने वाला दशमलव, और दशमलव बिंदु के बाद k अंक जो दोहराए जाने वाले भाग से संबंधित नहीं होती है,इसको (आवश्यक रूप से कम नहीं) अंश के रूप में लिखा जा सकता है जिसका भाजक (10) है<sup>n</sup> − 1)10<sup>क</सुप>. | ||
इसके विपरीत अंश के दोहराए जाने वाले दशमलव की अवधि {{sfrac|''c''|''d''}} (अधिकतम) सबसे छोटी संख्या n होगी जैसे कि 10<sup>n</sup> − 1, d से विभाज्य है। | इसके विपरीत अंश के दोहराए जाने वाले दशमलव की अवधि {{sfrac|''c''|''d''}} (अधिकतम) सबसे छोटी संख्या n होगी जैसे कि 10<sup>n</sup> − 1, d से विभाज्य संख्या होती है। | ||
उदाहरण के लिए, अंश {{sfrac|2|7}} d = 7 है, और सबसे छोटा k जो 10 बनाता है<sup>k</sup> − 1 7 से विभाज्य है k = 6, क्योंकि 999999 = 7 × 142857। भिन्न की अवधि {{sfrac|2|7}} इसलिए 6 है। | उदाहरण के लिए,अंश {{sfrac|2|7}} d = 7 है, और सबसे छोटा k जो 10 बनाता है<sup>k</sup> − 1 7 से विभाज्य है k = 6, क्योंकि 999999 = 7 × 142857। भिन्न की अवधि {{sfrac|2|7}} इसलिए 6 है। | ||
==== संकुचित रूप में ==== | ==== संकुचित रूप में ==== | ||
निम्न चित्र उपरोक्त शॉर्टकट के प्रकार के संपीड़न का सुझाव देता है। | निम्न चित्र उपरोक्त शॉर्टकट के प्रकार के संपीड़न का सुझाव देता है। | ||
जिसके चलते <math>\mathbf{I}</math> दशमलव संख्या के पूर्णांक भाग के अंकों का प्रतिनिधित्व करता है (दशमलव बिंदु के बाईं ओर), <math>\mathbf{A}</math> प्रीपरियोड के अंकों की स्ट्रिंग बनाता है और <math>\#\mathbf{A}</math> इसकी लंबाई, और <math>\mathbf{P}</math> लंबाई के साथ दोहराए गए अंकों (अवधि) की स्ट्रिंग होना <math>\#\mathbf{P}</math> जो शून्य नहीं है। | जिसके चलते <math>\mathbf{I}</math> दशमलव संख्या के पूर्णांक भाग के अंकों का प्रतिनिधित्व करता है (दशमलव बिंदु के बाईं ओर), <math>\mathbf{A}</math> प्रीपरियोड के अंकों की स्ट्रिंग बनाता है और <math>\#\mathbf{A}</math> इसकी लंबाई, और <math>\mathbf{P}</math> लंबाई के साथ दोहराए गए अंकों (अवधि) की स्ट्रिंग होना <math>\#\mathbf{P}</math> जो शून्य नहीं होती है। | ||
[[File:CodeCogsEqn(4).gif|thumb|right|240x240पीएक्स|गठन नियम]]उत्पन्न अंश में, अंक <math>9</math> दोहराया जाएगा <math>\#\mathbf{P}</math> बार, और अंक <math>0</math> दोहराया जाएगा <math>\#\mathbf{A}</math> | [[File:CodeCogsEqn(4).gif|thumb|right|240x240पीएक्स|गठन नियम]]उत्पन्न अंश में, अंक <math>9</math> दोहराया जाएगा <math>\#\mathbf{P}</math> बार, और अंक <math>0</math> दोहराया जाएगा <math>\#\mathbf{A}</math> बार है। | ||
ध्यान दें कि दशमलव में ''पूर्णांक'' भाग की अनुपस्थिति में, <math>\mathbf{I}</math> शून्य द्वारा दर्शाया जाएगा, जो अन्य अंकों के बाईं ओर होने के कारण अंतिम परिणाम को प्रभावित नहीं करेगा, और जनरेटिंग फ़ंक्शन की गणना में छोड़ा जा सकता है। | ध्यान दें कि दशमलव में ''पूर्णांक'' भाग की अनुपस्थिति में, <math>\mathbf{I}</math> शून्य द्वारा दर्शाया जाएगा, जो अन्य अंकों के बाईं ओर होने के कारण अंतिम परिणाम को प्रभावित नहीं करेगा, और जनरेटिंग फ़ंक्शन की गणना में छोड़ा जा सकता है। | ||
Line 632: | Line 620: | ||
\end{array} | \end{array} | ||
</math> | </math> | ||
प्रतीक <math>\emptyset</math> उपरोक्त उदाहरणों में भाग के अंकों की अनुपस्थिति को दर्शाता है <math>\mathbf{A}</math> दशमलव में, और इसलिए <math>\#\mathbf{A}=0</math> और उत्पन्न अंश में समान | प्रतीक <math>\emptyset</math> उपरोक्त उदाहरणों में भाग के अंकों की अनुपस्थिति को दर्शाता है <math>\mathbf{A}</math> दशमलव में, और इसलिए <math>\#\mathbf{A}=0</math> और उत्पन्न अंश में समान अनुपस्थिति में होते हैं। | ||
== [[अनंत श्रृंखला]] के रूप में दोहराए जाने वाले दशमलव == | == [[अनंत श्रृंखला]] के रूप में दोहराए जाने वाले दशमलव == | ||
एक दोहराए जाने वाले दशमलव को अनंत श्रृंखला के रूप में भी व्यक्त किया जा सकता है। अर्थात्, दोहराए जाने वाले दशमलव को परिमेय संख्याओं की अनंत संख्या के योग के रूप में माना जा सकता है। सबसे सरल उदाहरण लेने के लिए, | एक दोहराए जाने वाले दशमलव को अनंत श्रृंखला के रूप में भी व्यक्त किया जा सकता है। अर्थात्, दोहराए जाने वाले दशमलव को परिमेय संख्याओं की अनंत संख्या के योग के रूप में माना जा सकता है। सबसे सरल उदाहरण लेने के लिए, | ||
:<math>0.\overline{1} = \frac{1}{10} + \frac{1}{100} + \frac{1}{1000} + \cdots = \sum_{n=1}^\infty \frac{1}{10^n}</math> | :<math>0.\overline{1} = \frac{1}{10} + \frac{1}{100} + \frac{1}{1000} + \cdots = \sum_{n=1}^\infty \frac{1}{10^n}</math> | ||
उपरोक्त श्रृंखला ज्यामितीय श्रृंखला है जिसका पहला पद {{sfrac|1|10}} और सामान्य कारक {{sfrac|1|10}}. क्योंकि सामान्य गुणनखंड का निरपेक्ष मान 1 से कम है, हम कह सकते हैं कि ज्यामितीय श्रृंखला [[अभिसरण श्रृंखला]] है और निम्नलिखित सूत्र का उपयोग करके अंश के रूप में | उपरोक्त श्रृंखला ज्यामितीय श्रृंखला है जिसका पहला पद {{sfrac|1|10}} और सामान्य कारक {{sfrac|1|10}}. क्योंकि सामान्य गुणनखंड का निरपेक्ष मान 1 से कम है, हम कह सकते हैं कि ज्यामितीय श्रृंखला [[अभिसरण श्रृंखला]] होती है और निम्नलिखित सूत्र का उपयोग करके अंश के रूप में अतिरिक्त मान ज्ञात करें जहां a श्रृंखला का पहला पद है और r है सामान्य कारक होते हैं। | ||
:<math>\frac{a}{1-r} = \frac{\frac{1}{10}}{1-\frac{1}{10}} = \frac{1}{10-1} = \frac{1}{9}</math> | :<math>\frac{a}{1-r} = \frac{\frac{1}{10}}{1-\frac{1}{10}} = \frac{1}{10-1} = \frac{1}{9}</math> | ||
इसी प्रकार, | इसी प्रकार, | ||
Line 652: | Line 640: | ||
== दोहराव की लंबाई के अन्य गुण == | == दोहराव की लंबाई के अन्य गुण == | ||
मिशेल द्वारा पुनरावृत्त लंबाई (अवधि) के विभिन्न गुण दिए गए हैं<ref>Mitchell, Douglas W., "A nonlinear random number generator with known, long cycle length", ''[[Cryptologia]]'' 17, January 1993, pp. 55–62.</ref> और डिक्सन।<ref>[[L. E. Dickson|Dickson, Leonard E.]], ''[[History of the Theory of Numbers]], Vol. I'', Chelsea Publ. Co., 1952 (orig. 1918), pp. 164–173.</ref> | मिशेल द्वारा पुनरावृत्त लंबाई (अवधि) के विभिन्न गुण दिए गए हैं<ref>Mitchell, Douglas W., "A nonlinear random number generator with known, long cycle length", ''[[Cryptologia]]'' 17, January 1993, pp. 55–62.</ref> और डिक्सन।<ref>[[L. E. Dickson|Dickson, Leonard E.]], ''[[History of the Theory of Numbers]], Vol. I'', Chelsea Publ. Co., 1952 (orig. 1918), pp. 164–173.</ref> | ||
*की अवधि {{sfrac|1|''k''}} पूर्णांक k के लिए | *की अवधि {{sfrac|1|''k''}} पूर्णांक k के लिए सदैव ≤ k − 1 होता है। | ||
*यदि पी प्रधान है, की अवधि {{sfrac|1|''p''}} समान रूप से p − 1 में विभाजित करता है। | *यदि पी प्रधान है, की अवधि {{sfrac|1|''p''}} समान रूप से p − 1 में विभाजित करता है। | ||
*यदि k संमिश्र है, की अवधि {{sfrac|1|''k''}} k − 1 से बिल्कुल कम है। | *यदि k संमिश्र है, की अवधि {{sfrac|1|''k''}} k − 1 से बिल्कुल कम है। | ||
Line 681: | Line 669: | ||
