गुणनात्मक प्रतिलोम: Difference between revisions

From Vigyanwiki
(TEXT)
 
(8 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Number which when multiplied by x equals 1}}
{{Short description|Number which when multiplied by x equals 1}}
{{distinguish-redirect|Reciprocal (mathematics)|reciprocation (geometry)}}
[[Image:Hyperbola one over x.svg|thumbnail|right|300px|alt=Graph showing the diagrammatic representation of limits approaching infinity|पारस्परिक कार्य: {{nowrap|1=''y'' = 1/''x''}}. 0 को छोड़कर प्रत्येक x के लिए, y इसके गुणात्मक व्युत्क्रम का प्रतिनिधित्व करता है। ग्राफ एक आयताकार अतिपरवलय बनाता है।]]गणित में, [[संख्या]] ''x'' के लिए '''गुणक व्युत्क्रम''' या '''व्युत्क्रम''', जिसे 1/''x'' या ''x''<sup>−1</sup> द्वारा लक्षित किया जाता है, एक ऐसी संख्या है जिसे x से [[गुणा]] करने पर [[गुणक पहचान|गुणात्मक पहचान]] 1 प्राप्त होती है। भिन्न ''a''/''b'' का गुणक व्युत्क्रम ''b''/''a'' है। किसी वास्तविक संख्या के गुणक व्युत्क्रम के लिए, 1 को संख्या से विभाजित करें। उदाहरण के लिए, 5 का व्युत्क्रम एक पाँचवाँ (1/5 या 0.2) है, और 0.25 का व्युत्क्रम 1 भाग 0.25, या 4 है। '''व्युत्क्रम फलन''', [[फलन]] f(x) जो x से 1/x को मानचित्रित करता है, एक ऐसे फलन का सबसे सरल उदाहरण है जो इसका अपना व्युत्क्रम (एक [[अंतर्वलन]]) है।
[[Image:Hyperbola one over x.svg|thumbnail|right|300px|alt=Graph showing the diagrammatic representation of limits approaching infinity|पारस्परिक कार्य: {{nowrap|1=''y'' = 1/''x''}}. 0 को छोड़कर प्रत्येक x के लिए, y इसके गुणात्मक व्युत्क्रम का प्रतिनिधित्व करता है। ग्राफ एक आयताकार अतिपरवलय बनाता है।]]गणित में, [[संख्या]] ''x'' के लिए '''गुणक व्युत्क्रम''' या '''व्युत्क्रम''', जिसे 1/''x'' या ''x''<sup>−1</sup> द्वारा लक्षित किया जाता है, एक ऐसी संख्या है जिसे x से [[गुणा]] करने पर [[गुणक पहचान|गुणात्मक पहचान]] 1 प्राप्त होती है। भिन्न ''a''/''b'' का गुणक व्युत्क्रम ''b''/''a'' है। किसी वास्तविक संख्या के गुणक व्युत्क्रम के लिए, 1 को संख्या से विभाजित करें। उदाहरण के लिए, 5 का व्युत्क्रम एक पाँचवाँ (1/5 या 0.2) है,और 0.25 का व्युत्क्रम 1 भाग 0.25, या 4 है। '''व्युत्क्रम फलन''', [[फलन]] f(x) जो x से 1/x को मानचित्रित करता है, एक ऐसे फलन का सबसे सरल उदाहरण है जो इसका अपना व्युत्क्रम (एक [[अंतर्वलन]]) है।


किसी संख्या से गुणा करना उसके व्युत्क्रम से विभाजित करने के समान है और इसके विपरीत। उदाहरण के लिए, 4/5 (या 0.8) से गुणा करने पर वही परिणाम मिलेगा जो 5/4 (या 1.25) से भाग देने पर मिलता है। इसलिए, किसी संख्या से गुणा करने के बाद उसके व्युत्क्रम से गुणा करने पर मूल संख्या प्राप्त होती है (क्योंकि संख्या का गुणनफल और उसका व्युत्क्रम 1 है)।
किसी संख्या से गुणा करना उसके व्युत्क्रम से विभाजित करने के समान है और इसके विपरीत है। उदाहरण के लिए, 4/5 (या 0.8) से गुणा करने पर वही परिणाम मिलेगा जो 5/4 (या 1.25) से भाग देने पर मिलता है। इसलिए, किसी संख्या से गुणा करने के बाद उसके व्युत्क्रम से गुणा करने पर मूल संख्या प्राप्त होती है (क्योंकि संख्या का गुणनफल और उसका व्युत्क्रम 1 है)।


व्युत्क्रम अवधि कम से कम पहले एनसाइक्लोपीडिया ब्रिटानिका (1797) के तीसरे संस्करण में दो संख्याओं का वर्णन करने के लिए सामान्य उपयोग में था जिसका गुणनफल 1 है; व्युत्क्रमानुपात में ज्यामितीय मात्राओं को [[यूक्लिड]] के तत्वों के 1570 अनुवाद में व्युत्क्रम के रूप में वर्णित किया गया है।<ref>{{not a typo|"In equall Parallelipipedons the bases are reciprokall to their altitudes"}}. ''OED'' "Reciprocal" §3a. Sir [[Henry Billingsley]] translation of Elements XI, 34.</ref>
व्युत्क्रम अवधि कम से कम पहले एनसाइक्लोपीडिया ब्रिटानिका (1797) के तीसरे संस्करण में दो संख्याओं का वर्णन करने के लिए सामान्य उपयोग में थी जिसका गुणनफल 1 है; व्युत्क्रमानुपात में ज्यामितीय मात्राओं को [[यूक्लिड]] के तत्वों के 1570 अनुवाद में व्युत्क्रम के रूप में वर्णित किया गया है।<ref>{{not a typo|"In equall Parallelipipedons the bases are reciprokall to their altitudes"}}. ''OED'' "Reciprocal" §3a. Sir [[Henry Billingsley]] translation of Elements XI, 34.</ref>


गुणात्मक व्युत्क्रम वाक्यांश में, क्वालीफायर गुणक को प्रायः विलोपित किया जाता है और फिर अकथित रूप से समझा जाता है (योगात्मक व्युत्क्रम के विपरीत)गुणात्मक व्युत्क्रमों को कई गणितीय डोमेन के साथ-साथ संख्याओं पर भी परिभाषित किया जा सकता है। इन प्रकरणो में ऐसा हो सकता है कि {{nowrap|''ab'' ≠ ''ba''}}; फिर "उलटा" सामान्यतः इसका तात्पर्य है कि एक तत्व दोनों बाएं और दाएं व्युत्क्रम है।
गुणात्मक व्युत्क्रम वाक्यांश में, विशेषक गुणक को प्रायः विलोपित किया जाता है और फिर अकथित रूप से समझा जाता (योगात्मक व्युत्क्रम के विपरीत) है। गुणात्मक व्युत्क्रमों को कई गणितीय डोमेन के साथ-साथ संख्याओं पर भी परिभाषित किया जा सकता है। इन प्रकरणो में ऐसा हो सकता है कि {{nowrap|''ab'' ≠ ''ba''}}; फिर "उलटा" सामान्यतः इसका तात्पर्य है कि एक तत्व दोनों बाएं और दाएं व्युत्क्रम है।


