प्रतिचित्रण (मैपिंग गणित): Difference between revisions

From Vigyanwiki
No edit summary
 
(27 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Function, homomorphism, or morphism}}
{{Short description|Function, homomorphism, or morphism}}
{{Other uses|map (disambiguation)}}
[[File:Function_color_example_3.svg|thumb|एक प्रकार का प्रतिचित्रण एक <small>फलन</small>  है, जैसा कि X में चार रंगीन आकृतियों में से किसी के वाई में उसके रंग के सहयोग से होता है]][[गणित]] में, प्रतिचित्रण या मानचित्रण अपने सामान्य अर्थों में एक गणित फलन है। ये शर्तें प्रतिचित्रण बनाने की प्रक्रिया से उत्पन्न होता हैं। पृथ्वी की सतह को कागज की शीट पर [[नक्शा|प्रतिचित्रण]] बनाया जाता है।
[[File:Function_color_example_3.svg|thumb|एक प्रकार का मानचित्र एक फ़ंक्शन है, जैसा कि X में चार रंगीन आकृतियों में से किसी के वाई में उसके रंग के सहयोग से होता है]][[गणित]] में, मानचित्र या मानचित्रण अपने सामान्य अर्थों में एक फलन (गणित) है।<ref>The words ''map'', ''mapping'', ''correspondence'', and ''operator'' are often used synonymously. {{harvnb|Halmos|1970|p=30}}. Some authors use the term ''function'' with a more restricted meaning, namely as a map that is restricted to apply to numbers only.</ref> ये शब्द मानचित्र बनाने की प्रक्रिया से उत्पन्न हो सकते हैं: पृथ्वी की सतह को कागज की शीट पर [[नक्शा]] करना।<ref name=":1">{{Cite web|url=https://www.britannica.com/science/mapping|title=Mapping {{!}} mathematics|website=Encyclopedia Britannica|language=en|access-date=2019-12-06}}</ref>
निबंधन प्रतिचित्रण का उपयोग कुछ विशेष प्रकार के फलन, जैसे समरूपता को अलग करने के लिए किया जा सकता है। उदाहरण के लिए, एक रेखीय प्रतिचित्रण सदिश समष्टियों का [[समरूपता|समरूप]] है, जबकि रेखीय फलन शब्द का यह अर्थ रेखीय बहुपद हो सकता है। [[श्रेणी सिद्धांत]] में, एक प्रतिचित्रण एक रूपवाद का उल्लेख करता है, जिसमें परिवर्तन शब्द का परस्पर उपयोग किया जाता है,लेकिन [[परिवर्तन (फ़ंक्शन)|फलन परिवर्तन]] प्रायः फलन को संदर्भित करता है। [[तर्क]] और ग्राफ़ सिद्धांत में कुछ सामान्य से कम भी उपयोग हैं।
शब्द मानचित्र का उपयोग कुछ विशेष प्रकार के कार्यों, जैसे होमोमोर्फिज्म को अलग करने के लिए किया जा सकता है। उदाहरण के लिए, एक रेखीय मानचित्र सदिश समष्टियों का [[समरूपता]] है, जबकि रेखीय फलन शब्द का यह अर्थ हो सकता है या इसका अर्थ रेखीय बहुपद हो सकता है।<ref>{{cite book |first=T. M. |last=Apostol |author-link=Tom M. Apostol |title=Mathematical Analysis |year=1981 |publisher=Addison-Wesley |isbn=0-201-00288-4 |page=35 }}</ref><ref>{{Cite web|url=http://www.cs.toronto.edu/~stacho/macm101-2.pdf|title=Function, one-to-one, onto|last=Stacho|first=Juraj|date=October 31, 2007|website=cs.toronto.edu|access-date=2019-12-06}}</ref> [[श्रेणी सिद्धांत]] में, एक मानचित्र एक रूपवाद का उल्लेख कर सकता है।<ref name=":1" />परिवर्तन शब्द का परस्पर उपयोग किया जा सकता है,<ref name=":1" />लेकिन [[परिवर्तन (फ़ंक्शन)]] अक्सर एक फ़ंक्शन को एक सेट से ही संदर्भित करता है। [[तर्क]] और ग्राफ़ सिद्धांत में कुछ कम सामान्य उपयोग भी हैं।