::<math>D:=\{d_1, d_1+1, \dots, d_r\}</math> | ::<math>D:=\{d_1, d_1+1, \dots, d_r\}</math> | ||
:साथ {{math|''r'' :{{=}} {{abs|b}}}}, {{math|''d<sub>r</sub>'' :{{=}} d<sub>1</sub> + ''r'' − 1}} और {{math|0 ∈ ''D''}}, तो समाप्ति अनुक्रम स्पष्ट रूप से अंक 0 से युक्त गैर-समाप्ति दोहराए जाने वाले भाग के समान अनुक्रम के बराबर है। यदि आधार सकारात्मक है, तो स्ट्रिंग (कंप्यूटर विज्ञान) से [[आदेश समरूपता]] सम्मलित है # अनुक्रम का लेक्सिकोग्राफिकल ऑर्डर # परिमित और अनंत | [[वर्णमाला]] के दाहिनी ओर अनंत तार {{math|''D''}} वास्तविक के कुछ बंद अंतराल में, जो स्ट्रिंग्स को मैप करता है {{math|0.''A''<sub>1</sub>''A''<sub>2</sub>...''A''<sub>''n''</sub>{{overline|''d<sub>b</sub>''}}}} और {{math|0.''A''<sub>1</sub>''A''<sub>2</sub>...(''A<sub>n</sub>''+1){{overline|''d''<sub>1</sub>}}}} साथ {{math|''A<sub>i</sub>'' ∈ ''D''}} और {{math|''A<sub>n</sub>'' ≠ ''d<sub>b</sub>''}} ही वास्तविक संख्या के लिए - और कोई अन्य डुप्लिकेट चित्र नहीं हैं। दशमलव प्रणाली में, उदाहरण के लिए, 0 है।{{overline|9}} = 1.{{overline|0}}= 1; [[संतुलित टर्नरी]] सिस्टम में 0 होता है।{{overline|1}} = 1.{{overline|T}} = {{sfrac|1|2}}. | :साथ {{math|''r'' :{{=}} {{abs|b}}}}, {{math|''d<sub>r</sub>'' :{{=}} d<sub>1</sub> + ''r'' − 1}} और {{math|0 ∈ ''D''}}, तो समाप्ति अनुक्रम स्पष्ट रूप से अंक 0 से युक्त गैर-समाप्ति दोहराए जाने वाले भाग के समान अनुक्रम के बराबर है। यदि आधार सकारात्मक है, तो स्ट्रिंग (कंप्यूटर विज्ञान) से [[आदेश समरूपता]] सम्मलित है # अनुक्रम का लेक्सिकोग्राफिकल ऑर्डर # परिमित और अनंत | [[वर्णमाला]] के दाहिनी ओर अनंत तार {{math|''D''}} वास्तविक के कुछ बंद अंतराल में, जो स्ट्रिंग्स को मैप करता है {{math|0.''A''<sub>1</sub>''A''<sub>2</sub>...''A''<sub>''n''</sub>{{overline|''d<sub>b</sub>''}}}} और {{math|0.''A''<sub>1</sub>''A''<sub>2</sub>...(''A<sub>n</sub>''+1){{overline|''d''<sub>1</sub>}}}} साथ {{math|''A<sub>i</sub>'' ∈ ''D''}} और {{math|''A<sub>n</sub>'' ≠ ''d<sub>b</sub>''}} ही वास्तविक संख्या के लिए - और कोई अन्य डुप्लिकेट चित्र नहीं हैं। दशमलव प्रणाली में, उदाहरण के लिए, 0 है।{{overline|9}} = 1.{{overline|0}}= 1; [[संतुलित टर्नरी]] सिस्टम में 0 होता है।{{overline|1}} = 1.{{overline|T}} = {{sfrac|1|2}}. | ||
*एक परिमेय संख्या में परिमित लंबाई का अनिश्चित काल तक दोहराव वाला क्रम होता है {{mvar|l}}, यदि घटे हुए भिन्न के हर में अभाज्य गुणनखंड है जो आधार का गुणनखंड नहीं है। यदि {{mvar|q}} घटे हुए हर का वह अधिकतम गुणनखण्ड है जो आधार का सहअभाज्य है, {{mvar|l}} सबसे छोटा प्रतिपादक है जैसे कि {{mvar|q}} विभाजित {{math|''b''<sup>''l''</sup> − 1}}. यह गुणक क्रम है {{math|ord<sub>''q''</sub>(''b'')}} अवशेष वर्ग का {{math|''b'' mod ''q''}} जो कारमाइकल फलन का भाजक है {{math|''λ''(''q'')}} जो बदले में से छोटा है {{mvar|q}}. दोहराव अनुक्रम परिमित लंबाई के क्षणिक से पहले होता है यदि कम अंश भी आधार के साथ प्रमुख कारक साझा करता है। दोहराव क्रम | *एक परिमेय संख्या में परिमित लंबाई का अनिश्चित काल तक दोहराव वाला क्रम होता है {{mvar|l}}, यदि घटे हुए भिन्न के हर में अभाज्य गुणनखंड है जो आधार का गुणनखंड नहीं होता है। यदि {{mvar|q}} घटे हुए हर का वह अधिकतम गुणनखण्ड है जो आधार का सहअभाज्य होते है, {{mvar|l}} सबसे छोटा प्रतिपादक है जैसे कि {{mvar|q}} विभाजित {{math|''b''<sup>''l''</sup> − 1}}. यह गुणक क्रम है {{math|ord<sub>''q''</sub>(''b'')}} अवशेष वर्ग का {{math|''b'' mod ''q''}} जो कारमाइकल फलन का भाजक है {{math|''λ''(''q'')}} जो बदले में से छोटा है {{mvar|q}}. दोहराव अनुक्रम परिमित लंबाई के क्षणिक से पहले होता है यदि कम अंश भी आधार के साथ प्रमुख कारक साझा करता है। दोहराव क्रम | ||
::<math>\left(0.\overline{A_1A_2\ldots A_\ell}\right)_b</math> | ::<math>\left(0.\overline{A_1A_2\ldots A_\ell}\right)_b</math> | ||
: अंश का प्रतिनिधित्व करता है | : अंश का प्रतिनिधित्व करता है | ||
Line 733: | Line 721: | ||
और | और | ||
: <math>z q \le b p\quad \implies \quad 0 \le b p - z q =: p' \,.</math> | : <math>z q \le b p\quad \implies \quad 0 \le b p - z q =: p' \,.</math> | ||
क्योंकि ये सभी अवशेष {{mvar|p}} से कम गैर-ऋणात्मक पूर्णांक हैं {{mvar|q}}, उनकी केवल परिमित संख्या हो सकती है जिसके परिणामस्वरूप उन्हें पुनरावृत्ति करनी होगी <code>while</code> कुंडली। इस तरह की पुनरावृत्ति को [[साहचर्य सरणी]] द्वारा पता लगाया जाता है <code>occurs</code>. नया अंक {{mvar|z}} पीली रेखा में बनता है, जहाँ {{mvar|p}} एकमात्र अस्थिर है। लंबाई {{mvar|L}} दोहराव का भाग शेषफलों की संख्या के बराबर होता है (अनुभाग भी देखें #प्रत्येक परिमेय संख्या या तो सांत या आवर्ती दशमलव है)। | क्योंकि ये सभी अवशेष {{mvar|p}} से कम गैर-ऋणात्मक पूर्णांक हैं {{mvar|q}}, उनकी केवल परिमित संख्या हो सकती है जिसके परिणामस्वरूप उन्हें पुनरावृत्ति करनी होगी <code>while</code> कुंडली। इस तरह की पुनरावृत्ति को [[साहचर्य सरणी]] द्वारा पता लगाया जाता है <code>occurs</code>. नया अंक {{mvar|z}} पीली रेखा में बनता है, जहाँ {{mvar|p}} एकमात्र अस्थिर होता है। लंबाई {{mvar|L}} दोहराव का भाग शेषफलों की संख्या के बराबर होता है (अनुभाग भी देखें #प्रत्येक परिमेय संख्या या तो सांत या आवर्ती दशमलव है)। | ||
== क्रिप्टोग्राफी के लिए आवेदन == | == क्रिप्टोग्राफी के लिए आवेदन == | ||
दोहराए जाने वाले दशमलव (जिसे दशमलव अनुक्रम भी कहा जाता है) में क्रिप्टोग्राफ़िक और त्रुटि-सुधार कोडिंग अनुप्रयोग पाए गए हैं।<ref>Kak, Subhash, Chatterjee, A. "On decimal sequences". ''IEEE Transactions on Information Theory'', vol. IT-27, pp. 647–652, September 1981.</ref> इन अनुप्रयोगों में आधार 2 पर दोहराए जाने वाले दशमलव का सामान्यतः उपयोग किया जाता है जो बाइनरी अनुक्रमों को जन्म देता है। अधिकतम लंबाई बाइनरी अनुक्रम {{sfrac|1|''p''}} (जब 2 p का आदिम मूल हो) निम्नलिखित द्वारा दिया जाता है:<ref>Kak, Subhash, "Encryption and error-correction using d-sequences". ''IEEE Transactios on Computers'', vol. C-34, pp. 803–809, 1985.</ref> | दोहराए जाने वाले दशमलव (जिसे दशमलव अनुक्रम भी कहा जाता है) में क्रिप्टोग्राफ़िक और त्रुटि-सुधार कोडिंग के अनुप्रयोग पाए गए हैं।<ref>Kak, Subhash, Chatterjee, A. "On decimal sequences". ''IEEE Transactions on Information Theory'', vol. IT-27, pp. 647–652, September 1981.</ref> इन अनुप्रयोगों में आधार 2 पर दोहराए जाने वाले दशमलव का सामान्यतः उपयोग किया जाता है जो बाइनरी अनुक्रमों को जन्म देता है। अधिकतम लंबाई बाइनरी अनुक्रम {{sfrac|1|''p''}} (जब 2 p का आदिम मूल हो) निम्नलिखित द्वारा दिया जाता है:<ref>Kak, Subhash, "Encryption and error-correction using d-sequences". ''IEEE Transactios on Computers'', vol. C-34, pp. 803–809, 1985.</ref> | ||
:<math>a(i) = 2^i \bmod p \bmod 2</math> | :<math>a(i) = 2^i \bmod p \bmod 2</math> | ||