संकेतन ''f'' <sup>−1</sup> का प्रयोग कभी-कभी फलन f के व्युत्क्रम फलन के लिए भी किया जाता है, जो बहुसंख्यक व्युत्क्रम के समान नहीं होने वाले अधिकांश कार्यों के लिए होता है। उदाहरण के लिए, गुणात्मक व्युत्क्रम {{nowrap|1=1/(sin ''x'') = (sin ''x'')<sup>−1</sup>}}, x की व्युत्क्रमज्या है, और x की व्युत्क्रम ज्या, जिसे {{nowrap|sin<sup>−1</sup> ''x''}} या {{nowrap|आर्क्सिन ''x''}} द्वारा प्रदर्शित किया जाता है। पारस्परिक बनाम व्युत्क्रम शब्दावली अंतर इस भेद को बनाने के लिए पर्याप्त नहीं है, क्योंकि कई लेखक विपरीत नामन सम्मेलन को पसंद करते हैं, संभवतः ऐतिहासिक कारणों से (उदाहरण के लिए फ्रेंच भाषा में, व्युत्क्रम कार्य को अधिमानतः बायजेक्शन रेसिप्रोक कहा जाता है)।  
संकेतन ''f'' <sup>−1</sup> का प्रयोग कभी-कभी फलन f के व्युत्क्रम फलन के लिए भी किया जाता है, जो बहुसंख्यक व्युत्क्रम के समान नहीं होने वाले अधिकांश कार्यों के लिए होता है। उदाहरण के लिए, गुणात्मक व्युत्क्रम {{nowrap|1=1/(sin ''x'') = (sin ''x'')<sup>−1</sup>}}, x की व्युत्क्रमज्या है, और x की व्युत्क्रम ज्या, जिसे {{nowrap|sin<sup>−1</sup> ''x''}} या {{nowrap|आर्क्सिन ''x''}} द्वारा प्रदर्शित किया जाता है। पारस्परिक बनाम व्युत्क्रम शब्दावली अंतर इस भेद को बनाने के लिए पर्याप्त नहीं है, क्योंकि कई लेखक विपरीत नामन सम्मेलन को पसंद करते हैं, संभवतः ऐतिहासिक कारणों से (उदाहरण के लिए फ्रेंच भाषा में, व्युत्क्रम कार्य को अधिमानतः बायजेक्शन रेसिप्रोक कहा जाता है)।  


== उदाहरण और प्रति उदाहरण ==
== उदाहरण और प्रति उदाहरण ==
[[वास्तविक संख्या]]ओं में, शून्य का व्युत्क्रम नहीं होता है क्योंकि कोई भी वास्तविक संख्या 0 से गुणा करने पर 1 उत्पन्न नहीं होता है (शून्य के साथ किसी भी संख्या का गुणनफल शून्य होता है)। शून्य के अपवाद के साथ, प्रत्येक वास्तविक संख्या के व्युत्क्रम वास्तविक होते हैं, प्रत्येक परिमेय संख्या के व्युत्क्रम परिमेय होते हैं, और प्रत्येक सम्मिश्र संख्या के व्युत्क्रम मिश्रित होते हैं। यह गुणधर्म कि शून्य के अतिरिक्त हर तत्व में गुणक व्युत्क्रम होता है,एक क्षेत्र की परिभाषा का भाग है, जिसके ये सभी उदाहरण हैं। वहीं दूसरी ओर, 1 और -1 के अतिरिक्त किसी भी [[पूर्णांक]] में पूर्णांक व्युत्क्रम नहीं होता है, और इसलिए पूर्णांक क्षेत्र नहीं होते हैं।
[[वास्तविक संख्या|वास्तविक संख्याओं]] में, शून्य का व्युत्क्रम नहीं होता है क्योंकि कोई भी वास्तविक संख्या 0 से गुणा करने पर 1 उत्पन्न नहीं होता है (शून्य के साथ किसी भी संख्या का गुणनफल शून्य होता है)। शून्य के अपवाद के साथ, प्रत्येक वास्तविक संख्या के व्युत्क्रम वास्तविक होते हैं, प्रत्येक परिमेय संख्या के व्युत्क्रम परिमेय होते हैं, और प्रत्येक सम्मिश्र संख्या के व्युत्क्रम मिश्रित होते हैं। यह गुणधर्म कि शून्य के अतिरिक्त हर तत्व में गुणक व्युत्क्रम होता है, एक क्षेत्र की परिभाषा का भाग है, जिसके ये सभी उदाहरण हैं। वहीं दूसरी ओर, 1 और -1 के अतिरिक्त किसी भी [[पूर्णांक]] में पूर्णांक व्युत्क्रम नहीं होता है, और इसलिए पूर्णांक क्षेत्र नहीं होते हैं।


[[मॉड्यूलर अंकगणित]] में, एक के मॉड्यूलर गुणात्मक व्युत्क्रम को भी परिभाषित किया गया है: यह संख्या x है जैसे {{nowrap|''ax'' ≡ 1 (mod ''n'')}} है। यह गुणात्मक व्युत्क्रम अस्तित्व है यदि और केवल यदि a और n सहअभाज्य हैं। उदाहरण के लिए, 3 मॉड्यूल 11 का व्युत्क्रम 4 है क्योंकि {{nowrap|4 ⋅ 3 ≡ 1 (मॉड 11)}} है। इसकी गणना करने के लिए [[विस्तारित यूक्लिडियन एल्गोरिथ्म]] का उपयोग किया जा सकता है।
[[मॉड्यूलर अंकगणित]] में, एक के मॉड्यूलर गुणात्मक व्युत्क्रम को भी परिभाषित किया गया है: यह संख्या x है जैसे {{nowrap|''ax'' ≡ 1 (mod ''n'')}} है। यह गुणात्मक व्युत्क्रम अस्तित्व है यदि और केवल यदि a और n सहअभाज्य हैं। उदाहरण के लिए, 3 मॉड्यूल 11 का व्युत्क्रम 4 है क्योंकि {{nowrap|4 ⋅ 3 ≡ 1 (मॉड 11)}} है। इसकी गणना करने के लिए [[विस्तारित यूक्लिडियन एल्गोरिथ्म]] का उपयोग किया जा सकता है।
Line 18: Line 17:
[[sedenion|सेडेनियंस]] एक बीजगणित है जिसमें प्रत्येक अशून्य तत्व में एक गुणात्मक व्युत्क्रम होता है, लेकिन फिर भी शून्य के विभाजक होते हैं, अर्थात अशून्य तत्व x, y जैसे कि xy = 0 है।
[[sedenion|सेडेनियंस]] एक बीजगणित है जिसमें प्रत्येक अशून्य तत्व में एक गुणात्मक व्युत्क्रम होता है, लेकिन फिर भी शून्य के विभाजक होते हैं, अर्थात अशून्य तत्व x, y जैसे कि xy = 0 है।