== कार्य के रूप में मानचित्र ==
== फलन के रूप में प्रतिचित्रण ==
{{Main article|Function (mathematics)}}
{{Main article| फलन गणित}}
गणित की कई शाखाओं में, मानचित्र शब्द का प्रयोग फलन (गणित) के अर्थ में किया जाता है,<ref>{{Cite web|url=https://www.math-only-math.com/functions-or-mapping.html|title=Functions or Mapping {{!}} Learning Mapping {{!}} Function as a Special Kind of Relation|website=Math Only Math|access-date=2019-12-06}}</ref><ref name=":0">{{Cite web|url=http://mathworld.wolfram.com/नक्शा.html|title=नक्शा|last=Weisstein|first=Eric W.|website=mathworld.wolfram.com|language=en|access-date=2019-12-06}}</ref><ref>{{Cite web|url=https://www.encyclopedia.com/education/news-wires-white-papers-and-books/mapping-mathematical|title=Mapping, Mathematical {{!}} Encyclopedia.com|website=www.encyclopedia.com|access-date=2019-12-06}}</ref> कभी-कभी उस शाखा के लिए विशेष महत्व की विशिष्ट संपत्ति के साथ। उदाहरण के लिए, मानचित्र [[टोपोलॉजी]] में एक सतत कार्य है, रैखिक बीजगणित में एक रैखिक मानचित्र आदि।
गणित की कई शाखाओं में, प्रतिचित्रण शब्द का प्रयोग गणित फलन के अर्थ में किया जाता है, कभी-कभी उस शाखा के लिए विशेष महत्व की विशिष्ट क्षेत्र के साथ किया जाता है उदाहरण के लिए, [[टोपोलॉजी|स्थलाकृति  प्रतिचित्रण]] में एक सतत <small>फलन</small>  है, रैखिक बीजगणित में एक रैखिक परिवर्तन है आदि।


कुछ लेखक, जैसे [[सर्ज लैंग]],<ref>{{cite book |first=Serge |last=Lang |title=Linear Algebra |edition=2nd |year=1971 |page=83 |publisher=Addison-Wesley |isbn=0-201-04211-8 }}</ref> फ़ंक्शन का उपयोग केवल उन मानचित्रों को संदर्भित करने के लिए करें जिनमें [[कोडोमेन]] संख्याओं का एक समूह है (अर्थात वास्तविक संख्याओं या जटिल संख्याओं का एक उपसमूह), और अधिक सामान्य कार्यों के लिए 'मैपिंग' शब्द आरक्षित करें।
कुछ लेखक, जैसे [[सर्ज लैंग]], फलन का उपयोग केवल उन प्रतिचित्रणों को संदर्भित करने के लिए करें जिनमें [[कोडोमेन]] संख्याओं का एक समूह है अर्थात वास्तविक संख्याओं या जटिल संख्याओं का एक उपसमूह, और अधिक सामान्य फलन के लिए प्रतिचित्रणण शब्द प्रयोग करें।


कुछ प्रकार के मानचित्र कई महत्वपूर्ण सिद्धांतों के विषय हैं। इनमें [[सार बीजगणित]] में होमोमोर्फिज्म, [[ज्यामिति]] में [[आइसोमेट्री]], [[गणितीय विश्लेषण]] में [[ऑपरेशन (गणित)]] और [[समूह सिद्धांत]] में [[समूह प्रतिनिधित्व]] शामिल हैं।<ref name=":1" />  गतिशील प्रणालियों के सिद्धांत में, एक मानचित्र एक असतत-समय [[गतिशील प्रणाली]] को दर्शाता है जिसका उपयोग गतिशील प्रणाली#मानचित्र बनाने के लिए किया जाता है।
कुछ प्रकार के प्रतिचित्रण कई महत्वपूर्ण सिद्धांतों के विषय हैं। इनमें [[सार बीजगणित]] में [[समरूपता]], [[ज्यामिति]] में [[आइसोमेट्री]], [[गणितीय विश्लेषण]] में [[ऑपरेशन (गणित)|कार्यवाही गणित]] और [[समूह सिद्धांत]] में [[समूह प्रतिनिधित्व]] सम्मिलित हैं।


