क्वासी-आइसोमेट्री: Difference between revisions

From Vigyanwiki
m (Abhishek moved page अर्ध isometry to क्वासी-आइसोमेट्री without leaving a redirect)
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
गणित में, एक अर्ध-आइसोमेट्री दो मीट्रिक रिक्त स्थान के बीच एक फ़ंक्शन (गणित) है जो इन रिक्त स्थान के बड़े पैमाने पर ज्यामिति का सम्मान करता है और उनके छोटे पैमाने के विवरण को अनदेखा करता है। दो मीट्रिक रिक्त स्थान अर्ध-सममितीय हैं यदि उनके बीच अर्ध-सममिति मौजूद है। अर्ध-सममितीय होने का गुण मीट्रिक रिक्त स्थान के [[वर्ग (सेट सिद्धांत)]] पर एक [[तुल्यता संबंध]] की तरह व्यवहार करता है।
गणित में, एक '''अर्ध-सममिति''' दो मापीय समष्टि के बीच एक फलन (गणित) है जो इन समष्टि के बड़े पैमाने पर ज्यामिति का प्रकरण है और उनके छोटे पैमाने के विवरण को अनदेखा करता है। दो मापीय समष्टि अर्ध-सममितीय हैं यदि उनके बीच '''अर्ध-सममितीय''' सम्मिलित है। अर्ध-सममितीय होने का गुण मापीय समष्टि के [[वर्ग (सेट सिद्धांत)|वर्ग]] पर [[तुल्यता संबंध|समानता संबंध]] की तरह व्यवहार करता है।


अर्ध-आइसोमेट्री की अवधारणा [[ज्यामितीय समूह सिद्धांत]] में विशेष रूप से महत्वपूर्ण है, [[मिखाइल लियोनिदोविच ग्रोमोव]] के काम के बाद।<ref>{{citation|first=Martin R.|last=Bridson|authorlink=Martin Bridson|contribution=Geometric and combinatorial group theory|pages=431–448|title=The Princeton Companion to Mathematics|editor1-first=Timothy|editor1-last=Gowers|editor1-link=Timothy Gowers|editor2-first=June|editor2-last=Barrow-Green|editor3-first=Imre|editor3-last=Leader|editor3-link=Imre Leader|year=2008|publisher=Princeton University Press|isbn=978-0-691-11880-2|title-link=The Princeton Companion to Mathematics}}
ग्रोमोव के काम के बाद, ज्यामितीय समूह सिद्धांत में अर्ध-सममिति की अवधारणा विशेष रूप से महत्वपूर्ण है।<ref>{{citation|first=Martin R.|last=Bridson|authorlink=Martin Bridson|contribution=Geometric and combinatorial group theory|pages=431–448|title=The Princeton Companion to Mathematics|editor1-first=Timothy|editor1-last=Gowers|editor1-link=Timothy Gowers|editor2-first=June|editor2-last=Barrow-Green|editor3-first=Imre|editor3-last=Leader|editor3-link=Imre Leader|year=2008|publisher=Princeton University Press|isbn=978-0-691-11880-2|title-link=The Princeton Companion to Mathematics}}
</ref>
</ref>


[[File:Equilateral_Triangle_Lattice.svg|thumb|350px|यह [[जाली (समूह)]] विमान के लिए अर्ध-सममितीय है।]]
[[File:Equilateral_Triangle_Lattice.svg|thumb|350px|यह [[जाली (समूह)|जालक (समूह)]] समष्टि के लिए अर्ध-सममितीय है।]]


== परिभाषा ==
== परिभाषा ==
लगता है कि <math>f</math> एक मीट्रिक स्थान से एक (आवश्यक रूप से निरंतर नहीं) कार्य है <math>(M_1,d_1)</math> एक दूसरे मीट्रिक स्थान के लिए <math>(M_2,d_2)</math>. तब <math>f</math> से अर्ध-आइसोमेट्री कहा जाता है <math>(M_1,d_1)</math> को <math>(M_2,d_2)</math> अगर वहाँ स्थिरांक मौजूद हैं <math>A\ge 1</math>, <math>B\ge 0</math>, और <math>C\ge 0</math> जैसे कि निम्नलिखित दो गुण दोनों धारण करते हैं:<ref name= "Topics" >P. de la Harpe, ''Topics in geometric group theory''. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000. {{isbn|0-226-31719-6}}</ref>
मान लीजिए कि <math>f</math> एक मापीय समष्टि <math>(M_1,d_1)</math> दूसरे मापीय समष्टि के लिए <math>(M_2,d_2)</math> से एक (आवश्यक रूप से निरंतर नहीं) फलन है। तब <math>f</math> को अर्ध-सममिति कहा जाता है <math>(M_1,d_1)</math> को <math>(M_2,d_2)</math> यदि वहाँ स्थिरांक सम्मिलित हैं <math>A\ge 1</math>, <math>B\ge 0</math>, और <math>C\ge 0</math> जैसे कि निम्नलिखित दो गुण दोनों धारण करते हैं:<ref name= "Topics" >P. de la Harpe, ''Topics in geometric group theory''. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000. {{isbn|0-226-31719-6}}</ref>
# हर दो अंक के लिए <math>x</math> और <math>y</math> में <math>M_1</math>, उनकी छवियों के बीच की दूरी योज्य स्थिरांक तक है <math>B</math> के एक कारक के भीतर <math>A</math> उनकी मूल दूरी की। अधिक औपचारिक रूप से:
# <math>M_1</math> मे प्रत्येक दो बिंदुओं के लिए <math>x</math> और <math>y</math>, उनकी छवियों के बीच की दूरी <math>A</math> उनकी मूल दूरी के एक कारक के अंदर योज्य स्थिरांक <math>B</math> तक है। अधिक औपचारिक रूप से:
#:<math>\forall x,y\in M_1: \frac{1}{A}\; d_1(x,y)-B\leq d_2(f(x),f(y))\leq A\; d_1(x,y)+B.</math>
#:<math>\forall x,y\in M_1: \frac{1}{A}\; d_1(x,y)-B\leq d_2(f(x),f(y))\leq A\; d_1(x,y)+B.</math>
#हर बिंदु <math>M_2</math> निरंतर दूरी के भीतर है <math>C</math> एक छवि बिंदु का। अधिक औपचारिक रूप से:
#<math>M_2</math> का प्रत्येक बिंदु एक छवि बिंदु की निरंतर दूरी <math>C</math> के अंदर है। अधिक औपचारिक रूप से:
#:<math>\forall z\in M_2:\exists x\in M_1: d_2(z,f(x))\le C.</math>
#:<math>\forall z\in M_2:\exists x\in M_1: d_2(z,f(x))\le C.</math>
दो मीट्रिक रिक्त स्थान <math>(M_1,d_1)</math> और <math>(M_2,d_2)</math> अर्ध-सममिति कहलाते हैं यदि कोई अर्ध-सममिति मौजूद है <math>f</math> से <math>(M_1,d_1)</math> को <math>(M_2,d_2)</math>.
दो मापीय समष्टि <math>(M_1,d_1)</math> और <math>(M_2,d_2)</math> अर्ध-सममिति कहलाते हैं यदि <math>f</math> से <math>(M_1,d_1)</math> को <math>(M_2,d_2)</math> कोई '''अर्ध-सममिति''' सम्मिलित है।


एक मानचित्र को अर्ध-आइसोमेट्रिक एम्बेडिंग कहा जाता है यदि यह पहली शर्त को संतुष्ट करता है लेकिन जरूरी नहीं कि दूसरा (यानी यह मोटे तौर पर लिप्सचिट्ज़ निरंतरता है लेकिन मोटे तौर पर अनुमान लगाने में विफल हो सकता है)। दूसरे शब्दों में, यदि मानचित्र के माध्यम से, <math>(M_1,d_1)</math> की एक उपसमष्टि के लिए अर्ध-सममितीय है <math>(M_2,d_2)</math>.
एक मानचित्र को '''अर्ध-सममितीय अंतःस्थापन''' कहा जाता है यदि यह पहली शर्त को पूरा करता है लेकिन आवश्यक नहीं कि दूसरा (अर्थात यह सामान्य रूप से लिप्सचिट्ज़ निरंतरता है लेकिन सामान्य रूप से अनुमान लगाने में विफल हो सकता है)। दूसरे शब्दों में, यदि मानचित्र के माध्यम से, <math>(M_1,d_1)</math> की एक उपसमष्टि के लिए <math>(M_2,d_2)</math> अर्ध-सममितीय है।