एक [[स्क्वायर मैट्रिक्स|वर्ग मैट्रिक्स]] में एक व्युत्क्रम होता है यदि और केवल तभी जब इसके निर्धारक का गुणांक वलय में व्युत्क्रम होता है। रैखिक मानचित्र जिसमें कुछ आधार के संबंध में मैट्रिक्स ''A''<sup>−1</sup> है, फिर उसी आधार में मैट्रिक्स के रूप में A वाले मानचित्र का व्युत्क्रम कार्य होता है। इस प्रकार, इस प्रकरण में फलन के व्युत्क्रम की दो अलग-अलग धारणाएँ दृढ़ता से संबंधित हैं, लेकिन वे अभी भी अनुरूप नहीं हैं, क्योंकि Ax का गुणात्मक व्युत्क्रम (Ax)<sup>-1</sup> होगा, ''A''<sup>−1</sup>x नहीं।  
एक [[स्क्वायर मैट्रिक्स|वर्ग मैट्रिक्स]] में एक व्युत्क्रम होता है यदि और केवल तभी जब इसके निर्धारक का गुणांक वलय में व्युत्क्रम होता है। रैखिक मानचित्र जिसमें कुछ आधार के संबंध में मैट्रिक्स ''A''<sup>−1</sup> है, फिर उसी आधार में मैट्रिक्स के रूप में A वाले मानचित्र का व्युत्क्रम कार्य होता है। इस प्रकार, इस प्रकरण में फलन के व्युत्क्रम की दो अलग-अलग धारणाएँ दृढ़ता से संबंधित हैं, लेकिन वे अभी भी अनुरूप नहीं हैं, क्योंकि Ax का गुणात्मक व्युत्क्रम (Ax)<sup>-1</sup> होगा, ''A''<sup>−1</sup>x नहीं।  


एक व्युत्क्रम फलन की ये दो धारणाएँ कभी-कभी अनुरूप होती हैं, उदाहरण के लिए फलन के लिए <math>f(x)=x^i=e^{i\ln(x)}</math> जहां  <math>\ln</math> मिश्रित लघुगणक की प्रमुख शाखा है और  <math>e^{-\pi}<|x|<e^{\pi}</math>:
एक व्युत्क्रम फलन की ये दो धारणाएँ कभी-कभी अनुरूप होती हैं, उदाहरण के लिए फलन के लिए <math>f(x)=x^i=e^{i\ln(x)}</math> जहां  <math>\ln</math> मिश्रित लघुगणक की प्रमुख शाखा है और  <math>e^{-\pi}<|x|<e^{\pi}</math>:
Line 33: Line 32:
अंतर्ज्ञान वह है
अंतर्ज्ञान वह है
:<math>\frac{\bar z}{\|z\|}</math>
:<math>\frac{\bar z}{\|z\|}</math>
हमें <math>1</math> के मान से घटाए गए [[परिमाण (गणित)|परिमाण]] के साथ मिश्रित संयुग्म देता है, इसलिए <math>\|z\|</math>से फिर से विभाजित करना सुनिश्चित करता है कि परिमाण अब मूल परिमाण के व्युत्क्रम के समान है, इसलिए:
हमें <math>1</math> के मान से घटाए गए [[परिमाण (गणित)|परिमाण]] के साथ मिश्रित संयुग्म देता है, इसलिए <math>\|z\|</math> से फिर से विभाजित करना सुनिश्चित करता है कि परिमाण अब मूल परिमाण के व्युत्क्रम के समान है, इसलिए:
:<math>\frac{1}{z} = \frac{\bar z}{\|z\|^2}</math>
:<math>\frac{1}{z} = \frac{\bar z}{\|z\|^2}</math>
विशेष रूप से, यदि ||z||=1 (z में इकाई परिमाण है), तो <math>1/z = \bar z</math> परिणामस्वरूप, काल्पनिक इकाइयों, {{math|±''i''}}, में गुणात्मक व्युत्क्रम के समान योज्य व्युत्क्रम होता है, और इस संपत्ति के साथ केवल सम्मिश्र संख्याएँ हैं। उदाहरण के लिए, ''i'' योज्य और गुणक व्युत्क्रम क्रमशः {{math|1=−(''i'') = −''i''}} और {{math|1=1/''i'' = −''i''}} हैं।
विशेष रूप से, यदि ||z||=1 (z में इकाई परिमाण है), तो <math>1/z = \bar z</math> परिणामस्वरूप, काल्पनिक इकाइयों, {{math|±''i''}}, में गुणात्मक व्युत्क्रम के समान योज्य व्युत्क्रम होता है, और इस संपत्ति के साथ केवल सम्मिश्र संख्याएँ हैं। उदाहरण के लिए, ''i'' योज्य और गुणक व्युत्क्रम क्रमशः {{math|1=−(''i'') = −''i''}} और {{math|1=1/''i'' = −''i''}} हैं।
Line 48: Line 47:
:<math> \frac{d}{dx} x^{-1} = (-1)x^{(-1)-1} = -x^{-2} = -\frac{1}{x^2}.</math>
:<math> \frac{d}{dx} x^{-1} = (-1)x^{(-1)-1} = -x^{-2} = -\frac{1}{x^2}.</math>
समाकलों के लिए शक्ति नियम (कैवलियरी का चतुर्भुज सूत्र) का उपयोग 1/x के समाकलन की गणना के लिए नहीं किया जा सकता है, क्योंकि ऐसा करने से 0 से विभाजन होगा:
समाकलों के लिए शक्ति नियम (कैवलियरी का चतुर्भुज सूत्र) का उपयोग 1/x के समाकलन की गणना के लिए नहीं किया जा सकता है, क्योंकि ऐसा करने से 0 से विभाजन होगा:
<math display="block">\int \frac{dx}{x} = \frac{x^0}{0} + C </math>
<math display="block">\int \frac{dx}{x} = \frac{x^0}{0} + C </math>इसके बदले में अभिन्न द्वारा दिया गया है:<math display="block">\int_1^a \frac{dx}{x} = \ln a,</math>
इसके बदले में अभिन्न द्वारा दिया गया है:
<math display="block">\int \frac{dx}{x} = \ln x + C.</math>जहां ln [[प्राकृतिक]] लघुगणक है। इसे दिखाने के लिए, ध्यान दें कि <math display="inline">\frac{d}{dy} e^y = e^y</math>, तो अगर  <math>x = e^y</math> और <math>y = \ln x</math>, हमारे पास है:<ref>{{cite web|last=Anthony|first=Dr.|title=Proof that INT(1/x)dx = lnx|url=http://mathforum.org/library/drmath/view/53562.html|work=Ask Dr. Math|publisher=Drexel University|access-date=22 March 2013}}</ref>
<math display="block">\int_1^a \frac{dx}{x} = \ln a,</math>
<math display="block">\int \frac{dx}{x} = \ln x + C.</math>
जहां ln [[प्राकृतिक]] लघुगणक है। इसे दिखाने के लिए, ध्यान दें कि <math display="inline">\frac{d}{dy} e^y = e^y</math>, तो अगर  <math>x = e^y</math> और <math>y = \ln x</math>, हमारे पास है:<ref>{{cite web|last=Anthony|first=Dr.|title=Proof that INT(1/x)dx = lnx|url=http://mathforum.org/library/drmath/view/53562.html|work=Ask Dr. Math|publisher=Drexel University|access-date=22 March 2013}}</ref>
<math display="block">\begin{aligned}
<math display="block">\begin{aligned}
&\frac{dx}{dy} = x\quad \Rightarrow \quad \frac{dx}{x} = dy \\[10mu]
&\frac{dx}{dy} = x\quad \Rightarrow \quad \frac{dx}{x} = dy \\[10mu]
&\quad\Rightarrow\quad \int \frac{dx}{x} = \int dy = y + C = \ln x + C.
&\quad\Rightarrow\quad \int \frac{dx}{x} = \int dy = y + C = \ln x + C.
\end{aligned}</math>
\end{aligned}</math>
== एल्गोरिदम ==
== एल्गोरिदम ==
व्युत्क्रम की गणना विस्तृत विभाजन के उपयोग से की जा सकती है।
व्युत्क्रम की गणना विस्तृत विभाजन के उपयोग से की जा सकती है।