अवधि p − 1 के इन अनुक्रमों में स्वत:सहसंबंध फ़ंक्शन होता है जिसमें बदलाव के लिए -1 का ऋणात्मक शिखर होता है {{sfrac|''p'' − 1|2}}. इन अनुक्रमों की यादृच्छिकता की [[कठोर परीक्षण]]ों द्वारा जांच की गई है।<ref>Bellamy, J. "Randomness of D sequences via diehard testing". 2013. {{arXiv|1312.3618}}</ref> | अवधि p − 1 के इन अनुक्रमों में स्वत:सहसंबंध फ़ंक्शन होता है जिसमें बदलाव के लिए -1 का ऋणात्मक शिखर होता है {{sfrac|''p'' − 1|2}}. इन अनुक्रमों की यादृच्छिकता की [[कठोर परीक्षण]]ों द्वारा जांच की गई है।<ref>Bellamy, J. "Randomness of D sequences via diehard testing". 2013. {{arXiv|1312.3618}}</ref> | ||
Line 757: | Line 745: | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
*{{MathWorld|title=Repeating Decimal|urlname=RepeatingDecimal}} | *{{MathWorld|title=Repeating Decimal|urlname=RepeatingDecimal}} | ||
[[de:Rationale Zahl#Dezimalbruchentwicklung]] | [[de:Rationale Zahl#Dezimalbruchentwicklung]] | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category: | |||
[[Category:Created On 07/02/2023]] | [[Category:Created On 07/02/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:अंक प्रणाली]] | |||
[[Category:प्राथमिक अंकगणित]] |
Latest revision as of 12:10, 14 February 2023
दोहरे दशमलव या आवर्ती दशमलव संख्या का दशमलव प्रतिनिधित्व करता है जिसका संख्यात्मक अंक आवधिक कार्य पर निर्भर करता है (नियमित अंतराल पर इसके मूल्यों को दोहराता है) और अनंत दोहराया भाग शून्य नहीं है। इस प्रकार इसमें यह देखा जा सकता है कि यह संख्या परिमेय संख्या है तथा यदि इसका दशमलव निरूपण दोहराया या समाप्त होता है (अर्थात बहुत से अंकों को छोड़कर सभी अंक शून्य हैं)। उदाहरण के लिए, 1/3 का दशमलव प्रतिनिधित्व दशमलव बिंदु के ठीक बाद आवधिक होता है, इस प्रकार एकल अंक 3 को यह सदैव के लिए दोहराता है, अर्थात 0.333.... पर 3227/555 इसका एक अधिक जटिल उदाहरण है, जिसका दशमलव दशमलव बिंदु के बाद दूसरे अंक पर आवधिक मान पूरा हो जाता है और फिर क्रमानुसार 144 को सदैव के लिए अर्थात 5.8144144144.... से दोहराता है, वर्तमान में, दशमलव को दोहराने के लिए भी सार्वभौमिक रूप से स्वीकृत संकेत नहीं होता है।
मुख्य रूप से दोहराए जाने वाले अंकों के अनुक्रम को 'रिपीटेंड' या 'रेप्टेंड' कहा जाता है। यदि पुनरावृत्ति शून्य होती है, तो इस दशमलव निरूपण को दोहराए जाने वाले दशमलव अतिरिक्त 'समाप्त दशमलव' कहा जाता है, क्योंकि शून्य को छोड़ा जा सकता है और दशमलव इन शून्य से पहले समाप्त हो जाता है।[1] प्रत्येक समाप्ति दशमलव प्रतिनिधित्व को दशमलव अंश के रूप में लिखा जा सकता है, अंश जिसका भाजक 10 की शक्ति (गणित) है (उदा। 1.585 = 1585/1000); इसे फॉर्म के अनुपात के रूप में k/2n5m भी लिखा जा सकता है (उदा 1.585 = 317/2352), चूंकि, समाप्ति दशमलव प्रतिनिधित्व के साथ प्रत्येक संख्या में दोहराए जाने वाले दशमलव के रूप में दूसरा, वैकल्पिक प्रतिनिधित्व भी होता है जिसका पुनरावृत्त अंक '9' होता है। यह अंतिम (सबसे दाएं) गैर-शून्य अंक को से घटाकर और 9 का दोहराव जोड़कर प्राप्त किया जाता है। इसके दो उदाहरण हैं 0.999...|1.000... = 0.999...और 1.585000... = 1.584999.... (इस प्रकार के दोहराए जाने वाले दशमलव को लंबे विभाजन द्वारा प्राप्त किया जा सकता है यदि कोई सामान्य विभाजन एल्गोरिथ्म के संशोधित रूप का उपयोग करता है।[2])
कोई भी संख्या जिसे दो पूर्णांक के अनुपात के रूप में व्यक्त नहीं किया जा सकता है, अपरिमेय संख्या कहलाती है। उनका दशमलव निरूपण न तो समाप्त होता है और न ही अनंत रूप से दोहराता है, बल्कि बिना दोहराव के सदैव के लिए विस्तारित होता है (देखें § प्रत्येक परिमेय संख्या या तो एक सांत या आवर्ती दशमलव होती है). ऐसी अपरिमेय संख्याओं के उदाहरण हैं 2 का वर्गमूल√2 और पाई |π| इत्यादि।
पृष्ठभूमि
अंकन
दोहराए जाने वाले दशमलवों का प्रतिनिधित्व करने के लिए कई सांकेतिक परंपराएं होती हैं। उनमें से कोई भी सार्वभौमिक रूप से स्वीकार नहीं किया जाता है।
- संयुक्त राज्य अमेरिका, कनाडा, भारत, फ्रांस, जर्मनी, इटली, स्विट्ज़रलैंड, चेक गणराज्य, स्लोवाकिया और टर्की में परंपरा दोहराव के ऊपर क्षैतिज रेखा (एक विनकुलम (प्रतीक) खींचना है। (नीचे दी गई तालिका में उदाहरण देखें, कॉलम विनकुलम।)
- यूनाइटेड किंगडमन्यूज़ीलैंड, ऑस्ट्रेलिया, भारत में, दक्षिण कोरिया और चीन में, दोहराव के सबसे बाहरी अंकों के ऊपर बिंदुओं को रखने की प्रथा है। (नीचे दी गई तालिका, कॉलम डॉट्स में उदाहरण देखें।)
- यूरोप, वियतनाम और रूस के कुछ हिस्सों में, दोहराव को कोष्ठक में संलग्न करने की प्रथा है। (नीचे तालिका में उदाहरण देखें, स्तंभ कोष्ठक।) यह मानक अनिश्चितता के लिए संकेतन के साथ भ्रम पैदा कर सकता है।
- स्पेन और कुछ लैटिन अमेरिका देशों में, पुनरावृत्त पर चाप संकेतन का उपयोग विनकुलम और बिंदु संकेतन के विकल्प के रूप में भी किया जाता है। (नीचे दी गई तालिका, कॉलम आर्क में उदाहरण देखें।)
- अनौपचारिक रूप से, दोहराए जाने वाले दशमलव को अधिकांशतः दीर्घवृत्त (तीन अवधियों, 0.333...) द्वारा दर्शाया जाता है, खासकर जब पिछले संकेतन सम्मेलनों को पहली बार स्कूल में पढ़ाया जाता है। यह संकेतन अनिश्चितता का परिचय देता है कि किन अंकों को दोहराया जाना चाहिए और यहां तक कि क्या पुनरावृत्ति बिल्कुल भी हो रही है, क्योंकि इस तरह के दीर्घवृत्त भी अपरिमेय संख्याओं के लिए नियोजित होते हैं; पाई या π, उदाहरण के लिए, 3.14159... के रूप में प्रदर्शित किया जा सकता है।
अंश | विनकुलम | डॉट्स | कोष्टक | आर्क | अंडाकार |
---|---|---|---|---|---|
1/9 | 0.1 | 0. | 0.(1) | 0.1 | 0.111... |
1/3 = 3/9 | 0.3 | 0. | 0.(3) | 0.3 | 0.333... |
2/3 = 6/9 | 0.6 | 0. | 0.(6) | 0.6 | 0.666... |
9/11 = 81/99 | 0.81 | 0. | 0.(81) | 0.81 | 0.8181... |
7/12 = 525/900 | 0.583 | 0.58 | 0.58(3) | 0.583 | 0.58333... |
1/7 = 142857/999999 | 0.142857 | 0.4285 | 0.(142857) | 0.142857 | 0.142857142857... |
1/81 = 12345679/999999999 | 0.012345679 | 0.1234567 | 0.(012345679) | 0.012345679 | 0.012345679012345679... |
22/7 = 3142854/999999 | 3.142857 | 3.4285 | 3.(142857) | 3.142857 | 3.142857142857... |
अंग्रेजी में, दोहराए जाने वाले दशमलव को जोर से पढ़ने के कई तरीके हैं। उदाहरण के लिए, 1.234 इसे पढ़ा जा सकता है बिंदु दो तीन चार दोहराता है, बिंदु दो दोहराता है तीन चार, बिंदु दो आवर्ती तीन चार, बिंदु दो दोहराता है तीन चार या बिंदु दो अनंत तीन चार में दोहराता है।
दशमलव विस्तार और पुनरावृत्ति अनुक्रम
भिन्न के रूप में दर्शाई गई परिमेय संख्या को दशमलव रूप में परिवर्तित करने के लिए, दीर्घ विभाजन का उपयोग किया जा सकता है। उदाहरण के लिए, परिमेय संख्या 5/74 पर विचार करें :
0.0675
74) 5.00000
4.44
560
518
420
370
500
यहाँ पर ध्यान दें कि प्रत्येक चरण में हमारे पास शेष है; ऊपर प्रदर्शित क्रमिक अवशेष 56, 42, 50 हैं। जब हम शेष के रूप में 50 पर पहुंचते हैं, और 0 को नीचे लाते हैं, तो हम पाते हैं कि हम 500 को 74 से विभाजित कर रहे हैं, जो कि वही समस्या है जिससे हमने प्रारंभिक की थी। इसलिए, दशमलव दोहराता है: 0.0675675675.....
