संयुग्मी तत्व (क्षेत्र सिद्धांत): Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
गणित में, विशेष [[क्षेत्र सिद्धांत (गणित)|क्षेत्र सिद्धांत(गणित)]] में, संयुग्म अवयव या बीजगणितीय अवयव {{math|''α''}} के बीजगणितीय संयुग्म, [[फील्ड एक्सटेंशन|क्षेत्र विस्तार]] {{math|''L''/''K''}} पर, [[न्यूनतम बहुपद (क्षेत्र सिद्धांत)|न्यूनतम बहुपद(क्षेत्र सिद्धांत)]] {{math|''p''<sub>''K'', ''α''</sub>(''x'')}} {{math|''α''}} के ऊपर {{math|''K''}} की घातें हैं। संयुग्म अवयवों को सामान्यतः संदर्भों में संयुग्म कहा जाता है जहां यह अस्पष्ट नहीं है। सामान्य रूप से {{math|''α''}} ही {{math|''α''}} के संयुग्मों के समुच्चय में सम्मिलित होता है। | |||
गणित में, विशेष [[क्षेत्र सिद्धांत (गणित)]] में, संयुग्म अवयव या बीजगणितीय अवयव {{math|''α''}} के बीजगणितीय संयुग्म, [[फील्ड एक्सटेंशन|क्षेत्र विस्तार]] {{math|''L''/''K''}} पर, [[न्यूनतम बहुपद (क्षेत्र सिद्धांत)]] {{math|''p''<sub>''K'', ''α''</sub>(''x'')}} {{math|''α''}} के ऊपर {{math|''K''}} की घातें हैं। संयुग्म अवयवों को सामान्यतः संदर्भों में संयुग्म कहा जाता है जहां यह अस्पष्ट नहीं है। सामान्य रूप से {{math|''α''}} ही {{math|''α''}} के संयुग्मों के समुच्चय में सम्मिलित होता है। | |||
समतुल्य रूप से, {{math|''α''}} के संयुग्म {{mvar|L}} के क्षेत्र स्वसमाकृतिकता के निम्न {{math|''α''}} के प्रतिरूप हैं जो कि {{mvar|K}} के अवयवों को छोड़ देते हैं।. दो परिभाषाओं की समानता गैलोज सिद्धांत के प्रारम्भिक बिंदुओं में से एक है। | समतुल्य रूप से, {{math|''α''}} के संयुग्म {{mvar|L}} के क्षेत्र स्वसमाकृतिकता के निम्न {{math|''α''}} के प्रतिरूप हैं जो कि {{mvar|K}} के अवयवों को छोड़ देते हैं।. दो परिभाषाओं की समानता गैलोज सिद्धांत के प्रारम्भिक बिंदुओं में से एक है। | ||
अवधारणा [[जटिल संयुग्मन]] को सामान्यीकृत करती है, क्योंकि | अवधारणा [[जटिल संयुग्मन]] को सामान्यीकृत करती है, क्योंकि जटिल संख्या के <math>\R</math> पर बीजगणितीय संयुग्म स्वयं संख्या और इसके जटिल संयुग्म हैं। | ||
संख्या एक (संख्या) के घनमूल हैं: | संख्या एक(संख्या) के घनमूल हैं: | ||
: <math>\sqrt[3]{1} = \begin{cases}1 \\[3pt] -\frac{1}{2}+\frac{\sqrt{3}}{2}i \\[5pt] -\frac{1}{2}-\frac{\sqrt{3}}{2}i \end{cases} </math> | : <math>\sqrt[3]{1} = \begin{cases}1 \\[3pt] -\frac{1}{2}+\frac{\sqrt{3}}{2}i \\[5pt] -\frac{1}{2}-\frac{\sqrt{3}}{2}i \end{cases} </math> | ||
Line 17: | Line 15: | ||
== गुण == | == गुण == | ||
यदि K बीजगणितीय रूप से बंद क्षेत्र ''C'' के अंदर दिया गया है, तो संयुग्मों को ''C'' के अंदर ले जाया जा सकता है। यदि ऐसा कोई C निर्दिष्ट नहीं है, तो कोई अपेक्षाकृत छोटे क्षेत्र ''L'' में संयुग्मों को ले सकता है। ''L'' के लिए सबसे छोटा संभव विकल्प ''p<sub>K</sub>''<sub>, ''α''</sub>, के K पर | यदि K बीजगणितीय रूप से बंद क्षेत्र ''C'' के अंदर दिया गया है, तो संयुग्मों को ''C'' के अंदर ले जाया जा सकता है। यदि ऐसा कोई C निर्दिष्ट नहीं है, तो कोई अपेक्षाकृत छोटे क्षेत्र ''L'' में संयुग्मों को ले सकता है। ''L'' के लिए सबसे छोटा संभव विकल्प ''p<sub>K</sub>''<sub>, ''α''</sub>, के K पर विभाजन क्षेत्र युक्त है, जिसमें {{math|''α''}} सम्मिलित है। यदि L, K युक्त α का कोई [[सामान्य विस्तार]] है जिसमें α है, तो परिभाषा के अनुसार इसमें पहले से ही ऐसा विभाजन क्षेत्र सम्मिलित है। | ||