कई [[विभाजन एल्गोरिथ्म]] में व्युत्क्रम की गणना करना महत्वपूर्ण है, क्योंकि भागफल a/b की गणना पहले 1/b की गणना करके और फिर इसे a से गुणा करके की जा सकती है। नोट किया कि <math>f(x) = 1/x - b</math> x = 1/b पर एक फ़ंक्शन का शून्य है, न्यूटन की विधि उस शून्य को खोज सकती है, जो अनुमान से प्रारम्भ होती है <math>x_0</math> और नियम का उपयोग करते हुए पुनरावृति:
कई [[विभाजन एल्गोरिथ्म]] में व्युत्क्रम की गणना करना महत्वपूर्ण है, क्योंकि भागफल a/b की गणना पहले 1/b की गणना करके और फिर इसे a से गुणा करके की जा सकती है। टिप्पणी <math>f(x) = 1/x - b</math> x = 1/b पर शून्य है, न्यूटन की विधि उस शून्य को खोज सकती है, एक अनुमान से प्रारम्भ करके <math>x_0</math> और नियम का उपयोग करके पुनरावृति:


:<math>x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{1/x_n - b}{-1/x_n^2} = 2x_n - bx_n^2 = x_n(2 - bx_n).</math>
:<math>x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{1/x_n - b}{-1/x_n^2} = 2x_n - bx_n^2 = x_n(2 - bx_n).</math>
यह तब तक निरंतर रहता है जब तक अपेक्षित परिशुद्धता प्राप्त नहीं हो जाती। उदाहरण के लिए, मान लीजिए कि हम परिशुद्धता के 3 अंकों के साथ 1/17 ≈ 0.0588 की गणना करना चाहते हैं। ''x''<sub>0</sub> = 0.1 प्राप्ति पर, निम्नलिखित अनुक्रम उत्पन्न होता है:
यह तब तक निरंतर रहता है जब तक अपेक्षित परिशुद्धता प्राप्त नहीं हो जाती। उदाहरण के लिए, मान लीजिए कि हम परिशुद्धता के 3 अंकों के साथ 1/17 ≈ 0.0588 की गणना करना चाहते हैं। ''x''<sub>0</sub> = 0.1 प्राप्ति पर, निम्नलिखित अनुक्रम उत्पन्न होते है:
:''x''<sub>1</sub> = 0.1(2 − 17 × 0.1) = 0.03
:''x''<sub>1</sub> = 0.1(2 − 17 × 0.1) = 0.03
:''x''<sub>2</sub> = 0.03(2 − 17 × 0.03) = 0.0447
:''x''<sub>2</sub> = 0.03(2 − 17 × 0.03) = 0.0447
Line 69: Line 66:
:''x''<sub>4</sub> = 0.0554(2 − 17 × 0.0554) ≈ 0.0586
:''x''<sub>4</sub> = 0.0554(2 − 17 × 0.0554) ≈ 0.0586
:''x''<sub>5</sub> = 0.0586(2 − 17 × 0.0586) ≈ 0.0588
:''x''<sub>5</sub> = 0.0586(2 − 17 × 0.0586) ≈ 0.0588
एक विशिष्ट प्रारंभिक अनुमान को b को समीप की 2 की शक्ति पर पूर्णन करके पाया जा सकता है, फिर इसके पारस्परिक की गणना करने के लिए [[बिट शिफ्ट]] का उपयोग किया जा सकता है।
एक विशिष्ट प्रारंभिक अनुमान को b के समीप की 2 की शक्ति पर पूर्णन करके आधारित किया जा सकता है, फिर इसके पारस्परिक की गणना करने के लिए [[बिट शिफ्ट]] का उपयोग किया जा सकता है।


[[रचनात्मक गणित]] में, एक वास्तविक संख्या x के लिए व्युत्क्रम होने के लिए, यह  x ≠ 0 पर्याप्त नहीं है। इसके बदले एक परिमेय संख्या r दी जानी चाहिए जैसे कि 0 < r < |x|। ऊपर वर्णित सन्निकटन एल्गोरिथ्म के संदर्भ में, यह सिद्ध करने की आवश्यकता है कि y में परिवर्तन अंततः मनमाने प्रकार से छोटा हो जाएगा।
[[रचनात्मक गणित]] में, एक वास्तविक संख्या x के लिए व्युत्क्रम होने के लिए, यह  x ≠ 0 पर्याप्त नहीं है। इसके बदले एक परिमेय संख्या r दी जानी चाहिए जैसे कि 0 < r < |x|। ऊपर वर्णित सन्निकटन एल्गोरिथ्म के संदर्भ में, यह सिद्ध करने की आवश्यकता है कि y में परिवर्तन अंततः मनमाने प्रकार से कम हो जाएगा।


[[File:X to x power showing minimum.svg|thumb|f(''x'') = ''x<sup>x</sup>'' का ग्राफ़ न्यूनतम (1/e, e<sup>-1/</sup>) पर दिखाता है।]]इस पुनरावृत्ति को व्यापक प्रकार के व्युत्क्रमों के लिए भी सामान्यीकृत किया जा सकता है; उदाहरण के लिए, मैट्रिक्स व्युत्क्रम।
[[File:X to x power showing minimum.svg|thumb|f(''x'') = ''x<sup>x</sup>'' का ग्राफ़ न्यूनतम (1/''e'', ''e''<sup>−1/''e''</sup>) पर दिखाता है।]]इस पुनरावृत्ति को व्यापक प्रकार के व्युत्क्रमों के लिए भी सामान्यीकृत किया जा सकता है; उदाहरण के लिए, मैट्रिक्स व्युत्क्रम।