प्रत्येक परिमेय संख्या या तो समाप्ति या आवर्ती दशमलव है
किसी दिए गए भाजक के लिए, केवल परिमित रूप से अनेक भिन्न अवशेष हो सकते हैं। ऊपर दिए गए उदाहरण में, 74 संभावित अवशेष 0, 1, 2, ..., 73 हैं। यदि विभाजन के किसी भी बिंदु पर शेष 0 है, तो विस्तार उस बिंदु पर समाप्त हो जाता है। फिर दोहराव की लंबाई, जिसे अवधि भी कहा जाता है, को 0 के रूप में परिभाषित किया गया है।
यदि 0 कभी भी शेष के रूप में नहीं आता है, तो विभाजन प्रक्रिया सदैव के लिए जारी रहती है, और अंत में, शेष अवश्य होना चाहिए जो पहले हुआ हो। विभाजन में अगला चरण भागफल में वही नया अंक देगा, और वही नया शेषफल, जैसा कि पिछली बार का शेष समान था। इसलिए, निम्न विभाजन उसी परिणाम को दोहराएगा। अंकों के दोहराव क्रम को दोहराव कहा जाता है जिसकी निश्चित लंबाई 0 से अधिक होती है, जिसे अवधि भी कहा जाता है।[3]
प्रत्येक दोहराव या समाप्ति दशमलव परिमेय संख्या है
प्रत्येक दोहराई जाने वाली दशमलव संख्या पूर्णांक गुणांकों के साथ रेखीय समीकरण को संतुष्ट करती है, और इसका अनूठा समाधान परिमेय संख्या है। बाद के बिंदुओं को स्पष्ट करने के लिए, संख्या α = 5.8144144144... उपरोक्त समीकरण को 10000α − 10α = 58144.144144... − 58.144144... = 58086 संतुष्ट करता है, जिसका मान α = 58086/9990 = 3227/555 है, इन पूर्णांक गुणांकों को खोजने की प्रक्रिया का वर्णन किया गया है दोहराए जाने वाले दशमलव को भिन्नों में परिवर्तित करता हैं।
मूल्यों की तालिका
दशमलव
विस्तार |
ℓ10 | द्विआधारी
विस्तार |
ℓ2 | |
---|---|---|---|---|
1/2 | 0.5 | 0 | 0.1 | 0 |
1/3 | 0.3 | 1 | 0.01 | 2 |
1/4 | 0.25 | 0 | 0.01 | 0 |
1/5 | 0.2 | 0 | 0.0011 | 4 |
1/6 | 0.16 | 1 | 0.001 | 2 |
1/7 | 0.142857 | 6 | 0.001 | 3 |
1/8 | 0.125 | 0 | 0.001 | 0 |
1/9 | 0.1 | 1 | 0.000111 | 6 |
1/10 | 0.1 | 0 | 0.00011 | 4 |
1/11 | 0.09 | 2 | 0.0001011101 | 10 |
1/12 | 0.083 | 1 | 0.0001 | 2 |
1/13 | 0.076923 | 6 | 0.000100111011 | 12 |
1/14 | 0.0714285 | 6 | 0.0001 | 3 |
1/15 | 0.06 | 1 | 0.0001 | 4 |
1/16 | 0.0625 | 0 | 0.0001 | 0 |
दशमलव
विस्तार |
ℓ10 | |
---|---|---|
1/17 | 0.0588235294117647 | 16 |
1/18 | 0.05 | 1 |
1/19 | 0.052631578947368421 | 18 |
1/20 | 0.05 | 0 |
1/21 | 0.047619 | 6 |
1/22 | 0.045 | 2 |
1/23 | 0.0434782608695652173913 | 22 |
1/24 | 0.0416 | 1 |
1/25 | 0.04 | 0 |
1/26 | 0.0384615 | 6 |
1/27 | 0.037 | 3 |
1/28 | 0.03571428 | 6 |
1/29 | 0.0344827586206896551724137931 | 28 |
1/30 | 0.03 | 1 |
1/31 | 0.032258064516129 | 15 |
दशमलव
विस्तार |
ℓ10 | |
---|---|---|
1/32 | 0.03125 | 0 |
1/33 | 0.03 | 2 |
1/34 | 0.02941176470588235 | 16 |
1/35 | 0.0285714 | 6 |
1/36 | 0.027 | 1 |
1/37 | 0.027 | 3 |
1/38 | 0.0263157894736842105 | 18 |
1/39 | 0.025641 | 6 |
1/40 | 0.025 | 0 |
1/41 | 0.02439 | 5 |
1/42 | 0.0238095 | 6 |
1/43 | 0.023255813953488372093 | 21 |
1/44 | 0.0227 | 2 |
1/45 | 0.02 | 1 |
1/46 | 0.02173913043478260869565 | 22 |
इस प्रकार अंश एक इकाई अंश है 1/n और ℓ10 (दशमलव) दोहराव की लंबाई होती है।
लंबाई ℓ10(एन) के दशमलव दोहराने की 1/n, n = 1, 2, 3, ..., हैं:
- 0, 0, 1, 0, 0, 1, 6, 0, 1, 0, 2, 1, 6, 6, 1, 0, 16, 1, 18, 0, 6, 2, 22, 1, 0 , 6, 3, 6, 28, 1, 15, 0, 2, 16, 6, 1, 3, 18, 6, 0, 5, 6, 21, 2, 1, 22, 46, 1, 42, 0 , 16, 6, 13, 3, 2, 6, 18, 28, 58, 1, 60, 15, 6, 0, 6, 2, 33, 16, 22, 6, 35, 1, 8, 3, 1 , ... (sequence A051626 in the OEIS).
लंबाई कीℓ2(n) तुलना के लिए,बाइनरी संख्या का # प्रतिनिधित्व भिन्नों का दोहराव 1/n, n = 1, 2, 3, ...,होता हैं:
- 0, 0, 2, 0, 4, 2, 3, 0, 6, 4, 10, 2, 12, 3, 4, 0, 8, 6, 18, 4, 6, 10, 11, 2, 20 , 12, 18, 3, 28, 4, 5, 0, 10, 8, 12, 6, 36, 18, 12, 4, 20, 6, 14, 10, 12, 11, ... (=A007733[एन], यदि एन 2 की शक्ति नहीं है और =0)।
दशमलव की पुनरावृत्ति होती है 1/n, n = 1, 2, 3, ..., हैं। , 384615, 037, 571428, 0344827586206896551724137931, 3, ... (sequence A036275 in the OEIS).