दो मीट्रिक रिक्त स्थान एम<sub>1</sub>और एम<sub>2</sub>'क्वैसी-आइसोमेट्रिक' कहा जाता है, जिसे निरूपित किया जाता है <math>M_1\underset{q.i.}{\sim} M_2 </math>, अगर वहाँ एक अर्ध-आइसोमेट्री मौजूद है <math>f:M_1\to M_2</math>.
दो मापीय समष्टि M<sub>1</sub>और M<sub>2</sub>'''<nowiki/>'अर्ध-सममितीय'''<nowiki/>' कहा जाता है, जिसे <math>M_1\underset{q.i.}{\sim} M_2 </math> के द्वारा निरूपित किया जाता है यदि <math>f:M_1\to M_2</math> अर्ध-सममिति सम्मिलित है।


== उदाहरण ==
== उदाहरण ==
[[यूक्लिडियन विमान]] और [[मैनहट्टन दूरी]] वाले विमान के बीच का नक्शा जो हर बिंदु को खुद को भेजता है एक अर्ध-आइसोमेट्री है: इसमें, दूरियों को अधिकतम के एक कारक से गुणा किया जाता है <math>\sqrt 2</math>. ध्यान दें कि कोई आइसोमेट्री नहीं हो सकती है, उदाहरण के लिए, अंक <math>(1, 0), (-1, 0), (0, 1), (0, -1)</math> मैनहट्टन दूरी में एक दूसरे से समान दूरी के हैं, लेकिन यूक्लिडियन विमान में, ऐसे 4 बिंदु नहीं हैं जो एक दूसरे से समान दूरी के हों।
[[यूक्लिडियन विमान|यूक्लिडीय समतल]] और [[मैनहट्टन दूरी]] वाले समतल के बीच का मानचित्र जो प्रत्येक बिंदु को स्वयं को भेजता है यह एक अर्ध-सममिति है: इसमें, दूरियों को अधिकतम <math>\sqrt 2</math> के एक कारक से गुणा किया जाता है। ध्यान दें कि कोई समरूपता नहीं हो सकती है, उदाहरण के लिए, बिंदु <math>(1, 0), (-1, 0), (0, 1), (0, -1)</math> मैनहट्टन दूरी में एक दूसरे से समान दूरी के हैं, लेकिन यूक्लिडीय समतल में, ऐसे 4 बिंदु नहीं हैं बिंदु जो एक दूसरे से समान दूरी के हैं।


वो नक्शा <math>f:\mathbb{Z}^n\mapsto\mathbb{R}^n</math> (दोनों [[यूक्लिडियन मीट्रिक]] के साथ) जो प्रत्येक भेजता है <math>n</math>-पूर्णांकों का ट्यूपल स्वयं के लिए अर्ध-आइसोमेट्री है: दूरी बिल्कुल संरक्षित होती है, और प्रत्येक वास्तविक ट्यूपल दूरी के भीतर होता है <math>\sqrt{n/4}</math> एक पूर्णांक टपल का। दूसरी दिशा में, असंतुलित कार्य जो वास्तविक संख्याओं के प्रत्येक टपल को निकटतम पूर्णांक टपल तक गोल करता है, वह भी एक अर्ध-आइसोमेट्री है: प्रत्येक बिंदु को इस मानचित्र द्वारा दूरी के भीतर एक बिंदु पर ले जाया जाता है। <math>\sqrt{n/4}</math> इसका, इसलिए राउंडिंग बिंदुओं के जोड़े के बीच की दूरी को अधिक से अधिक जोड़कर या घटाकर बदल देता है <math>2\sqrt{n/4}</math>.
मानचित्र <math>f:\mathbb{Z}^n\mapsto\mathbb{R}^n</math> (दोनों [[यूक्लिडियन मीट्रिक|यूक्लिडियन मापीय]] के साथ) जो पूर्णांकों के प्रत्येक <math>n</math>- टपल स्वयं को भेजता है, यह अर्ध-सममिति दूरी है बिल्कुल संरक्षित हैं, और प्रत्येक वास्तविक टपल एक पूर्णांक टपल की दूरी <math>\sqrt{n/4}</math> के अंदर है। दूसरी दिशा में, असंतुलित कार्य जो वास्तविक संख्याओं के प्रत्येक टपल को निकटतम पूर्णांक टपल तक ले जाता है, वह भी एक अर्ध-सममिति है: प्रत्येक बिंदु को इस मानचित्र द्वारा दूरी <math>\sqrt{n/4}</math> के अंदर एक बिंदु पर ले जाया जाता है। इसलिए अधिकतम <math>2\sqrt{n/4}</math> बिंदुओं के जोड़े के बीच की दूरी को अधिक से अधिक जोड़कर या घटाकर परिवर्तित कर देता है।


परिमित या परिबद्ध मीट्रिक रिक्त स्थान की प्रत्येक जोड़ी अर्ध-सममितीय है। इस मामले में, प्रत्येक कार्य एक स्थान से दूसरे स्थान पर एक अर्ध-आइसोमेट्री है।
परिमित या परिबद्ध मापीय समष्टि की प्रत्येक जोड़ी अर्ध-सममितीय है। इस स्थिति में, प्रत्येक फलन एक समष्टि से दूसरे समष्टि पर एक अर्ध-सममिति है।


== तुल्यता संबंध ==
== समानता संबंध ==
अगर <math>f:M_1\mapsto M_2</math> एक क्वासी-आइसोमेट्री है, तो एक क्वासी-आइसोमेट्री मौजूद है <math>g:M_2\mapsto M_1</math>. वास्तव में, <math>g(x)</math> देकर परिभाषित किया जा सकता है <math>y</math> की छवि में कोई भी बिंदु हो <math>f</math> वह दूरी के भीतर है <math>C</math> का <math>x</math>, और दे रहा है <math>g(x)</math> किसी भी बिंदु पर हो <math>f^{-1}(y)</math>.
यदि <math>f:M_1\mapsto M_2</math> एक अर्ध-सममिति है, तो एक अर्ध-सममिति <math>g:M_2\mapsto M_1</math>सम्मिलित है। वास्तव में, <math>g(x)</math> <math>y</math> की छवि में कोई भी बिंदु <math>f</math> देकर परिभाषित किया जा सकता है, जो की <math>x</math> की दूरी <math>C</math> के अंदर है और <math>g(x)</math> किसी भी बिंदु <math>f^{-1}(y)</math> पर है।


चूंकि [[पहचान समारोह]] एक अर्ध-सममिति है, और दो अर्ध-सममिति की कार्यात्मक संरचना एक अर्ध-सममिति है, यह इस प्रकार है कि अर्ध-सममितीय होने की संपत्ति मीट्रिक रिक्त स्थान के वर्ग पर एक तुल्यता संबंध की तरह व्यवहार करती है।
चूंकि पहचान मानचित्र एक अर्ध-सममिति है, और दो अर्ध-सममिति की कार्यात्मक संरचना एक अर्ध-सममिति है, यह इस प्रकार है कि अर्ध-सममितीय होने के गुण मापीय समष्टि के वर्ग पर एक समानता संबंध की तरह व्यवहार करती है।