स्वसमाकृतिकता गलोइस | स्वसमाकृतिकता गलोइस समुच्चय Aut''(L/K) = G'' के साथ ''K'' का सामान्य विस्तार ''L'' दिया गया है, और इसमें ''α'' युक्त, ''G'' में ''g'' के लिए कोई भी अवयव g(α) α का एक संयुग्म होगा, क्योंकि [[automorphism|स्वसमाकृतिकता]] ''p'' की घातों के लिए, ''g p'' की घातें भेजता है। इसके विपरीत α का कोई संयुग्मी β इस रूप का है: दूसरे शब्दों में, G संयुग्मों पर सामूहिक क्रिया(गणित) प्रकार की क्रियाएं करता है। इस प्रकार यह है कि ''K(α)'' न्यूनतम बहुपद की अपरिवर्तनीयता द्वारा K(β) के लिए K- समरूपी है, और क्षेत्र ''F'' और ''F'<nowiki/>'' का कोई भी तुल्याकारिता जो बहुपद ''p'' को ''p'<nowiki/>'' को प्रतिचित्रित करती है, इनको क्रमशः ''p'' पर ''F'' और ''p'<nowiki/>'' पर ''F''' के विभाजन वाले क्षेत्रों के समरूपता तक विस्तारित किया जा सकता है। | ||
संक्षेप में, ''α'' के संयुग्मी अवयव ''K'' के किसी भी सामान्य विस्तार ''L'' में पाए जाते हैं जिसमें ''K(α)'' होता है, जो Aut''(L/K)'' में ''g'' के लिए अवयवों ''g(α)'' के | संक्षेप में, ''α'' के संयुग्मी अवयव ''K'' के किसी भी सामान्य विस्तार ''L'' में पाए जाते हैं जिसमें ''K(α)'' होता है, जो Aut''(L/K)'' में ''g'' के लिए अवयवों ''g(α)'' के समुच्चय के रूप में होता है। प्रत्येक अवयव की उस सूची में दोहराने की संख्या वियोज्य घात ''[L:K(α)]<sub>sep</sub>'' है। | ||
[[लियोपोल्ड क्रोनकर]] के एक प्रमेय में कहा गया है कि यदि ''α'' एक गैर-शून्य [[बीजगणितीय पूर्णांक]] है जैसे कि जटिल संख्याओं में ''α'' और इसके सभी संयुग्मों का अधिकतम 1 पर पूर्ण मान है, तो α [[एकता की जड़|एकात्मकता की घात]] है। इसके मात्रात्मक रूप हैं, संयुग्म के सबसे बड़े निरपेक्ष मान पर अधिक यथार्थ सीमा (घात के आधार पर) बताते हुए, जिसका अर्थ है कि | [[लियोपोल्ड क्रोनकर]] के एक प्रमेय में कहा गया है कि यदि ''α'' एक गैर-शून्य [[बीजगणितीय पूर्णांक]] है जैसे कि जटिल संख्याओं में ''α'' और इसके सभी संयुग्मों का अधिकतम 1 पर पूर्ण मान है, तो α [[एकता की जड़|एकात्मकता की घात]] है। इसके मात्रात्मक रूप हैं, संयुग्म के सबसे बड़े निरपेक्ष मान पर अधिक यथार्थ सीमा(घात के आधार पर) बताते हुए, जिसका अर्थ है कि बीजगणितीय पूर्णांक एकता का मूल है। | ||
==संदर्भ== | ==संदर्भ== | ||
Line 33: | Line 31: | ||
{{DEFAULTSORT:Conjugate Element (Field Theory)}} | {{DEFAULTSORT:Conjugate Element (Field Theory)}} | ||
[[Category:Created On 03/02/2023|Conjugate Element (Field Theory)]] | |||
[[Category:Machine Translated Page|Conjugate Element (Field Theory)]] | |||