दशमलव दोहराव की लंबाई 1/p, p = 2, 3, 5, ... (nth अभाज्य), हैं:
- 0, 1, 0, 6, 2, 6, 16, 18, 22, 28, 15, 3, 5, 21, 46, 13, 58, 60, 33, 35, 8, 13, 41, 44, 96 , 4, 34, 53, 108, 112, 42, 130, 8, 46, 148, 75, 78, 81, 166, 43, 178, 180, 95, 192, 98, 99, 30, 222, 113, 228 , 232, 7, 30, 50, 256, 262, 268, 5, 69, 28, ... (sequence A002371 in the OEIS)
जिसके लिए कम से कम परिमेय संख्या p 1/p दशमलव पुनरावृत्त लंबाई n, n = 1, 2, 3, ..., हैं। जिसका मान 859, 757, 29, 3191, 211, ... होता हैं (sequence A007138 in the OEIS)
जिसके लिए कम से कम परिमेय संख्या p k/p के लिए अलग-अलग चक्र हैं जिसका मान (1 ≤ k ≤ p−1), n = 1, 2, 3, ..., के बीच होता हैं:
- 7, 3, 103, 53, 11, 79, 211, 41, 73, 281, 353, 37, 2393, 449, 3061, 1889, 137, 2467, 16189, 641, 3109, 4973, 11087, 1321, 101 , 7151, 7669, 757, 38629, 1231, ... (sequence A054471 in the OEIS).
प्रधान भाजक के साथ अंश
2 या 5 (अर्थात् 10 के सहअभाज्य) के अतिरिक्त अभाज्य संख्या भाजक के साथ सबसे कम शब्दों में अंश सदैव दोहराए जाने वाले दशमलव का उत्पादन करता है। दोहराव की लंबाई (दोहराए जाने वाले दशमलव खंड की अवधि)। 1/p 10 प्रारूपो के लिए p के गुणक क्रम के बराबर होता है। यदि 10 आदिम रूट मॉड्यूलो एन मॉड्यूलो पी है, तो पुनरावृत्त लंबाई p − 1 के बराबर है; यदि नहीं, तो पुनरावृत्त लंबाई p − 1 का कारक है। इस परिणाम को Fermat की छोटी प्रमेय से निकाला जा सकता है, जो बताता है कि 10p−1 ≡ 1 (mod p).
5 से बड़ी किसी भी अभाज्य संख्या के व्युत्क्रम की पुनरावृत्ति का आधार-10 डिजिटल जड़ 9 से विभाज्य है।[4] यदि दोहराव की लंबाई 1/p अभाज्य p के लिए p − 1 के बराबर होती है तो पूर्णांक के रूप में अभिव्यक्त दोहराव को 'चक्रीय संख्या' कहा जाता है।
चक्रीय संख्या
इस समूह से संबंधित अंशों के उदाहरण हैं:
- 1/7 = 0.142857, 6 दोहराए जाने वाले अंक
- 1/17 = 0.0588235294117647, 16 दोहराए जाने वाले अंक
- 1/19 = 0.052631578947368421, 18 दोहराए जाने वाले अंक
- 1/23 = 0.0434782608695652173913, 22 दोहराए जाने वाले अंक
- 1/29 = 0.0344827586206896551724137931, 28 दोहराए जाने वाले अंक
- 1/47 = 0.0212765957446808510638297872340425531914893617, 46 दोहराए जाने वाले अंक
- 1/59 = 0.0169491525423728813559322033898305084745762711864406779661, 58 दोहराए जाने वाले अंक
- 1/61 = 0.016393442622950819672131147540983606557377049180327868852459, 60 दोहराए जाने वाले अंक
- 1/97 = 0.010309278350515463917525773195876288659793814432989690721649484536082474226804123711340206185567, 96 दोहराए जाने वाले अंक
सूची भिन्नों को सम्मलित करने के लिए आगे बढ़ सकती है 1/109, 1/113, 1/131, 1/149, 1/167, 1/179, 1/181, 1/193, वगैरह। (sequence A001913 in the OEIS).
चक्रीय संख्या का प्रत्येक उचित गुणक (अर्थात, अंकों की समान संख्या वाला गुणक) घूर्णन होता है:
- 1/7 = 1 × 0.142857... = 0.142857...
- 2/7 = 2 × 0.142857... = 0.285714...
- 3/7 = 3 × 0.142857... = 0.428571...
- 4/7 = 4 × 0.142857... = 0.571428...
- 5/7 = 5 × 0.142857... = 0.714285...
- 6/7 = 6 × 0.142857... = 0.857142...
चक्रीय व्यवहार का कारण लंबे विभाजन के अंकगणितीय अभ्यास से स्पष्ट होता है 1/7: अनुक्रमिक अवशेष चक्रीय अनुक्रम होते हैं {1, 3, 2, 6, 4, 5}. इस चक्रीय संख्या के अधिक गुणों के लिए लेख 142,857 भी देखते हैं।एक अंश जो चक्रीय है, इस प्रकार समान लंबाई का आवर्ती दशमलव होता है जो दो अनुक्रमों में नाइन के पूरक रूप में विभाजित होता है। उदाहरण के लिए 1/7 '142' प्रारंभ होता है और उसके बाद '857' होता है 6/7 (घूर्णन द्वारा) '857' प्रारंभ होता है और उसके बाद इसके नौ ' पूरक '142' होते हैं।
एक चक्रीय संख्या के दोहराव का रोटेशन सदैव इस तरह से होता है कि प्रत्येक उत्तरोत्तर पुनरावृत्ति पिछले से बड़ी संख्या होती है। उपरोक्त क्रम में, उदाहरण के लिए, हम देखते हैं कि 0.142857... < 0.285714... < 0.428571... < 0.571428... < 0.714285... < 0.857142.... यह, लंबे दोहराव वाले चक्रीय अंशों के लिए, हमें आसानी से यह अनुमान लगाने की अनुमति देता है कि किसी भी प्राकृतिक संख्या n से अंश को गुणा करने का परिणाम क्या होगा, जब तक कि पुनरावृत्ति ज्ञात हो।
एक उचित अभाज्य p अभाज्य होता है जो आधार 10 में अंक 1 पर समाप्त होता है और जिसके व्युत्क्रम आधार 10 में लंबाई p − 1 के साथ दोहराव होता है। ऐसे अभाज्यों में, प्रत्येक अंक 0, 1,..., 9 दोहराव में दिखाई देता है उतनी ही बार इसे अनुक्रमित किया जाता है जितनी बार दूसरे अंक को देता है वे (अर्थात्, p − 1/10 टाइम्स)हैं।[5]: 166
- 61, 131, 181, 461, 491, 541, 571, 701, 811, 821, 941, 971, 1021, 1051, 1091, 1171, 1181, 1291, 1301, 1349, 1381, 1531, 1571, 1621, 1741, 1811, 1829, 1861,... (sequence A073761 in the OEIS).
एक प्राइम उचित प्राइम होते है और यदि केवल यह 1 मॉड 10 के लिए पूर्ण रीप्टेड प्राइम और मॉड्यूलर अंकगणितीय होते है।
यदि अभाज्य p पूर्ण रीप्टेड अभाज्य और सुरक्षित अभाज्य दोनों है, तब 1/p p − 1 छद्म-यादृच्छिक संख्याओं|छद्म-यादृच्छिक अंकों की धारा उत्पन्न करता है। और वे अभाज्य हैं
- 7, 23, 47, 59, 167, 179, 263, 383, 503, 863, 887, 983, 1019, 1367, 1487, 1619, 1823,... (sequence A000353 in the OEIS).
अभाज्य संख्याओं के अन्य व्युत्क्रम
अभाज्य संख्याओं के कुछ व्युत्क्रम जो चक्रीय संख्या उत्पन्न नहीं करते हैं:
- 1/3 = 0.3, जिसकी अवधि (पुनरावृत्ति लंबाई) 1 है।
- 1/11 = 0.09, जिसकी अवधि 2 है।
- 1/13 = 0.076923, जिसकी अवधि 6 है।
- 1/31 = 0.032258064516129, जिसकी अवधि 15 है।
- 1/37 = 0.027, जिसकी अवधि 3 है।
- 1/41 = 0.02439, जिसकी अवधि 5 है।
- 1/43 = 0.023255813953488372093, जिसकी अवधि 21 है।
- 1/53 = 0.0188679245283, जिसकी अवधि 13 है।
- 1/67 = 0.014925373134328358208955223880597, जिसकी अवधि 33 है।
(sequence A006559 in the OEIS) कारण यह है कि 3 9 का भाजक है, 11 99 का भाजक है, 41 99999 का भाजक है, आदि। की अवधि ज्ञात करना 1/p, हम जाँच कर सकते हैं कि क्या अभाज्य p किसी संख्या 999...999 को विभाजित करता है जिसमें अंकों की संख्या p − 1 को विभाजित किया जाता है है। चूंकि अवधि कभी भी p − 1 से अधिक नहीं होती है,तब हम गणना करके इसे प्राप्त कर सकते हैं 10p−1 − 1/p. उदाहरण के लिए, हमें संख्या 11 मिलती है।
और फिर निरीक्षण द्वारा 09 की पुनरावृत्ति और 2 की अवधि ज्ञात करते है।
अभाज्य संख्याओं के उन व्युत्क्रमों को दोहराए जाने वाले दशमलव के कई क्रमों से जोड़ा जा सकता है। उदाहरण के लिए,संख्या के गुणक 1/13 अलग-अलग पुनरावृत्तियों के साथ दो सेटों में विभाजित किया जा सकता है। पहला सेट है:
- 1/13 = 0.076923...