== ज्यामितीय समूह सिद्धांत में प्रयोग करें ==
== ज्यामितीय समूह सिद्धांत में प्रयोग करें ==
एक निश्चित रूप से उत्पन्न [[समूह (गणित)]] G के समूह S के एक परिमित जनरेटिंग सेट को देखते हुए, हम S और G के संबंधित [[केली ग्राफ]] बना सकते हैं। यदि हम प्रत्येक किनारे की लंबाई 1 होने की घोषणा करते हैं तो यह ग्राफ एक मीट्रिक स्थान बन जाता है। एक भिन्न परिमित जनरेटिंग सेट T का परिणाम भिन्न ग्राफ़ और भिन्न मीट्रिक स्थान में होता है, हालाँकि दो स्थान अर्ध-सममितीय होते हैं।<ref>R. B. Sher and [[R. J. Daverman]] (2002), ''Handbook of Geometric Topology'', North-Holland. {{isbn|0-444-82432-4}}.</ref> यह क्वैसी-आइसोमेट्री क्लास इस प्रकार ग्रुप जी का एक इनवेरिएंट (गणित) है। मेट्रिक स्पेस की कोई भी संपत्ति जो केवल स्पेस के क्वासी-आइसोमेट्री क्लास पर निर्भर करती है, तुरंत ग्रुप्स का एक और इनवेरिएंट पैदा करती है, जो ग्रुप थ्योरी के फील्ड को ज्योमेट्रिक तरीकों से खोलती है।
एक निश्चित रूप से उत्पन्न समूह G के एक परिमित उत्पादक समुच्चय S को देखते हुए, हम S और G के संबंधित केली ग्राफ बना सकते हैं। यह ग्राफ एक मापीय समष्टि बन जाता है यदि हम प्रत्येक किनारे की लंबाई 1 होने की घोषणा करते हैं। एक अलग परिमित उत्पादक समुच्चय T परिणाम एक अलग ग्राफ और एक अलग मापीय समष्टि में लेते हैं, हालाँकि दो समष्टि अर्ध-सममितीय होते हैं।<ref>R. B. Sher and [[R. J. Daverman]] (2002), ''Handbook of Geometric Topology'', North-Holland. {{isbn|0-444-82432-4}}.</ref> यह अर्ध-सममिति वर्ग समूह इस प्रकार समूह G अपरिवर्तनशील है। मापीय समष्टि का कोई भी गुण जो केवल समष्टि के अर्ध-सममिति वर्ग पर निर्भर करती है, तुरंत समूहों के एक और अपरिवर्तनशील उत्पन्न करती है, समूह सिद्धांत के क्षेत्र को ज्यामितीय तरीकों से प्रारंभ करती है।


अधिक आम तौर पर, 'Svarc-Milnor lemma' में कहा गया है कि यदि एक समूह G एक उचित जियोडेसिक स्पेस X पर कॉम्पैक्ट भागफल के साथ उचित रूप से बंद कार्रवाई करता है तो G, X के लिए अर्ध-सममितीय है (जिसका अर्थ है कि G के लिए कोई भी केली ग्राफ है)। यह एक दूसरे को अर्ध-सममितीय समूहों के नए उदाहरण देता है:
अधिक सामान्य रूप से, स्वार्क–मिल्नोर लेम्मा में कहा गया है कि यदि एक समूह G उपयुक्त अल्पान्तरी समष्टि X पर सुसम्बद्ध भागफल के साथ ठीक से काम करता है तो G, X के लिए अर्ध-सममितीय है (जिसका अर्थ है कि G के लिए कोई केली ग्राफ है)। यह समूहों के अर्ध-सममितीय समूहों के एक दूसरे के नए उदाहरण देता है:
* यदि G' G में एक उपसमूह के परिमित सूचकांक का एक उपसमूह है तो G', G के लिए अर्ध-सममितीय है;
* यदि G', G में परिमित सूचकांक का एक उपसमूह है तो G', G के लिए अर्ध-सममितीय है;
* यदि जी और एच एक ही आयाम डी के दो कॉम्पैक्ट [[अतिशयोक्तिपूर्ण कई गुना]] के मूलभूत समूह हैं तो वे दोनों हाइपरबॉलिक स्पेस 'एच' के अर्ध-सममितीय हैं<sup>d</sup> और इसलिए एक दूसरे के लिए; दूसरी ओर परिमित-आयतन के मौलिक समूहों के असीम रूप से कई अर्ध-सममिति वर्ग हैं।<ref>{{cite journal | last=Schwartz | first=Richard | title=The Quasi-Isometry Classification of Rank One Lattices | journal=I.H.É.S. Publications Mathématiques | date=1995 | volume=82 | pages=133&ndash;168| doi=10.1007/BF02698639 | s2cid=67824718 | url=http://www.numdam.org/item/PMIHES_1995__82__133_0/ }}</ref>
* यदि G और H एक ही आयाम d के दो संहत [[अतिशयोक्तिपूर्ण कई गुना|अतिपरवलयिक कई गुना]] के मौलिक समूह हैं तो वे दोनों अतिपरवलयिक समष्टि 'H<sup>d</sup>' के के अर्ध-सममितीय हैं और इसलिए दूसरी ओर एक दूसरे के लिए मौलिक समूहों के परिमित-आयतन का अधिकतम सीमा तक कई अर्ध-सममिति वर्ग हैं।<ref>{{cite journal | last=Schwartz | first=Richard | title=The Quasi-Isometry Classification of Rank One Lattices | journal=I.H.É.S. Publications Mathématiques | date=1995 | volume=82 | pages=133&ndash;168| doi=10.1007/BF02698639 | s2cid=67824718 | url=http://www.numdam.org/item/PMIHES_1995__82__133_0/ }}</ref>




== कसीगोडेसिक्स और मोर्स लेम्मा ==
== अर्ध-भूगणितीय और मोर्स लेम्मा ==


एक मीट्रिक अंतरिक्ष में एक अर्ध-जियोडेसिक <math>(X, d)</math> का एक अर्ध-आइसोमेट्रिक एम्बेडिंग है <math>\mathbb R</math> में <math>X</math>. अधिक सटीक एक नक्शा <math>\phi: \mathbb R \to X</math> ऐसा है कि वहाँ मौजूद है <math>C,K > 0</math> ताकि
मापीय समष्टि में एक अर्ध-भूगणितीय <math>(X, d)</math> का एक अर्ध-सममितीय अंतःस्थापन <math>\mathbb R</math> में <math>X</math> में है। अधिक स्पष्ट रूप से एक मानचित्र <math>\phi: \mathbb R \to X</math> है कि वहाँ सम्मिलित है <math>C,K > 0</math> ताकि
:<math>\forall s, t \in \mathbb R : C^{-1} |s - t| - K \le d(\phi(t), \phi(s)) \le C|s - t| + K</math>
:<math>\forall s, t \in \mathbb R : C^{-1} |s - t| - K \le d(\phi(t), \phi(s)) \le C|s - t| + K</math>
ए कहा जाता है <math>(C,K)</math>-quasi-geodesic। जाहिर तौर पर जियोडेसिक्स (आर्कलेंथ द्वारा पैरामीट्रिज्ड) अर्ध-जियोडेसिक्स हैं। तथ्य यह है कि कुछ स्थानों में आक्षेप मोटे तौर पर सच है, अर्थात प्रत्येक अर्ध-जियोडेसिक एक वास्तविक जियोडेसिक की सीमाबद्ध दूरी के भीतर रहता है, जिसे [[मोर्स हेडवर्ड]] कहा जाता है (अंतर टोपोलॉजी में शायद अधिक व्यापक रूप से ज्ञात मोर्स लेम्मा के साथ भ्रमित नहीं होना चाहिए)। औपचारिक रूप से कथन है:
<math>(C,K)</math> को अर्ध-भूगणितीय कहा जाता है। प्रत्यक्ष रूप से जियोडेसिक्स (चाप की लंबाई द्वारा पैरामिट्रीकृत) अर्ध-जियोडेसिक्स (भूगणितीय) हैं। तथ्य यह है कि कुछ स्थानों में आक्षेप सामान्य रूप से सत्य है, अर्थात प्रत्येक अर्ध-भूगणितीय एक वास्तविक भूगणितीय की सीमाबद्ध दूरी के अंदर रहता है, जिसे मोर्स लेम्मा कहा जाता है (अवकल सांस्थिति में संभव्यता अधिक व्यापक रूप से ज्ञात मोर्स लेम्मा के साथ भ्रमित नहीं होना चाहिए)। औपचारिक रूप से कथन है