एक आंशिक नक्शा एक आंशिक कार्य है। संबंधित शब्द जैसे [[किसी फ़ंक्शन का डोमेन]], कोडोमेन, [[इंजेक्शन समारोह]] और सतत फ़ंक्शन समान अर्थ के साथ मैप और फ़ंक्शन पर समान रूप से लागू किए जा सकते हैं। इन सभी उपयोगों को मानचित्रों पर सामान्य कार्यों के रूप में या विशेष गुणों वाले कार्यों के रूप में लागू किया जा सकता है।
गतिशील प्रणालियों के सिद्धांत में, प्रतिचित्रण एक असतत-समय [[गतिशील प्रणाली]] को दर्शाता है, जिसका उपयोग गतिशील प्रणाली प्रतिचित्रण बनाने के लिए किया जाता है।
 
एक आंशिक प्रतिचित्रण एक आंशिक फलन है। जैसे संबंधित शब्द [[किसी फ़ंक्शन का डोमेन|किसी]] [[परिवर्तन (फ़ंक्शन)|फलन]] का डोमेन, कोडोमेन, [[इंजेक्शन समारोह]] और सतत फलन समान अर्थ के साथ प्रतिचित्रण और फलन पर समान रूप से लागू किए जा सकते हैं। इन सभी उपयोगों को प्रतिचित्रणों पर सामान्य फलन के रूप में या विशेष गुणों वाले फलन के रूप में लागू किया जा सकता है।


== आकारिकी के रूप में ==
== आकारिकी के रूप में ==
{{Main article|Morphism}}
{{Main article|आकारिता}}
श्रेणी सिद्धांत में, मानचित्र को अक्सर रूपवाद या तीर के समानार्थी के रूप में प्रयोग किया जाता है, जो एक संरचना-सम्मान कार्य है और इस प्रकार कार्य की तुलना में अधिक संरचना का अर्थ हो सकता है।<ref>{{cite book |title=An Introduction to Category Theory |first=H. |last=Simmons |publisher=Cambridge University Press |year=2011 |isbn=978-1-139-50332-7 |page=2 |url=https://books.google.com/books?id=VOCQUC_uiWgC&pg=PA2 }}</ref> उदाहरण के लिए, एक रूपवाद <math>f:\, X \to Y</math> एक [[ठोस श्रेणी]] में (अर्थात एक आकृतिवाद जिसे एक कार्य के रूप में देखा जा सकता है) इसके साथ अपने डोमेन (स्रोत) की जानकारी रखता है <math>X</math> आकृतिवाद का) और इसका कोडोमेन (लक्ष्य <math>Y</math>). किसी फ़ंक्शन की व्यापक रूप से उपयोग की जाने वाली परिभाषा में <math>f:X\to Y</math>, <math>f</math> का उपसमुच्चय है <math>X\times Y</math> सभी जोड़ों से मिलकर <math>(x,f(x))</math> के लिए <math>x\in X</math>. इस अर्थ में, फ़ंक्शन सेट पर कब्जा नहीं करता है <math>Y</math> जो कोडोमेन के रूप में प्रयोग किया जाता है; केवल सीमा <math>f(X)</math> समारोह द्वारा निर्धारित किया जाता है।
 