- 10/13 = 0.769230...
- 9/13 = 0.692307...
- 12/13 = 0.923076...
- 3/13 = 0.230769...
- 4/13 = 0.307692...,
जहां प्रत्येक अंश की पुनरावृत्ति 076923 की चक्रीय पुन: व्यवस्था होती है। जिसमें दूसरा सेट है:
- 2/13 = 0.153846...
- 7/13 = 0.538461...
- 5/13 = 0.384615...
- 11/13 = 0.846153...
- 6/13 = 0.461538...
- 8/13 = 0.615384...,
जहां प्रत्येक अंश की पुनरावृत्ति 153846 की चक्रीय पुन: व्यवस्था है।
सामान्यतः, प्राइम पी के व्युत्क्रम उचित गुणकों के सेट में n उपसमुच्चय होते हैं, जिनमें से प्रत्येक की पुनरावृत्ति लंबाई k होती है, जहां nk = p − 1 होता है।
कुल नियम
एक स्वेच्छ पूर्णांक n के लिए, लंबाई L(n) के दशमलव दोहराव का 1/n φ(n) को विभाजित करता है, जहाँ φ कुल कार्य है। लम्बाई के बराबर है φ(n) यदि और केवल यदि 10 आदिम रूट मॉड्यूलो n है।[6] विशेष रूप से, यह इस प्रकार है L(p) = p − 1 यदि और केवल यदि पी प्रमुख है और 10 आदिम रूट मॉड्यूलो पी है। फिर, के दशमलव विस्तार n/p n = 1, 2, ..., p − 1 के लिए, सभी की अवधि p − 1 है और केवल चक्रीय क्रमपरिवर्तन से भिन्न है। ऐसी संख्या p को पूर्ण पुनरावर्ती अभाज्य कहते हैं।
समग्र पूर्णांकों का व्युत्क्रम 10 का सहअभाज्य है
यदि p 2 या 5 के अतिरिक्त कोई अभाज्य संख्या होती है,तो भिन्न का दशमलव निरूपण 1/p2 दोहराया जाता है:
- 1/49 = 0.020408163265306122448979591836734693877551.
अवधि (पुनरावृत्ति लंबाई) L(49) λ(49) = 42 का कारक होना चाहिए, जहां λ(n) को कारमाइकल समारोह के रूप में जाना जाता है। यह कारमाइकल फ़ंक्शन | कारमाइकल के प्रमेय से आता है जो बताता है कि यदि n धनात्मक पूर्णांक है तो λ(n) सबसे छोटा पूर्णांक m है जैसे कि
प्रत्येक पूर्णांक a के लिए जो n का सहअभाज्य है।
अवधि 1/p2 सामान्यतः पीटी हैp, जहां टीp की अवधि है 1/p. ऐसे तीन ज्ञात अभाज्य हैं जिनके लिए यह सत्य नहीं है, और उनके लिए अवधि 1/p2 की अवधि के समान है 1/p क्योंकि प2 10 को विभाजित करता हैपी−1−1. ये तीन अभाज्य संख्याएँ 3, 487 और 56598313 हैं (sequence A045616 in the OEIS).[7] इसी प्रकार, अवधि 1/pk सामान्यतः पी हैk–1टीp यदि p और q 2 या 5 के अतिरिक्त अन्य अभाज्य संख्याएँ हैं, तो भिन्न का दशमलव निरूपण 1/pq दोहराता है। उदाहरण है 1/119:
- 119 = 7 × 1
- λ(7 × 17) = लघुत्तम समापवर्त्य(λ(7), λ(17)) = लघुत्तम समापवर्त्य (6, 16) = 48,
जहाँ LCM लघुत्तम समापवर्त्य को दर्शाता है।
की अवधि 'टी' 1/pq λ(pq) का गुणनखंड है और इस मामले में यह 48 होता है:
- 1/119 = 0.008403361344537815126050420168067226890756302521.
अवधि टी 1/pq एलसीएम है (टीp, टीq), जहां टीp की अवधि है 1/p और टीq की अवधि है 1/q.
यदि p, q, r, आदि 2 या 5 के अतिरिक्त अन्य अभाज्य संख्याएँ हैं, और k, ℓ, m, आदि धनात्मक पूर्णांक हैं, तो
की अवधि के साथ आवर्ती दशमलव है
जहां टीpk, टीqℓ, टीrm,... क्रमशः दोहराए जाने वाले दशमलव की अवधि हैं 1/pk, 1/qℓ, 1/rm,... जैसा कि ऊपर परिभाषित किया गया है।
==पूर्णांकों का व्युत्क्रम 10== का सहअभाज्य नहीं है एक पूर्णांक जो 10 से सहअभाज्य नहीं है, लेकिन 2 या 5 के अतिरिक्त प्रमुख कारक है,और यह पारस्परिक है जो अंततः आवधिक है, लेकिन दोहराए जाने वाले भाग से पहले अंकों के गैर-दोहराए जाने वाले अनुक्रम के साथ होते हैं।और पारस्परिक रूप से व्यक्त किया जा सकता है:
जहाँ a और b दोनों शून्य नहीं हैं।
इस अंश को इस प्रकार भी व्यक्त किया जा सकता है:
यदि ए> बी, या के रूप में
यदि बी> ए, या के रूप में
यदि ए = बी।
दशमलव में है:
- दशमलव बिंदु के बाद अधिकतम (ए, बी) अंकों का प्रारंभिक संक्रमण होता है। क्षणिक में कुछ या सभी अंक शून्य हो सकते हैं।
- बाद का दोहराव जो भिन्न के ही समान है 1/pk qℓ ⋯.
उदाहरण के लिए 1/28 = 0.03571428:
- a = 2, b = 0, और अन्य कारक pk qℓ ⋯ = 7
- 2 प्रारंभिक गैर-दोहराए जाने वाले अंक हैं, 03; और
- 6 दोहराए जाने वाले अंक हैं, 571428, उतनी ही राशि 1/7 है।
दोहराए जाने वाले दशमलव को अंशों में बदलना
दोहराए जाने वाले दशमलव को देखते हुए, इसे उत्पन्न करने वाले अंश की गणना करना संभव है। उदाहरण के लिए:
(उपर्युक्त पंक्ति के प्रत्येक पक्ष को 10 से गुणा करें) (पहली पंक्ति को दूसरी से घटाएं) (न्यूनतम शब्दों में कम करें)
एक और उदाहरण:
(दोहराव की शुरुआत के लिए दशमलव ले जाएं = 1 स्थान से आगे बढ़ें = 10 से गुणा करें) (दूसरा दोहराव यहाँ पहले के साथ तुलना करें = 2 स्थानों से आगे बढ़ें = 100 से गुणा करें) (दशमलव स्पष्ट करने के लिए घटाना) (न्यूनतम शब्दों में कम करें)
एक शॉर्टकट
नीचे दी गई प्रक्रिया को विशेष रूप से लागू किया जा सकता है यदि दोहराव में n अंक हैं, जिनमें से अंतिम 1 को छोड़कर सभी 0 हैं। उदाहरण के लिए n = 7 के लिए:
तो यह विशेष रूप से दोहराए जाने वाला दशमलव अंश के अनुरूप है 1/10n − 1, जहां भाजक वह संख्या होती है जिसे n 9s के रूप में लिखा जाता है। बस इतना ही जानते हुए, सामान्य दोहराए जाने वाले दशमलव को समीकरण को हल किए बिना अंश के रूप में व्यक्त किया जा सकता है। उदाहरण के लिए, कोई कारण हो सकता है:
दशमलव बिंदु के ठीक बाद, अंश के रूप में प्रारंभ करते हुए, n-अंकीय अवधि (दोहराव लंबाई) के साथ दोहराए जाने वाले दशमलव को व्यक्त करने वाला सामान्य सूत्र प्राप्त करना संभव होता है:
अधिक स्पष्ट रूप से, निम्नलिखित मामलों को प्राप्त किया जाता है:
यदि दोहराए जाने वाला दशमलव 0 और 1 के बीच होती है,और दोहराए जाने वाला ब्लॉक n अंक लंबा है,तो पहले दशमलव बिंदु के ठीक बाद होता है,तब अंश (आवश्यक रूप से कम नहीं) एन-डिजिट ब्लॉक द्वारा विभाजित पूर्णांक संख्या होती है। n 9s द्वारा प्रतिनिधित्व किया। उदाहरण के लिए,
- 0.444444... = 4/9 चूंकि दोहराए जाने वाला ब्लॉक 4 है (1 अंकों का ब्लॉक),
- 0.565656... = 56/99 चूंकि दोहराए जाने वाला ब्लॉक 56 (एक 2-अंकीय ब्लॉक) है,
- 0.012012... = 12/999 चूंकि दोहराए जाने वाला ब्लॉक 012 (एक 3-अंकीय ब्लॉक) है; यह और कम हो जाता है 4/333.