:होने देना <math>\delta, C, K > 0</math> और <math>X</math> एक उचित δ-हाइपरबॉलिक स्पेस। वहां मौजूद <math>M</math> ऐसा कि किसी के लिए <math>(C, K)</math>-quasi-geodesic <math>\phi</math> एक जियोडेसिक मौजूद है <math>L</math> में <math>X</math> ऐसा है कि <math>d(\phi(t), L) \le M</math> सभी के लिए <math>t \in \mathbb R</math>.
:माना कि <math>\delta, C, K > 0</math> और <math>X</math> एक उपयुक्त δ-अतिपरवलयिक समष्टि है। वहां <math>M</math> की स्थिति है कि किसी भी <math>(C, K)</math>-अर्ध-भूगणितीय <math>\phi</math> के लिए <math>X</math> में भूगणितीय <math>L</math> सम्मिलित है जैसे कि <math>d(\phi(t), L) \le M</math> सभी के लिए <math>t \in \mathbb R</math> है।


यह ज्यामितीय समूह सिद्धांत में एक महत्वपूर्ण उपकरण है। एक तत्काल आवेदन यह है कि उचित अतिशयोक्तिपूर्ण रिक्त स्थान के बीच कोई भी अर्ध-सममिति उनकी सीमाओं के बीच एक होमोमोर्फिज्म को प्रेरित करती है। यह परिणाम मोस्टो कठोरता प्रमेय के प्रमाण में पहला कदम है।
यह ज्यामितीय समूह सिद्धांत में एक महत्वपूर्ण उपकरण है। तात्‍कालिक अनुप्रयोग यह है कि उपयुक्त अतिपरवलयिक समष्टि के बीच कोई भी अर्ध-सममिति उनकी सीमाओं के बीच एक सम-आकारिता को प्रेरित करती है। यह परिणाम मोस्टो दृढता-प्रमेय के प्रमाण में पहला चरण है।


== समूहों के अर्ध-आइसोमेट्री इनवेरिएंट के उदाहरण ==
== समूहों के अर्ध-सममिति निश्चर के उदाहरण ==
समूह केली ग्राफ़ के गुणों के कुछ उदाहरण निम्नलिखित हैं जो क्वासी-आइसोमेट्री के तहत अपरिवर्तनीय हैं:<ref name = "Topics" />
समूह केली ग्राफ़ के गुणों के कुछ उदाहरण निम्नलिखित हैं जो अर्ध-सममिति के अंतर्गत अपरिवर्तनीय हैं:<ref name = "Topics" />






=== अतिशयोक्ति ===
=== अतिपरवलिता ===
{{main|Hyperbolic group}}
{{main|अतिपरवलयिक समूह}}
एक समूह को अतिपरवलयिक कहा जाता है यदि इसका एक केली ग्राफ कुछ δ के लिए δ-अतिपरवलयिक स्थान है। अतिपरवलयिकता की विभिन्न परिभाषाओं के बीच अनुवाद करते समय, δ का विशेष मूल्य बदल सकता है, लेकिन एक अतिशयोक्तिपूर्ण समूह के परिणामी विचार समतुल्य हो जाते हैं।


अतिशयोक्तिपूर्ण समूहों में समूहों के लिए एक हल करने योग्य शब्द समस्या है। वे द्वि[[स्वचालित समूह]] और स्वचालित समूह हैं।<ref name=charney>{{citation | last=Charney | first=Ruth | title=Artin groups of finite type are biautomatic | journal=Mathematische Annalen | volume= 292 | year=1992 | doi=10.1007/BF01444642 | pages=671–683| s2cid=120654588 }}</ref> वास्तव में, वे स्वचालित समूह हैं, अर्थात्, समूह पर एक स्वचालित संरचना होती है, जहाँ स्वीकर्ता शब्द द्वारा स्वीकृत भाषा सभी भूगणितीय शब्दों का समूह होती है।
समूह को '''अतिपरवलयिक''' कहा जाता है यदि इसका एक केली ग्राफ कुछ δ के लिए δ-अतिपरवलयिक समष्टि है। अतिपरवलयिकता की विभिन्न परिभाषाओं के बीच रूपातंरण करते समय, δ का विशेष मूल्य बदल सकता है, लेकिन एक अतिपरवलयिक समूह के परिणामी विचार समतुल्य हो जाते हैं।
 
अतिपरवलयिक समूहों में समूहों के लिए एक हल करने योग्य शब्द समस्या है। वे द्वि[[स्वचालित समूह]] और स्वचालित समूह हैं।<ref name=charney>{{citation | last=Charney | first=Ruth | title=Artin groups of finite type are biautomatic | journal=Mathematische Annalen | volume= 292 | year=1992 | doi=10.1007/BF01444642 | pages=671–683| s2cid=120654588 }}</ref> वास्तव में, वे वे दृढ़ता से भूगणितीय दृष्टि से स्वचालित समूह हैं, अर्थात्, समूह पर एक स्वचालित संरचना होती है, जहाँ स्वीकर्ता शब्द द्वारा स्वीकृत भाषा सभी भूगणितीय शब्दों का समूह होती है।


=== वृद्धि ===
=== वृद्धि ===
{{main|Growth rate (group theory)}}
{{main|विकास दर (समूह सिद्धांत)}}
एक समूह (गणित) की विकास दर एक समूह के सममित जनरेटिंग सेट के संबंध में समूह में गेंदों के आकार का वर्णन करती है। समूह में प्रत्येक तत्व को जनरेटर के उत्पाद के रूप में लिखा जा सकता है, और विकास दर उन तत्वों की संख्या की गणना करती है जिन्हें लंबाई 'एन' के उत्पाद के रूप में लिखा जा सकता है।


बहुपद विकास के समूहों पर ग्रोमोव के प्रमेय के अनुसार | ग्रोमोव का प्रमेय, बहुपद वृद्धि का एक समूह वस्तुतः नगण्य है, अर्थात इसमें एक [[उपसमूह]] के परिमित सूचकांक का एक [[निलपोटेंट समूह]] उपसमूह है। विशेष रूप से, बहुपद वृद्धि का क्रम <math>k_0</math> एक [[प्राकृतिक संख्या]] होना चाहिए और वास्तव में <math>\#(n)\sim n^{k_0}</math>.
सममित उत्पादक समुच्चय के संबंध में एक समूह की वृद्धि दर समूह में गेंदों के आकार का वर्णन करती है। समूह के प्रत्येक तत्व को उत्पादक के उत्पाद के रूप में लिखा जा सकता है, और विकास दर उन तत्वों की संख्या की गणना करती है जिन्हें लंबाई n के उत्पाद के रूप में लिखा जा सकता है।


अगर <math>\#(n)</math> किसी भी एक्सपोनेंशियल फ़ंक्शन की तुलना में अधिक धीरे-धीरे बढ़ता है, G की 'सबएक्सपोनेंशियल ग्रोथ रेट' होती है। ऐसा कोई भी समूह अनुमन्य समूह है।
ग्रोमोव के प्रमेय के अनुसार, बहुपद वृद्धि का एक समूह वास्तव में शून्यंभावी है, अर्थात इसमें परिमित सूचकांक का एक शून्यंभावी उपसमूह है। विशेष रूप से, बहुपद वृद्धि का क्रम <math>k_0</math> [[प्राकृतिक संख्या]] होना चाहिए और वास्तव में <math>\#(n)\sim n^{k_0}</math>


