साधारण समूह: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 105: Line 105:
श्रेणी:समूहों के गुण
श्रेणी:समूहों के गुण


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category: Machine Translated Page]]
[[Category:CS1 errors]]
[[Category:CS1 maint]]
[[Category:Created On 13/02/2023]]
[[Category:Created On 13/02/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Mathematics sidebar templates]]
[[Category:Pages with script errors]]
[[Category:Physics sidebar templates]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]

Latest revision as of 16:45, 17 February 2023

गणित में, सहज समूह एक गैर-तुच्छ समूह होता है जिसके केवल सामान्य उपसमूह तुच्छ समूह और स्वयं समूह होते हैं। एक समूह जो सहज नहीं होता है उसे दो छोटे समूहों में विभाजित किया जा सकता है अर्थात् एक गैर-तुच्छ सामान्य उपसमूह और संबंधित भागफल समूह मे इस प्रक्रिया को दोहराया जा सकता है परिमित समूहों के लिए अंततः जॉर्डन-होल्डर प्रमेय द्वारा विशिष्ट रूप से निर्धारित सहज समूहों पर अभिगम्य किया जा जाता है। 2004 में पूर्ण परिमित सहज समूहों का पूर्ण वर्गीकरण, गणित के इतिहास में एक प्रमुख मील का पत्थर है।

उदाहरण

परिमित सहज समूह

चक्रीय समूह G = (Z/3Z, +) = Z3 सर्वांगसमता वर्ग सापेक्ष 3 (मॉड्यूलर अंकगणित देखें) सहज है। यदि H इस समूह का एक उपसमूह है, तो इसका क्रम तत्वों की संख्या G के क्रम का भाजक 3 है चूंकि 3 अभाज्य संख्या है इसीलिए इसके केवल भाजक 1 और 3 हैं या तो H, G या H तुच्छ समूह है। दूसरी ओर समूह G = ('Z'/12'Z', +) = Z12 सहज नहीं है। 0, 4, और 8 मॉडुलो 12 के सर्वांगसमता वर्ग का समुच्चय H क्रम 3 का उपसमूह है और यह एक सामान्य उपसमूह है क्योंकि एबेलियन समूह का कोई भी उपसमूह सामान्य नही होता है। इसी प्रकार, पूर्णांकों (Z, +) का योज्य समूह सहज नहीं होता है सम पूर्णांको का समुच्चय एक गैर-तुच्छ उपयुक्त सामान्य उपसमूह होता है।[1]

कोई भी एबेलियन समूह के लिए एक ही प्रकार के तर्क का उपयोग कर सकता है यह समझने के लिए कि केवल सहज एबेलियन समूह ही प्रमुख क्रम के चक्रीय समूह हैं। गैर-एबेलियन सहज समूहों का वर्गीकरण बहुत कम तुच्छ है। सबसे छोटा नॉनबेलियन सहज समूह क्रम 60 का वैकल्पिक समूह A5 है और क्रम 60 का प्रत्येक सहज समूह A5 के लिए समूह समरूप होता है।[2] दूसरा सबसे छोटा नॉनबेलियन सहज समूह क्रम 168 का प्रक्षेपी विशेष रैखिक समूह पीएसएल (2,7) होता है और क्रम 168 का प्रत्येक सहज समूह पीएसएल (2,7) के लिए समरूप होता है।[3][4]

अपरिमित सहज समूह

अपरिमित वैकल्पिक समूह, अर्थात पूर्णांकों के समान रूप से समर्थित क्रमपरिवर्तनों का समूह A∞ सहज समूह है। इस समूह को मानक अंतः स्थापित An → An+1 के संबंध में परिमित सहज समूहों An के वर्द्धमान संघ के रूप में लिखा जा सकता है। अपरिमित सहज समूहों के उदाहरणों का एक अन्य समूह PSLn(F) द्वारा दिया गया है, जहां F और n ≥ 2 एक अपरिमित क्षेत्र है।

सूक्ष्म रूप से उत्पन्न अपरिमित सहज समूहों का निर्माण करना अधिक कठिन होता है। ग्राहम हिगमैन के कारण पहला अस्तित्व परिणाम गैर-स्पष्ट है और इसमें हिगमैन समूह के सहज अंश सम्मिलित हैं।[5] जो सूक्ष्म रूप से प्रस्तुत किए जाते हैं उनमें अपरिमित थॉम्पसन समूह T और V सम्मिलित हैं। बर्गर और मोज़ेस द्वारा परिमित रूप से प्रस्तुत आघूर्ण बल अपरिमित सहज समूह के रूप बनाए गए थे।[6]