- 0.999999... = 9/9 = 1, क्योंकि दोहराए जाने वाला ब्लॉक 9 है (1 अंकों का ब्लॉक भी)
यदि दोहराव वाला दशमलव ऊपर जैसा है,यथार्थ इसके कि दशमलव बिंदु और दोहराए जाने वाले एन-डिजिट ब्लॉक के बीच k (अतिरिक्त) अंक 0 हैं, तो हर के n अंक 9 के बाद बस k अंक 0 जोड़ सकते हैं (और, जैसा कि पहले, अंश बाद में सरलीकृत किया जा सकता है)। उदाहरण के लिए,
- 0.000444... = 4/9000 चूंकि दोहराए जाने वाला ब्लॉक 4 है और यह ब्लॉक 3 शून्य से पहले है,
- 0.005656... = 56/9900 चूंकि दोहराए जाने वाला ब्लॉक 56 है और इसके पहले 2 शून्य हैं,
- 0.00012012... = 12/99900 = 1/8325 चूंकि दोहराए जाने वाला ब्लॉक 012 है और यह 2 शून्य से पहले है।
किसी भी दोहराए जाने वाले दशमलव को ऊपर वर्णित रूप में नहीं समाप्ति दशमलव के योग के रूप में लिखा जा सकता है और उपरोक्त दो प्रकारों में से के दोहराए जाने वाले दशमलव (वास्तव में पहला प्रकार पर्याप्त है, लेकिन इसके लिए समाप्ति दशमलव को नकारात्मक होने की आवश्यकता हो सकती है)। उदाहरण के लिए,
- 1.23444... = 1.23 + 0.00444... = 123/100 + 4/900 = 1107/900 + 4/900 = 1111/900
- या वैकल्पिक रूप से 1.23444... = 0.79 + 0.44444... = 79/100 + 4/9 = 711/900 + 400/900 = 1111/900
- 0.3789789... = 0.3 + 0.0789789... = 3/10 + 789/9990 = 2997/9990 + 789/9990 = 3786/9990 = 631/1665
- या वैकल्पिक रूप से 0.3789789... = -0.6 + 0.9789789... = -6/10 + 978/999 = −5994/9990 + 9780/9990 = 3786/9990 = 631/1665
एक और भी तेज़ तरीका है दशमलव बिंदु को पूरी तरह से अनदेखा करना और इस तरह आगे बढ़ना
- 1.23444... = 1234 − 123/900 = 1111/900 (हर में 9 और दो 0 होते हैं क्योंकि अंक की पुनरावृत्ति होती है और दशमलव बिंदु के बाद दो गैर-दोहराए जाने वाले अंक होते हैं)
- 0.3789789... = 3789 − 3/9990 = 3786/9990 (हर में तीन 9 और 0 होता है क्योंकि तीन अंकों की पुनरावृत्ति होती है और दशमलव बिंदु के बाद गैर-दोहराव वाला अंक होता है)
यह इस प्रकार है कि आवधिक फ़ंक्शन n के साथ कोई दोहराए जाने वाला दशमलव, और दशमलव बिंदु के बाद k अंक जो दोहराए जाने वाले भाग से संबंधित नहीं होती है,इसको (आवश्यक रूप से कम नहीं) अंश के रूप में लिखा जा सकता है जिसका भाजक (10) हैn − 1)10क</सुप>.
इसके विपरीत अंश के दोहराए जाने वाले दशमलव की अवधि c/d (अधिकतम) सबसे छोटी संख्या n होगी जैसे कि 10n − 1, d से विभाज्य संख्या होती है।
उदाहरण के लिए,अंश 2/7 d = 7 है, और सबसे छोटा k जो 10 बनाता हैk − 1 7 से विभाज्य है k = 6, क्योंकि 999999 = 7 × 142857। भिन्न की अवधि 2/7 इसलिए 6 है।
संकुचित रूप में
निम्न चित्र उपरोक्त शॉर्टकट के प्रकार के संपीड़न का सुझाव देता है। जिसके चलते दशमलव संख्या के पूर्णांक भाग के अंकों का प्रतिनिधित्व करता है (दशमलव बिंदु के बाईं ओर), प्रीपरियोड के अंकों की स्ट्रिंग बनाता है और इसकी लंबाई, और लंबाई के साथ दोहराए गए अंकों (अवधि) की स्ट्रिंग होना जो शून्य नहीं होती है।
उत्पन्न अंश में, अंक दोहराया जाएगा बार, और अंक दोहराया जाएगा बार है।
ध्यान दें कि दशमलव में पूर्णांक भाग की अनुपस्थिति में, शून्य द्वारा दर्शाया जाएगा, जो अन्य अंकों के बाईं ओर होने के कारण अंतिम परिणाम को प्रभावित नहीं करेगा, और जनरेटिंग फ़ंक्शन की गणना में छोड़ा जा सकता है।
उदाहरण:
अनंत श्रृंखला के रूप में दोहराए जाने वाले दशमलव
एक दोहराए जाने वाले दशमलव को अनंत श्रृंखला के रूप में भी व्यक्त किया जा सकता है। अर्थात्, दोहराए जाने वाले दशमलव को परिमेय संख्याओं की अनंत संख्या के योग के रूप में माना जा सकता है। सबसे सरल उदाहरण लेने के लिए,
उपरोक्त श्रृंखला ज्यामितीय श्रृंखला है जिसका पहला पद 1/10 और सामान्य कारक 1/10. क्योंकि सामान्य गुणनखंड का निरपेक्ष मान 1 से कम है, हम कह सकते हैं कि ज्यामितीय श्रृंखला अभिसरण श्रृंखला होती है और निम्नलिखित सूत्र का उपयोग करके अंश के रूप में अतिरिक्त मान ज्ञात करें जहां a श्रृंखला का पहला पद है और r है सामान्य कारक होते हैं।
इसी प्रकार,
गुणन और चक्रीय क्रमपरिवर्तन
गुणन में दोहराए जाने वाले दशमलव के चक्रीय व्यवहार से पूर्णांकों का निर्माण भी होता है जो कुछ संख्याओं से गुणा करने पर चक्रीय क्रमचय होते हैं। उदाहरण के लिए, 102564 × 4 = 410256. 102564 का दोहराव है 4/39 और 410256 का दोहराव 16/39.
दोहराव की लंबाई के अन्य गुण
मिशेल द्वारा पुनरावृत्त लंबाई (अवधि) के विभिन्न गुण दिए गए हैं[8] और डिक्सन।[9]
- की अवधि 1/k पूर्णांक k के लिए सदैव ≤ k − 1 होता है।
- यदि पी प्रधान है, की अवधि 1/p समान रूप से p − 1 में विभाजित करता है।
- यदि k संमिश्र है, की अवधि 1/k k − 1 से बिल्कुल कम है।
- की अवधि c/k, c कोप्राइम से k के लिए, की अवधि के बराबर है 1/k.
- यदि के = 2ए5bn जहां n > 1 और n 2 या 5 से विभाज्य नहीं है, तो क्षणिक की लंबाई 1/k अधिकतम (ए, बी) है, और अवधि आर के बराबर है, जहां आर सबसे छोटा पूर्णांक है 10r ≡ 1 (mod n).
- यदि p, p′, p″,... भिन्न अभाज्य संख्याएँ हैं, तो का आवर्त 1/p p′ p″ ⋯ की अवधियों के लघुत्तम समापवर्तक के बराबर है 1/p, 1/p′, 1/p″,....
- यदि k और k' में 2 या 5 के अतिरिक्त कोई उभयनिष्ठ अभाज्य गुणनखंड नहीं है, तो की अवधि 1/k k′ की अवधियों के लघुत्तम समापवर्तक के बराबर है 1/k और 1/k′.
- प्राइम पी के लिए, यदि
- कुछ मीटर के लिए, लेकिन
- फिर c ≥ 0 के लिए हमारे पास है
- यदि p 'उचित अभाज्य' है जो 1 में समाप्त होता है, अर्थात, यदि का दोहराव 1/p कुछ h के लिए लंबाई p − 1 और p = 10h +1 की चक्रीय संख्या है, तो प्रत्येक अंक 0, 1, ..., 9 दोहराव में बिल्कुल h = प्रकट होता हैp − 1/10 बार।
दोहराव के कुछ अन्य गुणों के लिए, यह भी देखें।[10]
अन्य आधारों के लिए विस्तार
दोहराए जाने वाले दशमलव की विभिन्न विशेषताएं अन्य सभी पूर्णांक आधारों में संख्याओं के प्रतिनिधित्व तक विस्तारित होती हैं, केवल आधार 10 नहीं:
- किसी भी वास्तविक संख्या को पूर्णांक भाग के रूप में दर्शाया जा सकता है, जिसके बाद मूलांक बिंदु (दशमलव बिंदु का गैर-दशमलव प्रणालियों के लिए सामान्यीकरण) के बाद संख्यात्मक अंकों की परिमित या अनंत संख्या होती है।
- यदि आधार पूर्णांक है, तो समाप्ति क्रम स्पष्ट रूप से परिमेय संख्या का प्रतिनिधित्व करता है।
- एक परिमेय संख्या का समाप्ति क्रम होता है यदि पूरी तरह से कम किए गए भिन्नात्मक रूप के भाजक के सभी प्रमुख गुणनखंड भी आधार के गुणनखंड हों। ये संख्याएँ सघन सेट बनाती हैं Q और R.