=== समाप्त ===
यदि <math>\#(n)</math> किसी भी घातांक फलन की तुलना में अधिक धीमी गति से बढ़ता है, G की की उप-घातीय वृद्धि दर है। ऐसा कोई भी समूह अनुमन्य है।
{{main|End (topology)}}
एक [[टोपोलॉजिकल स्पेस]] के सिरे मोटे तौर पर स्पेस की "आदर्श सीमा" के [[जुड़ा हुआ घटक (टोपोलॉजी)]] हैं। यही है, प्रत्येक अंत अंतरिक्ष के भीतर अनंत तक जाने के लिए एक स्थैतिक रूप से अलग तरीके का प्रतिनिधित्व करता है। प्रत्येक छोर पर एक बिंदु जोड़ने से मूल स्थान का एक [[संघनन (गणित)]] प्राप्त होता है, जिसे अंतिम संघनन के रूप में जाना जाता है।


एक अंतिम रूप से उत्पन्न समूह के सिरों को इसी केली ग्राफ के सिरों के रूप में परिभाषित किया गया है; यह परिभाषा परिमित जनरेटिंग सेट की पसंद से स्वतंत्र है। प्रत्येक सूक्ष्म रूप से उत्पन्न अनंत समूह में या तो 0,1, 2, या असीम रूप से कई छोर होते हैं, और समूहों के सिरों के बारे में स्टालिंग प्रमेय एक से अधिक छोर वाले समूहों के लिए एक अपघटन प्रदान करता है।
=== सिरा ===
{{main|सिरे (सांस्थिति)}}
एक [[टोपोलॉजिकल स्पेस|सांस्थितिक समष्टि]] के सिरे सामान्य रूप से समष्टि की "आदर्श सीमा" के [[जुड़ा हुआ घटक (टोपोलॉजी)|जुड़ा हुआ घटक (सांस्थिति)]] हैं। यही है, प्रत्येक अंत समष्टि के अंदर अनंत तक जाने के लिए एक स्थैतिक रूप से अलग तरीके का प्रतिनिधित्व करता है। प्रत्येक सिरे पर एक बिंदु जोड़ने से मूल समष्टि का [[संघनन (गणित)|संहतीकरण (गणित)]] प्राप्त होता है, जिसे अंतिम संहतीकरण के रूप में जाना जाता है।
 
एक अंतिम रूप से उत्पन्न समूह के सिरों को इसी केली ग्राफ के सिरों के रूप में परिभाषित किया गया है; यह परिभाषा परिमित उत्पादक समुच्चय के चयन से मुक्त है। प्रत्येक सूक्ष्म रूप से उत्पन्न अनंत समूह में या तो 0,1, 2, या अधिकतम रूप से कई सिरे होते हैं, और समूहों के सिरों के बारे में स्तंभी प्रमेय एक से अधिक सिरे वाले समूहों के लिए अपघटन प्रदान करता है।


यदि दो जुड़े हुए स्थानीय रूप से परिमित ग्राफ़ अर्ध-सममितीय हैं, तो उनके सिरों की संख्या समान है।<ref>{{cite journal|journal=[[Journal of Pure and Applied Algebra]]|author=Stephen G.Brick|title=Quasi-isometries and ends of groups|volume=86|issue=1|year=1993|pages=23–33|doi=10.1016/0022-4049(93)90150-R|doi-access=free}}</ref> विशेष रूप से, दो अर्ध-सममितीय सूक्ष्म रूप से उत्पन्न समूहों में सिरों की संख्या समान होती है।
यदि दो जुड़े हुए स्थानीय रूप से परिमित ग्राफ़ अर्ध-सममितीय हैं, तो उनके सिरों की संख्या समान है।<ref>{{cite journal|journal=[[Journal of Pure and Applied Algebra]]|author=Stephen G.Brick|title=Quasi-isometries and ends of groups|volume=86|issue=1|year=1993|pages=23–33|doi=10.1016/0022-4049(93)90150-R|doi-access=free}}</ref> विशेष रूप से, दो अर्ध-सममितीय सूक्ष्म रूप से उत्पन्न समूहों में सिरों की संख्या समान होती है।


=== सुविधा ===
=== अनुमनन ===
{{main|Amenable group}}
{{main|अनुकूल समूह}}
एक अनुकूल समूह एक [[स्थानीय रूप से कॉम्पैक्ट]] [[टोपोलॉजिकल समूह]] 'जी' है जो बाध्य कार्यों पर एक प्रकार का औसत संचालन करता है जो कि समूह तत्वों द्वारा अनुवाद के तहत अपरिवर्तनीय (गणित) है। 1929 में [[जॉन वॉन न्यूमैन]] द्वारा [[जर्मन भाषा]] के नाम मेसबार (अंग्रेजी में मापने योग्य) के तहत बनच- टार्स्की विरोधाभास। 1949 में Mahlon M. Day ने अंग्रेजी अनुवाद amenable की शुरुआत की, जाहिरा तौर पर एक श्लेष के रूप में।<ref>Day's first published use of the word is in his abstract for an AMS summer meeting in 1949, [http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.bams/1183514222 ''Means on semigroups and groups'', Bull. A.M.S. 55 (1949) 1054–1055]. Many text books on amenability, such as Volker Runde's, suggest that Day chose the word as a pun.</ref>
एक अनुकूल समूह एक [[स्थानीय रूप से कॉम्पैक्ट|स्थानीय रूप से संहत]] [[टोपोलॉजिकल समूह|सांस्थितिक समूह]] 'G' है जो परिबद्ध फलन पर एक प्रकार का औसत संक्रिया करता है जो कि समूह तत्वों द्वारा अनुवादक के अंतर्गत अपरिवर्तनीय (गणित) है। मूल परिभाषा, G के उपसमुच्चय पर परिमित योगात्मक अपरिवर्तनीय माप (या माध्य) के संदर्भ में, 1929 में जॉन वॉन न्यूमैन द्वारा जर्मन नाम "मेसबार" (अंग्रेजी में "मापने योग्य") के अंतर्गत बनच टार्स्की पेराडॉक्स के जवाब में प्रस्तुत की गई थी। 1949 में महलोन एम डे ने "अनुमन्य" का अंग्रेजी अनुवाद प्रस्तुत किया, जो स्पष्ट रूप से एक वाक्य के रूप में था।<ref>Day's first published use of the word is in his abstract for an AMS summer meeting in 1949, [http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.bams/1183514222 ''Means on semigroups and groups'', Bull. A.M.S. 55 (1949) 1054–1055]. Many text books on amenability, such as Volker Runde's, suggest that Day chose the word as a pun.</ref>
[[असतत समूह सिद्धांत]] में, जहाँ G के पास [[असतत टोपोलॉजी]] है, एक सरल परिभाषा का उपयोग किया जाता है। इस सेटिंग में, एक समूह अनुमन्य है यदि कोई कह सकता है कि किसी दिए गए उपसमुच्चय में G का कितना अनुपात होता है।
 
[[असतत समूह सिद्धांत]] में, जहाँ G के पास [[असतत टोपोलॉजी|असतत सांस्थिति]] है, एक सरल परिभाषा का उपयोग किया जाता है। इस संस्थापन में, एक समूह अनुमन्य है यदि कोई कह सकता है कि किसी दिए गए उपसमुच्चय में G का कितना अनुपात होता है।


यदि किसी समूह में एक Følner अनुक्रम है तो यह स्वचालित रूप से अनुमन्य है।
यदि किसी समूह में एक फोल्नर अनुक्रम है तो यह स्वचालित रूप से अनुमन्य है।