श्रेणी सिद्धांत में, प्रतिचित्रण को प्रायः रूपवाद या तीर के समानार्थी के रूप में प्रयोग किया जाता है, जो एक समान-संरचना कार्य है और इस प्रकार फलन की तुलना में अधिक संरचना का अर्थ हो सकता है। उदाहरण के लिए, एक रूपवाद <math>f:\, X \to Y</math> एक [[ठोस श्रेणी]] में अर्थात एक आकृतिवाद जिसे एक कार्य के रूप में देखा जा सकता है इसके साथ अपने डोमेन स्रोत की जानकारी रखता है <math>X</math> आकृतिवाद का) और इसका कोडोमेन (लक्ष्य <math>Y</math>). किसी फलन की व्यापक रूप से उपयोग की जाने वाली परिभाषा में <math>f:X\to Y</math>, <math>f</math> का उपसमुच्चय है <math>X\times Y</math> सभी जोड़ों से मिलकर <math>(x,f(x))</math> के लिए <math>x\in X</math>. इस अर्थ में, फलन सेट पर अधिकार
 
नहीं करता है <math>Y</math> जो कोडोमेन के रूप में प्रयोग किया जाता है; केवल सीमा <math>f(X)</math> फलन द्वारा निर्धारित किया जाता है।


== यह भी देखें ==
== यह भी देखें ==
* {{annotated link|Apply|Apply function}}
* {{annotated link| फलन  :- फ़ंक्शन जो किसी फ़ंक्शन और उसके तर्कों को फ़ंक्शन मान पर मैप करता है|फलन लागू करें }}:-फलन जो किसी फलन और उसके तर्कों को फलन मान पर प्रतिचित्रणण करता है
* कार्य (गणित)#तीर अंकन - जैसे, <math>x\mapsto x+1</math>, जिसे मानचित्र भी कहा जाता है
* तीर अंकन - जैसे, <math>x\mapsto x+1</math>, जिसे प्रतिचित्रण भी कहा जाता है
* {{annotated link|Bijection, injection and surjection}}
* {{annotated link|आपत्ति, इंजेक्शन और प्रक्षेपण}} :- गणितीय फलन के गुण
* {{annotated link|Homeomorphism}}
* {{annotated link|होमोमोर्फिज्म :-मानचित्रण जो किसी दिए गए स्थान के सभी टोपोलॉजिकल गुणों को संरक्षित करता है}}
* [[अराजक नक्शों की सूची]]
* [[अराजक नक्शों की सूची|अव्यवस्थि प्रतिचित्रण की सूची]]
* मैपलेट एरो | मैपलेट एरो (↦) - आमतौर पर उच्चारित मानचित्र
* मैपलेट एरो (↦) - आमतौर पर उच्चारित प्रतिचित्रण
* {{annotated link|Mapping class group}}
* {{annotated link|मानचित्रण वर्ग समूह}} :-एक टोपोलॉजिकल ऑटोमोर्फिज्म समूह के समस्थानिक वर्गों का समूह
* {{annotated link|Permutation group}}
* {{annotated link|क्रमपरिवर्तन समूह}} :- समूह जिसका संचालन क्रमचय की संरचना है
* {{annotated link|Regular map (algebraic geometry)}}
*{{annotated link|नियमित मानचित्र (बीजीय ज्यामिति) }}:-बीजगणितीय किस्मों का रूपवाद




Line 34: Line 38:




==बाहरी संबंध==
{{Mathematical logic}}
{{authority control}}[[Category: कार्य और मानचित्रण | कार्य और मानचित्रण ]] [[Category: सेट थ्योरी में बुनियादी अवधारणाएँ]]






[[Category: Machine Translated Page]]
 
 
 
 
 
 
 
==बाहरी संबंध==
{{authority control}}
 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 03/02/2023]]
[[Category:Created On 03/02/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Template documentation pages|Short description/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:कार्य और मानचित्रण| कार्य और मानचित्रण ]]
[[Category:सेट थ्योरी में बुनियादी अवधारणाएँ]]

Latest revision as of 10:26, 15 February 2023

एक प्रकार का प्रतिचित्रण एक फलन है, जैसा कि X में चार रंगीन आकृतियों में से किसी के वाई में उसके रंग के सहयोग से होता है

गणित में, प्रतिचित्रण या मानचित्रण अपने सामान्य अर्थों में एक गणित फलन है। ये शर्तें प्रतिचित्रण बनाने की प्रक्रिया से उत्पन्न होता हैं। पृथ्वी की सतह को कागज की शीट पर प्रतिचित्रण बनाया जाता है।