[[Category: Machine Translated Page]] | [[Category:Templates Vigyan Ready|Conjugate Element (Field Theory)]] | ||
[[Category: | [[Category:क्षेत्र (गणित)|Conjugate Element (Field Theory)]] |
Latest revision as of 10:23, 15 February 2023
गणित में, विशेष क्षेत्र सिद्धांत(गणित) में, संयुग्म अवयव या बीजगणितीय अवयव α के बीजगणितीय संयुग्म, क्षेत्र विस्तार L/K पर, न्यूनतम बहुपद(क्षेत्र सिद्धांत) pK, α(x) α के ऊपर K की घातें हैं। संयुग्म अवयवों को सामान्यतः संदर्भों में संयुग्म कहा जाता है जहां यह अस्पष्ट नहीं है। सामान्य रूप से α ही α के संयुग्मों के समुच्चय में सम्मिलित होता है।
समतुल्य रूप से, α के संयुग्म L के क्षेत्र स्वसमाकृतिकता के निम्न α के प्रतिरूप हैं जो कि K के अवयवों को छोड़ देते हैं।. दो परिभाषाओं की समानता गैलोज सिद्धांत के प्रारम्भिक बिंदुओं में से एक है।
अवधारणा जटिल संयुग्मन को सामान्यीकृत करती है, क्योंकि जटिल संख्या के पर बीजगणितीय संयुग्म स्वयं संख्या और इसके जटिल संयुग्म हैं।
संख्या एक(संख्या) के घनमूल हैं:
बाद की दो घातें न्यूनतम बहुपद
के साथ अवयव Q[i√3] में संयुग्मी अवयव हैं।
गुण
यदि K बीजगणितीय रूप से बंद क्षेत्र C के अंदर दिया गया है, तो संयुग्मों को C के अंदर ले जाया जा सकता है। यदि ऐसा कोई C निर्दिष्ट नहीं है, तो कोई अपेक्षाकृत छोटे क्षेत्र L में संयुग्मों को ले सकता है। L के लिए सबसे छोटा संभव विकल्प pK, α, के K पर विभाजन क्षेत्र युक्त है, जिसमें α सम्मिलित है। यदि L, K युक्त α का कोई सामान्य विस्तार है जिसमें α है, तो परिभाषा के अनुसार इसमें पहले से ही ऐसा विभाजन क्षेत्र सम्मिलित है।
स्वसमाकृतिकता गलोइस समुच्चय Aut(L/K) = G के साथ K का सामान्य विस्तार L दिया गया है, और इसमें α युक्त, G में g के लिए कोई भी अवयव g(α) α का एक संयुग्म होगा, क्योंकि स्वसमाकृतिकता p की घातों के लिए, g p की घातें भेजता है। इसके विपरीत α का कोई संयुग्मी β इस रूप का है: दूसरे शब्दों में, G संयुग्मों पर सामूहिक क्रिया(गणित) प्रकार की क्रियाएं करता है। इस प्रकार यह है कि K(α) न्यूनतम बहुपद की अपरिवर्तनीयता द्वारा K(β) के लिए K- समरूपी है, और क्षेत्र F और F' का कोई भी तुल्याकारिता जो बहुपद p को p' को प्रतिचित्रित करती है, इनको क्रमशः p पर F और p' पर F' के विभाजन वाले क्षेत्रों के समरूपता तक विस्तारित किया जा सकता है।
संक्षेप में, α के संयुग्मी अवयव K के किसी भी सामान्य विस्तार L में पाए जाते हैं जिसमें K(α) होता है, जो Aut(L/K) में g के लिए अवयवों g(α) के समुच्चय के रूप में होता है। प्रत्येक अवयव की उस सूची में दोहराने की संख्या वियोज्य घात [L:K(α)]sep है।
लियोपोल्ड क्रोनकर के एक प्रमेय में कहा गया है कि यदि α एक गैर-शून्य बीजगणितीय पूर्णांक है जैसे कि जटिल संख्याओं में α और इसके सभी संयुग्मों का अधिकतम 1 पर पूर्ण मान है, तो α एकात्मकता की घात है। इसके मात्रात्मक रूप हैं, संयुग्म के सबसे बड़े निरपेक्ष मान पर अधिक यथार्थ सीमा(घात के आधार पर) बताते हुए, जिसका अर्थ है कि बीजगणितीय पूर्णांक एकता का मूल है।
संदर्भ
- David S. Dummit, Richard M. Foote, Abstract algebra, 3rd ed., Wiley, 2004.