== [[अपरिमेय संख्या]]ओं का व्युत्क्रम ==
== अपरिमेय संख्याओं का व्युत्क्रम ==
शून्य को छोड़कर प्रत्येक वास्तविक या मिश्रित संख्या में एक व्युत्क्रम होता है, और कुछ अपरिमेय संख्याओं के व्युत्क्रम में महत्वपूर्ण विशेष गुण हो सकते हैं। उदाहरणों में का व्युत्क्रम (गणितीय स्थिरांक) (≈ 0.367879) और गोल्डन अनुपात#गोल्डन अनुपात संयुग्म और शक्तियां शामिल हैं। गोल्डन अनुपात का पारस्परिक (≈ 0.618034)पहला व्युत्क्रम विशेष है क्योंकि कोई अन्य धनात्मक संख्या स्वयं की घात लगाने पर कम संख्या उत्पन्न नहीं कर सकती है; <math>f(1/e)</math> का [[वैश्विक इष्टतम]] है <math>f(x)=x^x</math>. दूसरी संख्या एकमात्र सकारात्मक संख्या है जो इसके व्युत्क्रम जमा एक के बराबर है:<math>\varphi = 1/\varphi + 1</math>. इसका योज्य व्युत्क्रम एकमात्र ऋणात्मक संख्या है जो इसके व्युत्क्रम ऋण एक के बराबर है:<math>-\varphi = -1/\varphi - 1</math>.
शून्य को छोड़कर प्रत्येक वास्तविक या मिश्रित संख्या में एक व्युत्क्रम होता है, और कुछ अपरिमेय संख्याओं के व्युत्क्रम में महत्वपूर्ण विशेष गुण हो सकते हैं। उदाहरणों में e का व्युत्क्रम (≈ 0.367879) और सुनहरे अनुपात का व्युत्क्रम (≈ 0.618034) सम्मिलित हैं। पहला व्युत्क्रम विशेष है क्योंकि कोई अन्य धनात्मक संख्या स्वयं की घात लगाने पर कम संख्या उत्पन्न नहीं कर सकती है; <math>f(1/e)</math> का [[वैश्विक इष्टतम|वैश्विक न्यूनतम]] <math>f(x)=x^x</math> है। दूसरी संख्या एकमात्र सकारात्मक संख्या है जो इसके व्युत्क्रम लाभ: <math>\varphi = 1/\varphi + 1</math> के समान है। इसका योज्य व्युत्क्रम एकमात्र ऋणात्मक संख्या है जो इसके व्युत्क्रम ऋण :<math>-\varphi = -1/\varphi - 1</math> के समान है।


कार्यक्रम <math display="inline">f(n) = n + \sqrt{(n^2+1)}, n \in \N, n>0</math> अपरिमेय संख्याओं की एक अनंत संख्या देता है जो एक पूर्णांक द्वारा उनके व्युत्क्रम से भिन्न होता है। उदाहरण के लिए, <math>f(2)</math> तर्कहीन है <math>2+\sqrt 5</math>. इसका पारस्परिक <math>1 / (2 + \sqrt 5)</math> है <math>-2 + \sqrt 5</math>, बिल्कुल <math>4</math> कम। ऐसी अपरिमेय संख्याएँ एक स्पष्ट गुण साझा करती हैं: उनके व्युत्क्रम के समान भिन्नात्मक भाग होते हैं, क्योंकि ये संख्याएँ एक पूर्णांक से भिन्न होती हैं।
कार्यक्रम <math display="inline">f(n) = n + \sqrt{(n^2+1)}, n \in \N, n>0</math> अपरिमेय संख्याओं की एक अनंत संख्या देता है जो एक पूर्णांक द्वारा उनके व्युत्क्रम से भिन्न होती है। उदाहरण के लिए, <math>f(2)</math> अपरिमेय <math>2+\sqrt 5</math> है। इसका पारस्परिक <math>1 / (2 + \sqrt 5)</math> है <math>-2 + \sqrt 5</math> है, बिल्कुल <math>4</math> कम है। ऐसी अपरिमेय संख्याएँ एक स्पष्ट संपत्ति साझा करती हैं: उनके व्युत्क्रम के समान भिन्नात्मक भाग होते हैं, क्योंकि ये संख्याएँ एक पूर्णांक से भिन्न होती हैं।


== आगे की टिप्पणी ==
== आगे की टिप्पणियाँ ==
यदि गुणन साहचर्य है, तो गुणक व्युत्क्रम वाला एक तत्व x [[शून्य भाजक]] नहीं हो सकता है (x एक शून्य भाजक है यदि कुछ अशून्य y, {{nowrap|1=''xy'' = 0}}). इसे देखने के लिए, समीकरण को गुणा करना पर्याप्त है {{nowrap|1=''xy'' = 0}} x के व्युत्क्रम से (बाईं ओर), और फिर साहचर्य का उपयोग करके सरल करें। सहयोगीता की अनुपस्थिति में, सेडेनियंस एक प्रति उदाहरण प्रदान करते हैं।
यदि गुणन साहचर्य है, तो गुणक व्युत्क्रम वाला एक तत्व x [[शून्य भाजक]] नहीं हो सकता (x एक शून्य भाजक है यदि कुछ अशून्य y, {{nowrap|1=''xy'' = 0}}) है। इसे देखने के लिए, समीकरण {{nowrap|1=''xy'' = 0}} को x के व्युत्क्रम (बाईं ओर) से गुणा करना और फिर साहचर्य का उपयोग करके सरल करना पर्याप्त है। सहयोगीता की अनुपस्थिति में, सेडेनियंस एक प्रति उदाहरण प्रदान करते हैं।