=== स्पर्शोन्मुख शंकु ===
=== स्पर्शोन्मुख शंकु ===
{{main|Ultralimit#Asymptotic cones}}
{{main|अतिसीमित#स्पर्शोन्मुख शंकु}}
एक अल्ट्रालिमिट एक ज्यामितीय निर्माण है जो मीट्रिक रिक्त स्थान 'एक्स' के अनुक्रम को निर्दिष्ट करता है<sub>n</sub>एक सीमित मीट्रिक स्थान। अल्ट्रालिमिट्स का एक महत्वपूर्ण वर्ग मीट्रिक रिक्त स्थान के तथाकथित स्पर्शोन्मुख शंकु हैं। चलो (एक्स, डी) एक मीट्रिक स्थान बनें, चलो ω एक गैर-प्रमुख अल्ट्राफिल्टर हो <math>\mathbb N </math> और चलो पी<sub>n</sub>∈ X आधार-बिंदुओं का एक क्रम हो। फिर अनुक्रम की ω–अल्ट्रालिमिट <math>(X, \frac{d}{n}, p_n)</math> ω और के संबंध में X का स्पर्शोन्मुख शंकु कहा जाता है <math>(p_n)_n\,</math> और निरूपित किया जाता है <math>Cone_\omega(X,d, (p_n)_n)\,</math>. एक अक्सर आधार-बिंदु अनुक्रम को स्थिर होने के लिए लेता है, पी<sub>n</sub>= पी कुछ पी एक्स के लिए; इस मामले में स्पर्शोन्मुख शंकु p ∈ X की पसंद पर निर्भर नहीं करता है और इसे द्वारा निरूपित किया जाता है  <math>Cone_\omega(X,d)\,</math> या केवल <math>Cone_\omega(X)\,</math>.
 
'''अतिसीमित''' एक ज्यामितीय निर्माण है जो मापीय समष्टि 'X<sub>n</sub> ' के अनुक्रम को निर्दिष्ट करता है एक सीमित मापीय समष्टि प्रदान करता है। अतिसीमित का एक महत्वपूर्ण वर्ग मापीय समष्टि के तथाकथित स्पर्शोन्मुख शंकु हैं। माना की (X,d) एक मापीय समष्टि है, मान लीजिए ω एक गैर-प्रमुख अतिसूक्ष्मनिस्यंदक हो <math>\mathbb N </math> और P<sub>n</sub>∈ X आधार-बिंदुओं का एक क्रम है। फिर अनुक्रम की ω–अतिसीमित <math>(X, \frac{d}{n}, p_n)</math> ω और के संबंध में X का स्पर्शोन्मुख शंकु कहा जाता है और <math>(p_n)_n\,</math> को <math>Cone_\omega(X,d, (p_n)_n)\,</math>निरूपित किया जाता है। प्रायः आधार-बिंदु अनुक्रम को स्थिर होने के लिए लेता है, P<sub>n</sub>= P कुछ P X के लिए; इस स्थिति में स्पर्शोन्मुख शंकु p ∈ X के चयन पर निर्भर नहीं करता है और इसे <math>Cone_\omega(X,d)\,</math> या केवल <math>Cone_\omega(X)\,</math>द्वारा निरूपित किया जाता है।


स्पर्शोन्मुख शंकु की धारणा ज्यामितीय समूह सिद्धांत में एक महत्वपूर्ण भूमिका निभाती है क्योंकि स्पर्शोन्मुख शंकु (या, अधिक सटीक रूप से, उनके [[होमियोमोर्फिज्म]] और लिप्सचिट्ज़ निरंतरता | द्वि-लिप्सचिट्ज़ प्रकार) सामान्य रूप से और सूक्ष्म रूप से उत्पन्न समूहों में मीट्रिक रिक्त स्थान के अर्ध-आइसोमेट्री इनवेरिएंट प्रदान करते हैं। विशिष्ट।<ref name="Roe">John Roe. ''Lectures on Coarse Geometry.'' [[American Mathematical Society]], 2003. {{isbn|978-0-8218-3332-2}}</ref> स्पर्शोन्मुख शंकु भी [[अपेक्षाकृत अतिशयोक्तिपूर्ण समूह]]ों और उनके सामान्यीकरण के अध्ययन में एक उपयोगी उपकरण बन जाते हैं।<ref>[[Cornelia Druţu]] and Mark Sapir (with an Appendix by [[Denis Osin]] and [[Mark Sapir]]), ''Tree-graded spaces and asymptotic cones of groups.'' [[Topology (journal)|Topology]], Volume 44 (2005), no. 5, pp. 959&ndash;1058.</ref>
स्पर्शोन्मुख शंकु की धारणा ज्यामितीय समूह सिद्धांत में एक महत्वपूर्ण भूमिका निभाती है क्योंकि स्पर्शोन्मुख शंकु (या, अधिक परिशुद्ध रूप से, उनके सामयिक प्रकार और द्वि-लिप्सचिट्ज़ प्रकार) सामान्य रूप से और विशेष रूप से सूक्ष्म रूप से उत्पन्न समूहों के अर्ध-सममिति अपरिवर्तनीय प्रदान करते हैं।<ref name="Roe">John Roe. ''Lectures on Coarse Geometry.'' [[American Mathematical Society]], 2003. {{isbn|978-0-8218-3332-2}}</ref> स्पर्शोन्मुख शंकु भी [[अपेक्षाकृत अतिशयोक्तिपूर्ण समूह|अपेक्षाकृत अतिपरवलयिक समूहो]] और उनके सामान्यीकरण के अध्ययन में उपयोगी उपकरण प्रमाणित होते हैं।<ref>[[Cornelia Druţu]] and Mark Sapir (with an Appendix by [[Denis Osin]] and [[Mark Sapir]]), ''Tree-graded spaces and asymptotic cones of groups.'' [[Topology (journal)|Topology]], Volume 44 (2005), no. 5, pp. 959&ndash;1058.</ref>




== यह भी देखें ==
== यह भी देखें ==
* [[आइसोमेट्री]]
* [[आइसोमेट्री|सममिति]]
*मोटी संरचना
*स्थूल संरचना


==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}
[[Category: ज्यामितीय समूह सिद्धांत]] [[Category: मीट्रिक ज्यामिति]] [[Category: तुल्यता (गणित)]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 13/02/2023]]
[[Category:Created On 13/02/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:ज्यामितीय समूह सिद्धांत]]
[[Category:तुल्यता (गणित)]]
[[Category:मीट्रिक ज्यामिति]]

Latest revision as of 16:33, 17 February 2023

गणित में, एक अर्ध-सममिति दो मापीय समष्टि के बीच एक फलन (गणित) है जो इन समष्टि के बड़े पैमाने पर ज्यामिति का प्रकरण है और उनके छोटे पैमाने के विवरण को अनदेखा करता है। दो मापीय समष्टि अर्ध-सममितीय हैं यदि उनके बीच अर्ध-सममितीय सम्मिलित है। अर्ध-सममितीय होने का गुण मापीय समष्टि के वर्ग पर समानता संबंध की तरह व्यवहार करता है।

ग्रोमोव के काम के बाद, ज्यामितीय समूह सिद्धांत में अर्ध-सममिति की अवधारणा विशेष रूप से महत्वपूर्ण है।[1]

यह जालक (समूह) समष्टि के लिए अर्ध-सममितीय है।

परिभाषा

मान लीजिए कि एक मापीय समष्टि दूसरे मापीय समष्टि के लिए से एक (आवश्यक रूप से निरंतर नहीं) फलन है। तब को अर्ध-सममिति कहा जाता है को यदि वहाँ स्थिरांक सम्मिलित हैं , , और जैसे कि निम्नलिखित दो गुण दोनों धारण करते हैं:[2]

  1. मे प्रत्येक दो बिंदुओं के लिए और , उनकी छवियों के बीच की दूरी उनकी मूल दूरी के एक कारक के अंदर योज्य स्थिरांक तक है। अधिक औपचारिक रूप से:
  2. का प्रत्येक बिंदु एक छवि बिंदु की निरंतर दूरी के अंदर है। अधिक औपचारिक रूप से:

दो मापीय समष्टि और अर्ध-सममिति कहलाते हैं यदि से को कोई अर्ध-सममिति सम्मिलित है।

एक मानचित्र को अर्ध-सममितीय अंतःस्थापन कहा जाता है यदि यह पहली शर्त को पूरा करता है लेकिन आवश्यक नहीं कि दूसरा (अर्थात यह सामान्य रूप से लिप्सचिट्ज़ निरंतरता है लेकिन सामान्य रूप से अनुमान लगाने में विफल हो सकता है)। दूसरे शब्दों में, यदि मानचित्र के माध्यम से, की एक उपसमष्टि के लिए अर्ध-सममितीय है।

दो मापीय समष्टि M1और M2'अर्ध-सममितीय' कहा जाता है, जिसे के द्वारा निरूपित किया जाता है यदि अर्ध-सममिति सम्मिलित है।

उदाहरण

यूक्लिडीय समतल और मैनहट्टन दूरी वाले समतल के बीच का मानचित्र जो प्रत्येक बिंदु को स्वयं को भेजता है यह एक अर्ध-सममिति है: इसमें, दूरियों को अधिकतम के एक कारक से गुणा किया जाता है। ध्यान दें कि कोई समरूपता नहीं हो सकती है, उदाहरण के लिए, बिंदु मैनहट्टन दूरी में एक दूसरे से समान दूरी के हैं, लेकिन यूक्लिडीय समतल में, ऐसे 4 बिंदु नहीं हैं बिंदु जो एक दूसरे से समान दूरी के हैं।

मानचित्र (दोनों यूक्लिडियन मापीय के साथ) जो पूर्णांकों के प्रत्येक - टपल स्वयं को भेजता है, यह अर्ध-सममिति दूरी है बिल्कुल संरक्षित हैं, और प्रत्येक वास्तविक टपल एक पूर्णांक टपल की दूरी के अंदर है। दूसरी दिशा में, असंतुलित कार्य जो वास्तविक संख्याओं के प्रत्येक टपल को निकटतम पूर्णांक टपल तक ले जाता है, वह भी एक अर्ध-सममिति है: प्रत्येक बिंदु को इस मानचित्र द्वारा दूरी के अंदर एक बिंदु पर ले जाया जाता है। इसलिए अधिकतम बिंदुओं के जोड़े के बीच की दूरी को अधिक से अधिक जोड़कर या घटाकर परिवर्तित कर देता है।

परिमित या परिबद्ध मापीय समष्टि की प्रत्येक जोड़ी अर्ध-सममितीय है। इस स्थिति में, प्रत्येक फलन एक समष्टि से दूसरे समष्टि पर एक अर्ध-सममिति है।

समानता संबंध

यदि एक अर्ध-सममिति है, तो एक अर्ध-सममिति सम्मिलित है। वास्तव में, की छवि में कोई भी बिंदु देकर परिभाषित किया जा सकता है, जो की की दूरी के अंदर है और किसी भी बिंदु पर है।

चूंकि पहचान मानचित्र एक अर्ध-सममिति है, और दो अर्ध-सममिति की कार्यात्मक संरचना एक अर्ध-सममिति है, यह इस प्रकार है कि अर्ध-सममितीय होने के गुण मापीय समष्टि के वर्ग पर एक समानता संबंध की तरह व्यवहार करती है।

ज्यामितीय समूह सिद्धांत में प्रयोग करें

एक निश्चित रूप से उत्पन्न समूह G के एक परिमित उत्पादक समुच्चय S को देखते हुए, हम S और G के संबंधित केली ग्राफ बना सकते हैं। यह ग्राफ एक मापीय समष्टि बन जाता है यदि हम प्रत्येक किनारे की लंबाई 1 होने की घोषणा करते हैं। एक अलग परिमित उत्पादक समुच्चय T परिणाम एक अलग ग्राफ और एक अलग मापीय समष्टि में लेते हैं, हालाँकि दो समष्टि अर्ध-सममितीय होते हैं।[3] यह अर्ध-सममिति वर्ग समूह इस प्रकार समूह G अपरिवर्तनशील है। मापीय समष्टि का कोई भी गुण जो केवल समष्टि के अर्ध-सममिति वर्ग पर निर्भर करती है, तुरंत समूहों के एक और अपरिवर्तनशील उत्पन्न करती है, समूह सिद्धांत के क्षेत्र को ज्यामितीय तरीकों से प्रारंभ करती है।

अधिक सामान्य रूप से, स्वार्क–मिल्नोर लेम्मा में कहा गया है कि यदि एक समूह G उपयुक्त अल्पान्तरी समष्टि X पर सुसम्बद्ध भागफल के साथ ठीक से काम करता है तो G, X के लिए अर्ध-सममितीय है (जिसका अर्थ है कि G के लिए कोई केली ग्राफ है)। यह समूहों के अर्ध-सममितीय समूहों के एक दूसरे के नए उदाहरण देता है:

  • यदि G', G में परिमित सूचकांक का एक उपसमूह है तो G', G के लिए अर्ध-सममितीय है;
  • यदि G और H एक ही आयाम d के दो संहत अतिपरवलयिक कई गुना के मौलिक समूह हैं तो वे दोनों अतिपरवलयिक समष्टि 'Hd' के के अर्ध-सममितीय हैं और इसलिए दूसरी ओर एक दूसरे के लिए मौलिक समूहों के परिमित-आयतन का अधिकतम सीमा तक कई अर्ध-सममिति वर्ग हैं।[4]


अर्ध-भूगणितीय और मोर्स लेम्मा

मापीय समष्टि में एक अर्ध-भूगणितीय का एक अर्ध-सममितीय अंतःस्थापन में में है। अधिक स्पष्ट रूप से एक मानचित्र है कि वहाँ सम्मिलित है ताकि

को अर्ध-भूगणितीय कहा जाता है। प्रत्यक्ष रूप से जियोडेसिक्स (चाप की लंबाई द्वारा पैरामिट्रीकृत) अर्ध-जियोडेसिक्स (भूगणितीय) हैं। तथ्य यह है कि कुछ स्थानों में आक्षेप सामान्य रूप से सत्य है, अर्थात प्रत्येक अर्ध-भूगणितीय एक वास्तविक भूगणितीय की सीमाबद्ध दूरी के अंदर रहता है, जिसे मोर्स लेम्मा कहा जाता है (अवकल सांस्थिति में संभव्यता अधिक व्यापक रूप से ज्ञात मोर्स लेम्मा के साथ भ्रमित नहीं होना चाहिए)। औपचारिक रूप से कथन है

माना कि और एक उपयुक्त δ-अतिपरवलयिक समष्टि है। वहां की स्थिति है कि किसी भी -अर्ध-भूगणितीय के लिए में भूगणितीय सम्मिलित है जैसे कि सभी के लिए है।

यह ज्यामितीय समूह सिद्धांत में एक महत्वपूर्ण उपकरण है। तात्‍कालिक अनुप्रयोग यह है कि उपयुक्त अतिपरवलयिक समष्टि के बीच कोई भी अर्ध-सममिति उनकी सीमाओं के बीच एक सम-आकारिता को प्रेरित करती है। यह परिणाम मोस्टो दृढता-प्रमेय के प्रमाण में पहला चरण है।

समूहों के अर्ध-सममिति निश्चर के उदाहरण

समूह केली ग्राफ़ के गुणों के कुछ उदाहरण निम्नलिखित हैं जो अर्ध-सममिति के अंतर्गत अपरिवर्तनीय हैं:[2]


अतिपरवलिता

समूह को अतिपरवलयिक कहा जाता है यदि इसका एक केली ग्राफ कुछ δ के लिए δ-अतिपरवलयिक समष्टि है। अतिपरवलयिकता की विभिन्न परिभाषाओं के बीच रूपातंरण करते समय, δ का विशेष मूल्य बदल सकता है, लेकिन एक अतिपरवलयिक समूह के परिणामी विचार समतुल्य हो जाते हैं।