- यदि स्थितीय संकेतन मानक है, अर्थात इसका आधार है
- अंकों के लगातार सेट के साथ संयुक्त
- साथ r := |b|, dr := d1 + r − 1 और 0 ∈ D, तो समाप्ति अनुक्रम स्पष्ट रूप से अंक 0 से युक्त गैर-समाप्ति दोहराए जाने वाले भाग के समान अनुक्रम के बराबर है। यदि आधार सकारात्मक है, तो स्ट्रिंग (कंप्यूटर विज्ञान) से आदेश समरूपता सम्मलित है # अनुक्रम का लेक्सिकोग्राफिकल ऑर्डर # परिमित और अनंत | वर्णमाला के दाहिनी ओर अनंत तार D वास्तविक के कुछ बंद अंतराल में, जो स्ट्रिंग्स को मैप करता है 0.A1A2...Andb और 0.A1A2...(An+1)d1 साथ Ai ∈ D और An ≠ db ही वास्तविक संख्या के लिए - और कोई अन्य डुप्लिकेट चित्र नहीं हैं। दशमलव प्रणाली में, उदाहरण के लिए, 0 है।9 = 1.0= 1; संतुलित टर्नरी सिस्टम में 0 होता है।1 = 1.T = 1/2.
- एक परिमेय संख्या में परिमित लंबाई का अनिश्चित काल तक दोहराव वाला क्रम होता है l, यदि घटे हुए भिन्न के हर में अभाज्य गुणनखंड है जो आधार का गुणनखंड नहीं होता है। यदि q घटे हुए हर का वह अधिकतम गुणनखण्ड है जो आधार का सहअभाज्य होते है, l सबसे छोटा प्रतिपादक है जैसे कि q विभाजित bl − 1. यह गुणक क्रम है ordq(b) अवशेष वर्ग का b mod q जो कारमाइकल फलन का भाजक है λ(q) जो बदले में से छोटा है q. दोहराव अनुक्रम परिमित लंबाई के क्षणिक से पहले होता है यदि कम अंश भी आधार के साथ प्रमुख कारक साझा करता है। दोहराव क्रम
- अंश का प्रतिनिधित्व करता है
- एक अपरिमेय संख्या में अनंत लंबाई का प्रतिनिधित्व होता है जो कि किसी भी बिंदु से परिमित लंबाई का अनिश्चित रूप से दोहराव वाला क्रम नहीं है।
उदाहरण के लिए, ग्रहण में, 1/2 = 0.6, 1/3 = 0.4, 1/4 = 0.3 और 1/6 = 0.2 सभी समाप्त; 1/5 = 0.2497 अवधि लंबाई 4 के साथ दोहराता है, 0.2 के समतुल्य दशमलव विस्तार के विपरीत; 1/7 = 0.186A35 डुओडेसिमल में अवधि 6 है, ठीक वैसे ही जैसे यह दशमलव में है।
यदि b पूर्णांक आधार है और k पूर्णांक है, तो
उदाहरण के लिए 1/7 डुओडेसिमल में:
- 1/7 = (1/10 + 5/102 + 21/103 + A5/104 + 441/105 + 1985/106 + ...)base12
जो 0 है।186A35base12. 10base12 12 हैbase10, 102</उप>base12 144 हैbase10, 21base12 25 हैbase10, भाईbase12 125 हैbase10.
सकारात्मक आधारों के लिए एल्गोरिथम
एक तर्कसंगत के लिए 0 < p/q < 1 (और आधार b ∈ N>1) इसकी लंबाई के साथ-साथ दोहराव का उत्पादन करने वाला निम्नलिखित एल्गोरिदम है: <वाक्यविन्यास हाइलाइट लैंग = म्यूपैड हाइलाइट = 9,10> समारोह b_adic (बी, पी, क्यू) // बी ≥ 2; 0 <पी <क्यू
स्थिर अंक = 0123... ; // मान b–1 वाले अंक तक
प्रारंभ
एस =; // अंकों की स्ट्रिंग स्थिति = 0; // सभी स्थान मूलांक बिंदु के ठीक ऊपर हैं जबकि परिभाषित नहीं है (होता है [पी]) करते हैं होता है [पी] = स्थिति; // शेष p के साथ स्थान की स्थिति बीपी = बी * पी; जेड = फ्लोर (बीपी/क्यू); // इंडेक्स जेड अंकों के भीतर: 0 ≤ जेड ≤ बी-1 पी = बी * पी - जेड * क्यू; // 0 ≤ पी <क्यू यदि पी = 0 तो एल = 0; यदि z = 0 नहीं तो एस = एस। सबस्ट्रिंग (अंक, z, 1) यदि अंत वापसी (ओं); यदि अंत एस = एस। सबस्ट्रिंग (अंक, जेड, 1); // अंकों के चरित्र को जोड़ें स्थिति + = 1; जबकि समाप्त करें एल = स्थिति - होता है [पी]; // पुनरावृत्ति की लंबाई (<q होने के नाते) // पुनरावृत्त के अंकों को विनकुलम द्वारा चिह्नित करें: for i from होती है[p] to pos-1 do सबस्ट्रिंग (एस, आई, 1) = ओवरलाइन (सबस्ट्रिंग (एस, आई, 1)); के लिए समाप्त वापसी (ओं);
अंत समारोह </वाक्यविन्यास हाइलाइट> पहली हाइलाइट की गई रेखा अंक की गणना करती है z.
अगली पंक्ति नए शेष की गणना करती है p′ विभाजन का मॉड्यूलर अंकगणित हर q. फर्श और छत के कार्यों के परिणामस्वरूप floor
अपने पास
इस प्रकार
और
क्योंकि ये सभी अवशेष p से कम गैर-ऋणात्मक पूर्णांक हैं q, उनकी केवल परिमित संख्या हो सकती है जिसके परिणामस्वरूप उन्हें पुनरावृत्ति करनी होगी while
कुंडली। इस तरह की पुनरावृत्ति को साहचर्य सरणी द्वारा पता लगाया जाता है occurs
. नया अंक z पीली रेखा में बनता है, जहाँ p एकमात्र अस्थिर होता है। लंबाई L दोहराव का भाग शेषफलों की संख्या के बराबर होता है (अनुभाग भी देखें #प्रत्येक परिमेय संख्या या तो सांत या आवर्ती दशमलव है)।
क्रिप्टोग्राफी के लिए आवेदन
दोहराए जाने वाले दशमलव (जिसे दशमलव अनुक्रम भी कहा जाता है) में क्रिप्टोग्राफ़िक और त्रुटि-सुधार कोडिंग के अनुप्रयोग पाए गए हैं।[11] इन अनुप्रयोगों में आधार 2 पर दोहराए जाने वाले दशमलव का सामान्यतः उपयोग किया जाता है जो बाइनरी अनुक्रमों को जन्म देता है। अधिकतम लंबाई बाइनरी अनुक्रम 1/p (जब 2 p का आदिम मूल हो) निम्नलिखित द्वारा दिया जाता है:[12]
अवधि p − 1 के इन अनुक्रमों में स्वत:सहसंबंध फ़ंक्शन होता है जिसमें बदलाव के लिए -1 का ऋणात्मक शिखर होता है p − 1/2. इन अनुक्रमों की यादृच्छिकता की कठोर परीक्षणों द्वारा जांच की गई है।[13]
यह भी देखें
- दशमलव प्रतिनिधित्व
- पूर्ण पश्चाताप प्रधान
- मिडी की प्रमेय
- परजीवी संख्या
- पिछला हुआ शून्य
- अद्वितीय प्रधान
- 0.999..., के बराबर दोहराए जाने वाला दशमलव
- कबूतर का सिद्धांत
संदर्भ और टिप्पणी
- ↑ Courant, R. and Robbins, H. What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, 1996: p. 67.
- ↑ Beswick, Kim (2004), "Why Does 0.999... = 1?: A Perennial Question and Number Sense", Australian Mathematics Teacher, 60 (4): 7–9
- ↑ For a base b and a divisor n, in terms of group theory this length divides
- ↑ Gray, Alexander J., "Digital roots and reciprocals of primes", Mathematical Gazette 84.09, March 2000, p. 86.
- ↑ Dickson, L. E., History of the Theory of Numbers, Volume 1, Chelsea Publishing Co., 1952.
- ↑ William E. Heal. Some Properties of Repetends. Annals of Mathematics, Vol. 3, No. 4 (Aug., 1887), pp. 97–103
- ↑ Albert H. Beiler, Recreations in the Theory of Numbers, p. 79
- ↑ Mitchell, Douglas W., "A nonlinear random number generator with known, long cycle length", Cryptologia 17, January 1993, pp. 55–62.
- ↑ Dickson, Leonard E., History of the Theory of Numbers, Vol. I, Chelsea Publ. Co., 1952 (orig. 1918), pp. 164–173.
- ↑ Armstrong, N. J., and Armstrong, R. J., "Some properties of repetends", Mathematical Gazette 87, November 2003, pp. 437–443.
- ↑ Kak, Subhash, Chatterjee, A. "On decimal sequences". IEEE Transactions on Information Theory, vol. IT-27, pp. 647–652, September 1981.
- ↑ Kak, Subhash, "Encryption and error-correction using d-sequences". IEEE Transactios on Computers, vol. C-34, pp. 803–809, 1985.
- ↑ Bellamy, J. "Randomness of D sequences via diehard testing". 2013. arXiv:1312.3618