बातचीत पकड़ में नहीं आती है: एक तत्व जो शून्य विभाजक नहीं है, एक गुणात्मक व्युत्क्रम होने की गारंटी नहीं है।
बातचीत नियन्त्रित में नहीं आती है: एक तत्व जो शून्य विभाजक नहीं है, एक गुणात्मक व्युत्क्रम होने की गारंटीकृत नहीं है। Z के भीतर, -1, 0, 1 के अलावा सभी पूर्णांक उदाहरण प्रदान करते हैं; वे शून्य विभाजक नहीं हैं और न ही उनके पास Z में व्युत्क्रम हैं। तथापि, यदि वलय या बीजगणित परिमित है, तो सभी तत्व a जो शून्य भाजक नहीं हैं, में एक (बाएं और दाएं) व्युत्क्रम होता है। विषय में, पहले निरीक्षण करें कि मानचित्र {{nowrap|1=''f''(''x'') = ''ax''}} अंतः क्षेपी होना चाहिए: {{nowrap|1=''f''(''x'') = ''f''(''y'')}} का अर्थ है {{nowrap|1=''x'' = ''y''}}:
'Z' के भीतर, -1, 0, 1 को छोड़कर सभी पूर्णांक उदाहरण प्रदान करते हैं; वे शून्य विभाजक नहीं हैं और न ही उनके पास 'Z' में व्युत्क्रम हैं।
अगर अंगूठी या बीजगणित [[परिमित सेट]] है, हालांकि, सभी तत्व जो शून्य विभाजक नहीं हैं, उनके पास (बाएं और दाएं) व्युत्क्रम होता है। के लिए, पहले देखें कि map {{nowrap|1=''f''(''x'') = ''ax''}} [[इंजेक्शन]] होना चाहिए: {{nowrap|1=''f''(''x'') = ''f''(''y'')}} तात्पर्य {{nowrap|1=''x'' = ''y''}}:
:<math>\begin{align}
:<math>\begin{align}
  ax &= ay &\quad \rArr & \quad ax-ay = 0 \\
  ax &= ay &\quad \rArr & \quad ax-ay = 0 \\
Line 92: Line 87:
  & &\quad \rArr &\quad x = y.
  & &\quad \rArr &\quad x = y.
\end{align}</math>
\end{align}</math>
अलग-अलग तत्व अलग-अलग तत्वों के लिए मैप करते हैं, इसलिए छवि में तत्वों की समान परिमित संख्या होती है, और नक्शा आवश्यक रूप से [[विशेषण]] होता है। विशेष रूप से, ƒ (अर्थात् a से गुणा) को कुछ तत्व x को 1 में मैप करना चाहिए, {{nowrap|1=''ax'' = 1}}, ताकि x, a का व्युत्क्रम हो।
भिन्न तत्व भिन्न तत्वों के लिए मानचित्र करते हैं, इसलिए प्रतिबिंब में तत्वों के समान परिमित संख्या होती है, और मानचित्र आवश्यक रूप से [[विशेषण]] होता है। विशेष रूप से, ƒ (अर्थात् a से गुणा) को कुछ तत्व x को 1, ax = 1 में मानचित्र करना चाहिए, अतः x a का व्युत्क्रम हो।


== अनुप्रयोग ==
== अनुप्रयोग ==
Line 117: Line 112:


*Maximally Periodic Reciprocals, Matthews R.A.J. ''Bulletin of the Institute of Mathematics and its Applications'' vol 28 pp 147–148 1992
*Maximally Periodic Reciprocals, Matthews R.A.J. ''Bulletin of the Institute of Mathematics and its Applications'' vol 28 pp 147–148 1992
[[Category: प्राथमिक विशेष कार्य]] [[Category: सार बीजगणित]] [[Category: प्राथमिक बीजगणित]] [[Category: गुणा]] [[Category: एकात्मक संचालन]]


[[Category: Machine Translated Page]]
[[Category:Created On 07/02/2023]]
[[Category:Created On 07/02/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:एकात्मक संचालन]]
[[Category:गुणा]]
[[Category:प्राथमिक बीजगणित]]
[[Category:प्राथमिक विशेष कार्य]]
[[Category:सार बीजगणित]]

Latest revision as of 13:14, 17 October 2023

Graph showing the diagrammatic representation of limits approaching infinity
पारस्परिक कार्य: y = 1/x. 0 को छोड़कर प्रत्येक x के लिए, y इसके गुणात्मक व्युत्क्रम का प्रतिनिधित्व करता है। ग्राफ एक आयताकार अतिपरवलय बनाता है।

गणित में, संख्या x के लिए गुणक व्युत्क्रम या व्युत्क्रम, जिसे 1/x या x−1 द्वारा लक्षित किया जाता है, एक ऐसी संख्या है जिसे x से गुणा करने पर गुणात्मक पहचान 1 प्राप्त होती है। भिन्न a/b का गुणक व्युत्क्रम b/a है। किसी वास्तविक संख्या के गुणक व्युत्क्रम के लिए, 1 को संख्या से विभाजित करें। उदाहरण के लिए, 5 का व्युत्क्रम एक पाँचवाँ (1/5 या 0.2) है, और 0.25 का व्युत्क्रम 1 भाग 0.25, या 4 है। व्युत्क्रम फलन, फलन f(x) जो x से 1/x को मानचित्रित करता है, एक ऐसे फलन का सबसे सरल उदाहरण है जो इसका अपना व्युत्क्रम (एक अंतर्वलन) है।

किसी संख्या से गुणा करना उसके व्युत्क्रम से विभाजित करने के समान है और इसके विपरीत है। उदाहरण के लिए, 4/5 (या 0.8) से गुणा करने पर वही परिणाम मिलेगा जो 5/4 (या 1.25) से भाग देने पर मिलता है। इसलिए, किसी संख्या से गुणा करने के बाद उसके व्युत्क्रम से गुणा करने पर मूल संख्या प्राप्त होती है (क्योंकि संख्या का गुणनफल और उसका व्युत्क्रम 1 है)।

व्युत्क्रम अवधि कम से कम पहले एनसाइक्लोपीडिया ब्रिटानिका (1797) के तीसरे संस्करण में दो संख्याओं का वर्णन करने के लिए सामान्य उपयोग में थी जिसका गुणनफल 1 है; व्युत्क्रमानुपात में ज्यामितीय मात्राओं को यूक्लिड के तत्वों के 1570 अनुवाद में व्युत्क्रम के रूप में वर्णित किया गया है।[1]

गुणात्मक व्युत्क्रम वाक्यांश में, विशेषक गुणक को प्रायः विलोपित किया जाता है और फिर अकथित रूप से समझा जाता (योगात्मक व्युत्क्रम के विपरीत) है। गुणात्मक व्युत्क्रमों को कई गणितीय डोमेन के साथ-साथ संख्याओं पर भी परिभाषित किया जा सकता है। इन प्रकरणो में ऐसा हो सकता है कि abba; फिर "उलटा" सामान्यतः इसका तात्पर्य है कि एक तत्व दोनों बाएं और दाएं व्युत्क्रम है।

संकेतन f −1 का प्रयोग कभी-कभी फलन f के व्युत्क्रम फलन के लिए भी किया जाता है, जो बहुसंख्यक व्युत्क्रम के समान नहीं होने वाले अधिकांश कार्यों के लिए होता है। उदाहरण के लिए, गुणात्मक व्युत्क्रम 1/(sin x) = (sin x)−1, x की व्युत्क्रमज्या है, और x की व्युत्क्रम ज्या, जिसे sin−1 x या आर्क्सिन x द्वारा प्रदर्शित किया जाता है। पारस्परिक बनाम व्युत्क्रम शब्दावली अंतर इस भेद को बनाने के लिए पर्याप्त नहीं है, क्योंकि कई लेखक विपरीत नामन सम्मेलन को पसंद करते हैं, संभवतः ऐतिहासिक कारणों से (उदाहरण के लिए फ्रेंच भाषा में, व्युत्क्रम कार्य को अधिमानतः बायजेक्शन रेसिप्रोक कहा जाता है)।