अतिपरवलयिक समूहों में समूहों के लिए एक हल करने योग्य शब्द समस्या है। वे द्विस्वचालित समूह और स्वचालित समूह हैं।[5] वास्तव में, वे वे दृढ़ता से भूगणितीय दृष्टि से स्वचालित समूह हैं, अर्थात्, समूह पर एक स्वचालित संरचना होती है, जहाँ स्वीकर्ता शब्द द्वारा स्वीकृत भाषा सभी भूगणितीय शब्दों का समूह होती है।

वृद्धि

सममित उत्पादक समुच्चय के संबंध में एक समूह की वृद्धि दर समूह में गेंदों के आकार का वर्णन करती है। समूह के प्रत्येक तत्व को उत्पादक के उत्पाद के रूप में लिखा जा सकता है, और विकास दर उन तत्वों की संख्या की गणना करती है जिन्हें लंबाई n के उत्पाद के रूप में लिखा जा सकता है।

ग्रोमोव के प्रमेय के अनुसार, बहुपद वृद्धि का एक समूह वास्तव में शून्यंभावी है, अर्थात इसमें परिमित सूचकांक का एक शून्यंभावी उपसमूह है। विशेष रूप से, बहुपद वृद्धि का क्रम प्राकृतिक संख्या होना चाहिए और वास्तव में

यदि किसी भी घातांक फलन की तुलना में अधिक धीमी गति से बढ़ता है, G की की उप-घातीय वृद्धि दर है। ऐसा कोई भी समूह अनुमन्य है।

सिरा

एक सांस्थितिक समष्टि के सिरे सामान्य रूप से समष्टि की "आदर्श सीमा" के जुड़ा हुआ घटक (सांस्थिति) हैं। यही है, प्रत्येक अंत समष्टि के अंदर अनंत तक जाने के लिए एक स्थैतिक रूप से अलग तरीके का प्रतिनिधित्व करता है। प्रत्येक सिरे पर एक बिंदु जोड़ने से मूल समष्टि का संहतीकरण (गणित) प्राप्त होता है, जिसे अंतिम संहतीकरण के रूप में जाना जाता है।

एक अंतिम रूप से उत्पन्न समूह के सिरों को इसी केली ग्राफ के सिरों के रूप में परिभाषित किया गया है; यह परिभाषा परिमित उत्पादक समुच्चय के चयन से मुक्त है। प्रत्येक सूक्ष्म रूप से उत्पन्न अनंत समूह में या तो 0,1, 2, या अधिकतम रूप से कई सिरे होते हैं, और समूहों के सिरों के बारे में स्तंभी प्रमेय एक से अधिक सिरे वाले समूहों के लिए अपघटन प्रदान करता है।

यदि दो जुड़े हुए स्थानीय रूप से परिमित ग्राफ़ अर्ध-सममितीय हैं, तो उनके सिरों की संख्या समान है।[6] विशेष रूप से, दो अर्ध-सममितीय सूक्ष्म रूप से उत्पन्न समूहों में सिरों की संख्या समान होती है।

अनुमनन

एक अनुकूल समूह एक स्थानीय रूप से संहत सांस्थितिक समूह 'G' है जो परिबद्ध फलन पर एक प्रकार का औसत संक्रिया करता है जो कि समूह तत्वों द्वारा अनुवादक के अंतर्गत अपरिवर्तनीय (गणित) है। मूल परिभाषा, G के उपसमुच्चय पर परिमित योगात्मक अपरिवर्तनीय माप (या माध्य) के संदर्भ में, 1929 में जॉन वॉन न्यूमैन द्वारा जर्मन नाम "मेसबार" (अंग्रेजी में "मापने योग्य") के अंतर्गत बनच टार्स्की पेराडॉक्स के जवाब में प्रस्तुत की गई थी। 1949 में महलोन एम डे ने "अनुमन्य" का अंग्रेजी अनुवाद प्रस्तुत किया, जो स्पष्ट रूप से एक वाक्य के रूप में था।[7]

असतत समूह सिद्धांत में, जहाँ G के पास असतत सांस्थिति है, एक सरल परिभाषा का उपयोग किया जाता है। इस संस्थापन में, एक समूह अनुमन्य है यदि कोई कह सकता है कि किसी दिए गए उपसमुच्चय में G का कितना अनुपात होता है।

यदि किसी समूह में एक फोल्नर अनुक्रम है तो यह स्वचालित रूप से अनुमन्य है।

स्पर्शोन्मुख शंकु

अतिसीमित एक ज्यामितीय निर्माण है जो मापीय समष्टि 'Xn ' के अनुक्रम को निर्दिष्ट करता है एक सीमित मापीय समष्टि प्रदान करता है। अतिसीमित का एक महत्वपूर्ण वर्ग मापीय समष्टि के तथाकथित स्पर्शोन्मुख शंकु हैं। माना की (X,d) एक मापीय समष्टि है, मान लीजिए ω एक गैर-प्रमुख अतिसूक्ष्मनिस्यंदक हो और Pn∈ X आधार-बिंदुओं का एक क्रम है। फिर अनुक्रम की ω–अतिसीमित ω और के संबंध में X का स्पर्शोन्मुख शंकु कहा जाता है और को निरूपित किया जाता है। प्रायः आधार-बिंदु अनुक्रम को स्थिर होने के लिए लेता है, Pn= P कुछ P ∈ X के लिए; इस स्थिति में स्पर्शोन्मुख शंकु p ∈ X के चयन पर निर्भर नहीं करता है और इसे या केवल द्वारा निरूपित किया जाता है।

स्पर्शोन्मुख शंकु की धारणा ज्यामितीय समूह सिद्धांत में एक महत्वपूर्ण भूमिका निभाती है क्योंकि स्पर्शोन्मुख शंकु (या, अधिक परिशुद्ध रूप से, उनके सामयिक प्रकार और द्वि-लिप्सचिट्ज़ प्रकार) सामान्य रूप से और विशेष रूप से सूक्ष्म रूप से उत्पन्न समूहों के अर्ध-सममिति अपरिवर्तनीय प्रदान करते हैं।[8] स्पर्शोन्मुख शंकु भी अपेक्षाकृत अतिपरवलयिक समूहो और उनके सामान्यीकरण के अध्ययन में उपयोगी उपकरण प्रमाणित होते हैं।[9]


यह भी देखें

संदर्भ

  1. Bridson, Martin R. (2008), "Geometric and combinatorial group theory", in Gowers, Timothy; Barrow-Green, June; Leader, Imre (eds.), The Princeton Companion to Mathematics, Princeton University Press, pp. 431–448, ISBN 978-0-691-11880-2
  2. 2.0 2.1 P. de la Harpe, Topics in geometric group theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000. ISBN 0-226-31719-6
  3. R. B. Sher and R. J. Daverman (2002), Handbook of Geometric Topology, North-Holland. ISBN 0-444-82432-4.
  4. Schwartz, Richard (1995). "The Quasi-Isometry Classification of Rank One Lattices". I.H.É.S. Publications Mathématiques. 82: 133–168. doi:10.1007/BF02698639. S2CID 67824718.
  5. Charney, Ruth (1992), "Artin groups of finite type are biautomatic", Mathematische Annalen, 292: 671–683, doi:10.1007/BF01444642, S2CID 120654588
  6. Stephen G.Brick (1993). "Quasi-isometries and ends of groups". Journal of Pure and Applied Algebra. 86 (1): 23–33. doi:10.1016/0022-4049(93)90150-R.
  7. Day's first published use of the word is in his abstract for an AMS summer meeting in 1949, Means on semigroups and groups, Bull. A.M.S. 55 (1949) 1054–1055. Many text books on amenability, such as Volker Runde's, suggest that Day chose the word as a pun.
  8. John Roe. Lectures on Coarse Geometry. American Mathematical Society, 2003. ISBN 978-0-8218-3332-2
  9. Cornelia Druţu and Mark Sapir (with an Appendix by Denis Osin and Mark Sapir), Tree-graded spaces and asymptotic cones of groups. Topology, Volume 44 (2005), no. 5, pp. 959–1058.