निबंधन प्रतिचित्रण का उपयोग कुछ विशेष प्रकार के फलन, जैसे समरूपता को अलग करने के लिए किया जा सकता है। उदाहरण के लिए, एक रेखीय प्रतिचित्रण सदिश समष्टियों का समरूप है, जबकि रेखीय फलन शब्द का यह अर्थ रेखीय बहुपद हो सकता है। श्रेणी सिद्धांत में, एक प्रतिचित्रण एक रूपवाद का उल्लेख करता है, जिसमें परिवर्तन शब्द का परस्पर उपयोग किया जाता है,लेकिन फलन परिवर्तन प्रायः फलन को संदर्भित करता है। तर्क और ग्राफ़ सिद्धांत में कुछ सामान्य से कम भी उपयोग हैं।

फलन के रूप में प्रतिचित्रण

गणित की कई शाखाओं में, प्रतिचित्रण शब्द का प्रयोग गणित फलन के अर्थ में किया जाता है, कभी-कभी उस शाखा के लिए विशेष महत्व की विशिष्ट क्षेत्र के साथ किया जाता है उदाहरण के लिए, स्थलाकृति प्रतिचित्रण में एक सतत फलन है, रैखिक बीजगणित में एक रैखिक परिवर्तन है आदि।

कुछ लेखक, जैसे सर्ज लैंग, फलन का उपयोग केवल उन प्रतिचित्रणों को संदर्भित करने के लिए करें जिनमें कोडोमेन संख्याओं का एक समूह है अर्थात वास्तविक संख्याओं या जटिल संख्याओं का एक उपसमूह, और अधिक सामान्य फलन के लिए प्रतिचित्रणण शब्द प्रयोग करें।

कुछ प्रकार के प्रतिचित्रण कई महत्वपूर्ण सिद्धांतों के विषय हैं। इनमें सार बीजगणित में समरूपता, ज्यामिति में आइसोमेट्री, गणितीय विश्लेषण में कार्यवाही गणित और समूह सिद्धांत में समूह प्रतिनिधित्व सम्मिलित हैं।

गतिशील प्रणालियों के सिद्धांत में, प्रतिचित्रण एक असतत-समय गतिशील प्रणाली को दर्शाता है, जिसका उपयोग गतिशील प्रणाली प्रतिचित्रण बनाने के लिए किया जाता है।

एक आंशिक प्रतिचित्रण एक आंशिक फलन है। जैसे संबंधित शब्द किसी फलन का डोमेन, कोडोमेन, इंजेक्शन समारोह और सतत फलन समान अर्थ के साथ प्रतिचित्रण और फलन पर समान रूप से लागू किए जा सकते हैं। इन सभी उपयोगों को प्रतिचित्रणों पर सामान्य फलन के रूप में या विशेष गुणों वाले फलन के रूप में लागू किया जा सकता है।

आकारिकी के रूप में

श्रेणी सिद्धांत में, प्रतिचित्रण को प्रायः रूपवाद या तीर के समानार्थी के रूप में प्रयोग किया जाता है, जो एक समान-संरचना कार्य है और इस प्रकार फलन की तुलना में अधिक संरचना का अर्थ हो सकता है। उदाहरण के लिए, एक रूपवाद एक ठोस श्रेणी में अर्थात एक आकृतिवाद जिसे एक कार्य के रूप में देखा जा सकता है इसके साथ अपने डोमेन स्रोत की जानकारी रखता है आकृतिवाद का) और इसका कोडोमेन (लक्ष्य ). किसी फलन की व्यापक रूप से उपयोग की जाने वाली परिभाषा में , का उपसमुच्चय है सभी जोड़ों से मिलकर के लिए . इस अर्थ में, फलन सेट पर अधिकार

नहीं करता है जो कोडोमेन के रूप में प्रयोग किया जाता है; केवल सीमा फलन द्वारा निर्धारित किया जाता है।

यह भी देखें


संदर्भ







बाहरी संबंध