उदाहरण और प्रति उदाहरण

वास्तविक संख्याओं में, शून्य का व्युत्क्रम नहीं होता है क्योंकि कोई भी वास्तविक संख्या 0 से गुणा करने पर 1 उत्पन्न नहीं होता है (शून्य के साथ किसी भी संख्या का गुणनफल शून्य होता है)। शून्य के अपवाद के साथ, प्रत्येक वास्तविक संख्या के व्युत्क्रम वास्तविक होते हैं, प्रत्येक परिमेय संख्या के व्युत्क्रम परिमेय होते हैं, और प्रत्येक सम्मिश्र संख्या के व्युत्क्रम मिश्रित होते हैं। यह गुणधर्म कि शून्य के अतिरिक्त हर तत्व में गुणक व्युत्क्रम होता है, एक क्षेत्र की परिभाषा का भाग है, जिसके ये सभी उदाहरण हैं। वहीं दूसरी ओर, 1 और -1 के अतिरिक्त किसी भी पूर्णांक में पूर्णांक व्युत्क्रम नहीं होता है, और इसलिए पूर्णांक क्षेत्र नहीं होते हैं।

मॉड्यूलर अंकगणित में, एक के मॉड्यूलर गुणात्मक व्युत्क्रम को भी परिभाषित किया गया है: यह संख्या x है जैसे ax ≡ 1 (mod n) है। यह गुणात्मक व्युत्क्रम अस्तित्व है यदि और केवल यदि a और n सहअभाज्य हैं। उदाहरण के लिए, 3 मॉड्यूल 11 का व्युत्क्रम 4 है क्योंकि 4 ⋅ 3 ≡ 1 (मॉड 11) है। इसकी गणना करने के लिए विस्तारित यूक्लिडियन एल्गोरिथ्म का उपयोग किया जा सकता है।

सेडेनियंस एक बीजगणित है जिसमें प्रत्येक अशून्य तत्व में एक गुणात्मक व्युत्क्रम होता है, लेकिन फिर भी शून्य के विभाजक होते हैं, अर्थात अशून्य तत्व x, y जैसे कि xy = 0 है।

एक वर्ग मैट्रिक्स में एक व्युत्क्रम होता है यदि और केवल तभी जब इसके निर्धारक का गुणांक वलय में व्युत्क्रम होता है। रैखिक मानचित्र जिसमें कुछ आधार के संबंध में मैट्रिक्स A−1 है, फिर उसी आधार में मैट्रिक्स के रूप में A वाले मानचित्र का व्युत्क्रम कार्य होता है। इस प्रकार, इस प्रकरण में फलन के व्युत्क्रम की दो अलग-अलग धारणाएँ दृढ़ता से संबंधित हैं, लेकिन वे अभी भी अनुरूप नहीं हैं, क्योंकि Ax का गुणात्मक व्युत्क्रम (Ax)-1 होगा, A−1x नहीं।

एक व्युत्क्रम फलन की ये दो धारणाएँ कभी-कभी अनुरूप होती हैं, उदाहरण के लिए फलन के लिए जहां मिश्रित लघुगणक की प्रमुख शाखा है और :

.

त्रिकोणमितीय कार्य पारस्परिक पहचान से संबंधित हैं: कोटिस्पर्श स्पर्शरेखा का व्युत्क्रम है; छेदक रेखा कोज्या का व्युत्क्रम है; व्युत्क्रम ज्या का व्युत्क्रम है।

एक वलय जिसमें प्रत्येक अशून्य तत्व का गुणक व्युत्क्रम होता है, एक विभाजन वलय होता है; तुलनीय एक बीजगणित जिसमें यह धारण करता है एक विभाजन बीजगणित है।

समिश्र संख्या

जैसा कि ऊपर बताया गया है, प्रत्येक अशून्य सम्मिश्र संख्या z = a + bi का व्युत्क्रम मिश्रित होता है। यह 1/z के ऊपर और नीचे दोनों को इसके सम्मिश्र संयुग्म से गुणा करके और गुण का उपयोग करके पाया जा सकता है, z वर्ग का निरपेक्ष मान, जो वास्तविक संख्या है a2 + b2 है:

अंतर्ज्ञान वह है

हमें के मान से घटाए गए परिमाण के साथ मिश्रित संयुग्म देता है, इसलिए से फिर से विभाजित करना सुनिश्चित करता है कि परिमाण अब मूल परिमाण के व्युत्क्रम के समान है, इसलिए:

विशेष रूप से, यदि ||z||=1 (z में इकाई परिमाण है), तो परिणामस्वरूप, काल्पनिक इकाइयों, ±i, में गुणात्मक व्युत्क्रम के समान योज्य व्युत्क्रम होता है, और इस संपत्ति के साथ केवल सम्मिश्र संख्याएँ हैं। उदाहरण के लिए, i योज्य और गुणक व्युत्क्रम क्रमशः −(i) = −i और 1/i = −i हैं।

ध्रुवीय रूप में एक सम्मिश्र संख्या के लिए z = r(cos φ + i sin φ), व्युत्क्रम केवल परिमाण के व्युत्क्रम और कोण के ऋणात्मक को प्राप्त करता है:

1/x के समाकल के लिए ज्यामितीय अंतर्ज्ञान। 1 से 2 तक, 2 से 4 तक, और 4 से 8 तक तीन समाकल समान हैं। प्रत्येक क्षेत्र पूर्व क्षेत्र लंबवत रूप से आधा और क्षैतिज रूप से दोगुना होता है। इसे विस्तारित करते हुए, 1 से 2k तक का समाकल, 1 से 2 तक के समाकलन का k गुना है,जैसे कि ln 2k = k ln 2.