वर्गीकरण

सामान्य अपरिमित सहज समूहों के लिए अभी तक कोई ज्ञात वर्गीकरण नहीं है और ऐसा कोई वर्गीकरण आक्षित नहीं होता है।

परिमित सहज समूह

परिमित सहज समूहों की सूची महत्वपूर्ण होती हैं क्योंकि एक निश्चित अर्थ में वे सभी परिमित समूहों के "मूल निर्माण खंड" होते हैं, कुछ सीमा तक उसी प्रकार के जैसे कि अभाज्य संख्याएँ पूर्णांकों के मूल निर्माण खंड हैं। यह जॉर्डन-होल्डर प्रमेय द्वारा व्यक्त किया गया है जिसमें कहा गया है कि किसी दिए गए समूह की किन्हीं दो संरचना श्रृंखलाओं की समान लंबाई और समान कारक हैं, क्रम परिवर्तन और समरूपता एक विशाल सहयोगात्मक प्रयास से 1983 में डेनियल गोरेंस्टीन द्वारा परिमित सहज समूहों के वर्गीकरण को पूर्ण घोषित किया गया था हालांकि कुछ समस्याओ का सामना करना पड़ा विशेष रूप से क्वासिथिन समूहों के वर्गीकरण में, जिन्हें 2004 में निर्धारित किया गया था।

संक्षेप में, परिमित सहज समूहों को 18 समूहों में से या 26 अपवादों में से एक के रूप में वर्गीकृत किया गया है:

  • Zp - मुख्य अनुक्रम का चक्रीय समूह
  • An - n ≥ 5 के लिए वैकल्पिक समूह
    वैकल्पिक समूहों को एक तत्व के साथ क्षेत्र में स्थित समूह के रूप में माना जा सकता है जो इस समूह को आगामी समूह के साथ संयुक्त करता है और इस प्रकार गैर-अबेलियन परिमित सहज समूहों के सभी समूहों को स्थित समूह माना जा सकता है।
  • स्थित समूहों के 16 समूहों में से एक को समान्यतः टिट्स समूह रूप में माना जाता है, हालांकि ये पूर्ण रूप से स्थित समूह नहीं होते है, बल्कि स्थित समूहों में सूचकांक 2 होते है।
  • 26 अपवादों में से एक विकीर्ण समूह जिनमें से 20 मोन्सटर समूह के उपसमूह या उपश्रेणी हैं जिन्हे स्वतंत्र समूह कहा जाता है, जबकि शेष 6 को पारिया समूह कहा जाता है।

परिमित सहज समूहों की संरचना

वाल्टर फीट और जॉन जी थॉम्पसन के प्रसिद्ध फीट-थॉम्पसन प्रमेय में कहा गया है कि विषम क्रम का प्रत्येक समूह हल करने योग्य समूह है जब तक कि वह अभाज्य कोटि का चक्रीय न हो तब तक प्रत्येक परिमित सहज समूह में सम कोटि होती है।

श्रेयर अनुमान का कहना है कि प्रत्येक परिमित सहज समूह के बाह्य स्वाकारिता का समूह हल करने योग्य समूह है। यह वर्गीकरण प्रमेय का उपयोग करके सिद्ध किया जा सकता है।

परिमित सहज समूहों के लिए इतिहास

परिमित सहज समूहों के इतिहास में दो सूत्र होते हैं - 1820 के दशक में गाल्वा के कार्य से लेकर 1981 में मॉन्स्टर के निर्माण तक विशिष्ट सहज समूहों की खोज और निर्माण हुआ और यह सिद्ध हुआ कि यह सूची पूर्ण थी जो 19वीं शताब्दी में सबसे महत्वपूर्ण रूप से 1955 से 1983 (जब प्रारम्भिक जीत घोषित की गई थी) तक प्रारम्भ हुई, लेकिन सामान्यतः केवल 2004 में समाप्त होने पर सहमति हुई थी। प्रमाणों और समझ को अपेक्षाकृत अच्छा बनाने का कार्य प्रारम्भ किया गया था 19वीं शताब्दी के सहज समूहों के इतिहास के लिए (सिल्वेस्ट्री 1979) देखें।

निर्माण

सहज समूहों का अध्ययन कम से कम प्रारंभिक गैल्वा सिद्धांत के बाद से किया गया है, जहां एवरिस्ट गैलोइस ने महसूस किया कि तथ्य यह है कि पांच या अधिक बिंदुओं पर वैकल्पिक समूह सहज हैं और इसलिए हल करने योग्य नहीं हैं जिसे उन्होंने 1831 में सिद्ध किया था, यही कारण था कि कोई मूलांक में क्विनिसीन को हल नहीं कर सकता था। गाल्वा ने एक प्रमुख परिमित क्षेत्र पीएसएल(2,p) पर एक समतल के प्रक्षेपी विशेष रैखिक समूह का भी निर्माण किया और टिप्पणी की। कि वे p के लिए नहीं 2 या 3 के लिए सहज थे। यह शेवेलियर के लिखे उनके अंतिम पत्र में निहित है और परिमित सहज समूहों के अन्य उदाहरण हैं।[7] दूसरी खोज 1870 में केमिली जॉर्डन द्वारा की गई थी।[8] जॉर्डन ने मुख्य समूह के परिमित क्षेत्रों पर सहज आव्यूह समूहों के 4 समूहों को प्राप्त किया जिन्हें अब पारम्परिक समूहों के रूप में जाना जाता है।

लगभग उसी समय, यह प्रदर्शित गया था कि पाँच समूहों का एक समूह जिसे मैथ्यू समूह कहा जाता है पहली बार 1861 और 1873 में एमिल लियोनार्ड मैथ्यू द्वारा वर्णित किया गया था कि वह भी सहज थे। चूंकि इन पांच समूहों का निर्माण उन तरीकों से किया गया था जो अपरिमित रूप से कई संभावनाएं नहीं देते थे, उन्हें विलियम बर्नसाइड ने अपनी 1897 की पाठ्यपुस्तक में "विकीर्ण" कहा था।

बाद में पारम्परिक समूहों पर जॉर्डन के परिणामों को विल्हेम किलिंग द्वारा जटिल सहज-लाई बीजगणित के वर्गीकरण के बाद, लियोनार्ड डिक्सन द्वारा अपेक्षाकृत परिमित क्षेत्रों के लिए सामान्यीकृत किया गया। डिक्सन ने G2 और E6 प्रकार के अपवाद समूहों का भी निर्माण किया, लेकिन (विल्सन 2009, p. 2) F4, E7, या E8 प्रकार का नहीं किया। 1950 के दशक में लाई प्रकार के समूहों पर कार्य प्रारम्भ रखा गया था, जिसमें क्लाउड चेवेली ने 1955 के पेपर में पारम्परिक समूहों और असहज प्रकार के समूहों का एक समान निर्माण किया था। इसने कुछ ज्ञात समूहों (प्रक्षेपी एकात्मक समूहों) को छोड़ दिया, जो कि शेवेलली निर्माण के "व्यावर्तन" से प्राप्त किए गए थे। लाइ-प्रकार के शेष समूह स्टाइनबर्ग, टिट्स और हर्ज़िग जिन्होंने 3D4(q) और 2E6(q) का उत्पादन किया और सुज़ुकी और री सुज़ुकी-री समूह द्वारा निर्मित किए गए थे।

इन समूहों (लाइ-प्रकार के समूह, चक्रीय समूहों, वैकल्पिक समूहों और पांच असहज मैथ्यू समूहों के साथ) को एक पूर्ण सूची के रूप मे जाना जाता था लेकिन 1964 में मैथ्यू के कार्य के बाद से लगभग एक शताब्दी के बाद पहले जांको समूह की खोज की गई थी और शेष 20 विकीर्ण समूहों की खोज या अनुमान 1965-1975 में लगाया गया था जिसका समापन 1981 में हुआ, जब रॉबर्ट ग्रिएस ने घोषणा की कि उन्होंने बर्न.फिशर के "मॉन्स्टर ग्रुप" का निर्माण किया था। मॉन्स्टर के अनुक्रम 808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000 वाला सबसे बड़ा विकीर्ण सहज समूह है। मॉन्स्टर का 196,884 आयामी ग्रीज बीजगणित में 196,883-आयामी प्रतिनिधित्व है, जिसका अर्थ है कि मॉन्स्टर के प्रत्येक तत्व को 196,883 गुणा 196,883 आव्यूह के रूप में व्यक्त किया जा सकता है।