गणना

वास्तविक कलन में, 1/x = x−1 का अवकलज घात शक्ति नियम द्वारा शक्ति −1 के साथ दिया जाता है:

समाकलों के लिए शक्ति नियम (कैवलियरी का चतुर्भुज सूत्र) का उपयोग 1/x के समाकलन की गणना के लिए नहीं किया जा सकता है, क्योंकि ऐसा करने से 0 से विभाजन होगा:

इसके बदले में अभिन्न द्वारा दिया गया है:
जहां ln प्राकृतिक लघुगणक है। इसे दिखाने के लिए, ध्यान दें कि , तो अगर और , हमारे पास है:[2]

एल्गोरिदम

व्युत्क्रम की गणना विस्तृत विभाजन के उपयोग से की जा सकती है।

कई विभाजन एल्गोरिथ्म में व्युत्क्रम की गणना करना महत्वपूर्ण है, क्योंकि भागफल a/b की गणना पहले 1/b की गणना करके और फिर इसे a से गुणा करके की जा सकती है। टिप्पणी x = 1/b पर शून्य है, न्यूटन की विधि उस शून्य को खोज सकती है, एक अनुमान से प्रारम्भ करके और नियम का उपयोग करके पुनरावृति:

यह तब तक निरंतर रहता है जब तक अपेक्षित परिशुद्धता प्राप्त नहीं हो जाती। उदाहरण के लिए, मान लीजिए कि हम परिशुद्धता के 3 अंकों के साथ 1/17 ≈ 0.0588 की गणना करना चाहते हैं। x0 = 0.1 प्राप्ति पर, निम्नलिखित अनुक्रम उत्पन्न होते है:

x1 = 0.1(2 − 17 × 0.1) = 0.03
x2 = 0.03(2 − 17 × 0.03) = 0.0447
x3 = 0.0447(2 − 17 × 0.0447) ≈ 0.0554
x4 = 0.0554(2 − 17 × 0.0554) ≈ 0.0586
x5 = 0.0586(2 − 17 × 0.0586) ≈ 0.0588

एक विशिष्ट प्रारंभिक अनुमान को b के समीप की 2 की शक्ति पर पूर्णन करके आधारित किया जा सकता है, फिर इसके पारस्परिक की गणना करने के लिए बिट शिफ्ट का उपयोग किया जा सकता है।

रचनात्मक गणित में, एक वास्तविक संख्या x के लिए व्युत्क्रम होने के लिए, यह x ≠ 0 पर्याप्त नहीं है। इसके बदले एक परिमेय संख्या r दी जानी चाहिए जैसे कि 0 < r < |x|। ऊपर वर्णित सन्निकटन एल्गोरिथ्म के संदर्भ में, यह सिद्ध करने की आवश्यकता है कि y में परिवर्तन अंततः मनमाने प्रकार से कम हो जाएगा।

f(x) = xx का ग्राफ़ न्यूनतम (1/e, e−1/e) पर दिखाता है।

इस पुनरावृत्ति को व्यापक प्रकार के व्युत्क्रमों के लिए भी सामान्यीकृत किया जा सकता है; उदाहरण के लिए, मैट्रिक्स व्युत्क्रम।

अपरिमेय संख्याओं का व्युत्क्रम

शून्य को छोड़कर प्रत्येक वास्तविक या मिश्रित संख्या में एक व्युत्क्रम होता है, और कुछ अपरिमेय संख्याओं के व्युत्क्रम में महत्वपूर्ण विशेष गुण हो सकते हैं। उदाहरणों में e का व्युत्क्रम (≈ 0.367879) और सुनहरे अनुपात का व्युत्क्रम (≈ 0.618034) सम्मिलित हैं। पहला व्युत्क्रम विशेष है क्योंकि कोई अन्य धनात्मक संख्या स्वयं की घात लगाने पर कम संख्या उत्पन्न नहीं कर सकती है; का वैश्विक न्यूनतम है। दूसरी संख्या एकमात्र सकारात्मक संख्या है जो इसके व्युत्क्रम लाभ: के समान है। इसका योज्य व्युत्क्रम एकमात्र ऋणात्मक संख्या है जो इसके व्युत्क्रम ऋण : के समान है।

कार्यक्रम अपरिमेय संख्याओं की एक अनंत संख्या देता है जो एक पूर्णांक द्वारा उनके व्युत्क्रम से भिन्न होती है। उदाहरण के लिए, अपरिमेय है। इसका पारस्परिक है है, बिल्कुल कम है। ऐसी अपरिमेय संख्याएँ एक स्पष्ट संपत्ति साझा करती हैं: उनके व्युत्क्रम के समान भिन्नात्मक भाग होते हैं, क्योंकि ये संख्याएँ एक पूर्णांक से भिन्न होती हैं।

आगे की टिप्पणियाँ

यदि गुणन साहचर्य है, तो गुणक व्युत्क्रम वाला एक तत्व x शून्य भाजक नहीं हो सकता (x एक शून्य भाजक है यदि कुछ अशून्य y, xy = 0) है। इसे देखने के लिए, समीकरण xy = 0 को x के व्युत्क्रम (बाईं ओर) से गुणा करना और फिर साहचर्य का उपयोग करके सरल करना पर्याप्त है। सहयोगीता की अनुपस्थिति में, सेडेनियंस एक प्रति उदाहरण प्रदान करते हैं।

बातचीत नियन्त्रित में नहीं आती है: एक तत्व जो शून्य विभाजक नहीं है, एक गुणात्मक व्युत्क्रम होने की गारंटीकृत नहीं है। Z के भीतर, -1, 0, 1 के अलावा सभी पूर्णांक उदाहरण प्रदान करते हैं; वे शून्य विभाजक नहीं हैं और न ही उनके पास Z में व्युत्क्रम हैं। तथापि, यदि वलय या बीजगणित परिमित है, तो सभी तत्व a जो शून्य भाजक नहीं हैं, में एक (बाएं और दाएं) व्युत्क्रम होता है। विषय में, पहले निरीक्षण करें कि मानचित्र f(x) = ax अंतः क्षेपी होना चाहिए: f(x) = f(y) का अर्थ है x = y:

भिन्न तत्व भिन्न तत्वों के लिए मानचित्र करते हैं, इसलिए प्रतिबिंब में तत्वों के समान परिमित संख्या होती है, और मानचित्र आवश्यक रूप से विशेषण होता है। विशेष रूप से, ƒ (अर्थात् a से गुणा) को कुछ तत्व x को 1, ax = 1 में मानचित्र करना चाहिए, अतः x a का व्युत्क्रम हो।

अनुप्रयोग

किसी भी आधार में व्युत्क्रम 1/q का विस्तार छद्म-यादृच्छिक संख्याओं के स्रोत के रूप में[3] भी कार्य कर सकता है, यदि q एक "उपयुक्त" सुरक्षित अभाज्य है, तो 2p + 1 का अभाज्य जहाँ p भी एक अभाज्य है। लंबाई q − 1 की छद्म-यादृच्छिक संख्याओं का एक क्रम विस्तार द्वारा निर्मित किया जाएगा।

यह भी देखें

टिप्पणियाँ

  1. "In equall Parallelipipedons the bases are reciprokall to their altitudes". OED "Reciprocal" §3a. Sir Henry Billingsley translation of Elements XI, 34.
  2. Anthony, Dr. "Proof that INT(1/x)dx = lnx". Ask Dr. Math. Drexel University. Retrieved 22 March 2013.
  3. Mitchell, Douglas W., "A nonlinear random number generator with known, long cycle length," Cryptologia 17, January 1993, 55–62.

संदर्भ

  • Maximally Periodic Reciprocals, Matthews R.A.J. Bulletin of the Institute of Mathematics and its Applications vol 28 pp 147–148 1992