वर्गीकरण

पूर्ण वर्गीकरण को समान्यतः 1962-63 के फीट-थॉम्पसन प्रमेय से प्रारम्भ होने के रूप में स्वीकृत किया जाता है, जो सामान्य रूप से 1983 तक चल सकता है लेकिन यह 2004 में समाप्त हो रहा है। 1981 में मॉन्स्टर के निर्माण के तुरंत बाद, 10,000 से अधिक पृष्ठों का एक प्रमाण दिया गया था कि समूह सिद्धांतकारों ने सभी परिमित सहज समूहों को सफलतापूर्वक सूचीबद्ध किया था 1983 में डैनियल गोरेनस्टीन द्वारा घोषित जीत के साथ जो कि समय से पहले था - कुछ अंतराल बाद में खोजे गए, विशेष रूप से क्वासिथिन समूहों के वर्गीकरण में जिन्हें अंततः 2004 में क्वासिथिन समूहों के 1,300 पृष्ठ वर्गीकरण द्वारा प्रतिस्थापित किया गया था, जिसे अब समान्यतः पूर्ण रूप से स्वीकृत किया जाता है।

सहजता के लिए परीक्षण

साइलो का परीक्षण: मान कि n एक धनात्मक पूर्णांक है जो अभाज्य नहीं है और p, n का अभाज्य भाजक है। यदि 1, n का एकमात्र विभाजक है जो 1 सापेक्ष p के अनुरूप है तो अनुक्रम n का एक सहज समूह सम्मिलित नहीं होता है।

प्रमाण: यदि n एक मुख्य घात है तो अनुक्रम n के एक समूह का गैर-तुच्छ केंद्र समूह सिद्धांत है[9] और इसलिए सहज नहीं होता है। यदि n एक मुख्य घात नहीं है, तो प्रत्येक साइलो उपसमूह उपयुक्त होता है और साइलो के तीसरे प्रमेय द्वारा, हम जानते हैं कि अनुक्रम n के समूह के साइलो P उपसमूहों की संख्या 1 मॉड्यूलो P के बराबर है और n को विभाजित करती है। चूंकि 1 एकमात्र ऐसी संख्या है और साइलो P उपसमूह अद्वितीय है इसलिए यह सामान्य है। चूंकि यह एक उपयुक्त गैर-पहचान उपसमूह है जो समूह सहज नहीं होते है।

बर्नसाइड: एक गैर-एबेलियन परिमित सहज समूह का अनुक्रम कम से कम तीन अलग-अलग अभाज्यों से विभाज्य होता है। जो बर्नसाइड के प्रमेय से प्राप्त होता है।

यह भी देखें

संदर्भ

टिप्पणियाँ

  1. Knapp (2006), p. 170
  2. Rotman (1995), p. 226
  3. Rotman (1995), p. 281
  4. Smith & Tabachnikova (2000), p. 144
  5. Higman, Graham (1951), "A finitely generated infinite simple group", Journal of the London Mathematical Society, Second Series, 26 (1): 61–64, doi:10.1112/jlms/s1-26.1.59, ISSN 0024-6107, MR 0038348
  6. Burger, M.; Mozes, S. (2000). "Lattices in product of trees". Publ. Math. IHES. 92: 151–194. doi:10.1007/bf02698916.
  7. Wilson, Robert (October 31, 2006), "Chapter 1: Introduction", The finite simple groups
  8. Jordan, Camille (1870), Traité des substitutions et des équations algébriques
  9. See the proof in p-group, for instance.


पाठ्यपुस्तकें

  • Knapp, Anthony W. (2006), Basic algebra, Springer, ISBN 978-0-8176-3248-9
  • Rotman, Joseph J. (1995), An introduction to the theory of groups, Graduate texts in mathematics, vol. 148, Springer, ISBN 978-0-387-94285-8
  • Smith, Geoff; Tabachnikova, Olga (2000), Topics in group theory, Springer undergraduate mathematics series (2 ed.), Springer, ISBN 978-1-85233-235-8


कागजात

  • Silvestri, R. (September 1979), "Simple groups of finite order in the nineteenth century", Archive for History of Exact Sciences, 20 (3–4): 313–356, doi:10.1007/BF00327738

श्रेणी:समूहों के गुण