बेज़ाउट की पहचान: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 118: Line 118:


{{DEFAULTSORT:Bezouts Identity}}
{{DEFAULTSORT:Bezouts Identity}}
[[Category: प्रमाण युक्त लेख]] [[Category: डायोफैंटाइन समीकरण]] [[Category: संख्या सिद्धांत में नींबू]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page|Bezouts Identity]]
 
[[Category:Created On 13/02/2023|Bezouts Identity]]
[[Category: Machine Translated Page]]
[[Category:Lua-based templates|Bezouts Identity]]
[[Category:Created On 13/02/2023]]
[[Category:Machine Translated Page|Bezouts Identity]]
[[Category:Pages with script errors|Bezouts Identity]]
[[Category:Short description with empty Wikidata description|Bezouts Identity]]
[[Category:Templates Vigyan Ready|Bezouts Identity]]
[[Category:Templates that add a tracking category|Bezouts Identity]]
[[Category:Templates that generate short descriptions|Bezouts Identity]]
[[Category:Templates using TemplateData|Bezouts Identity]]
[[Category:डायोफैंटाइन समीकरण|Bezouts Identity]]
[[Category:प्रमाण युक्त लेख|Bezouts Identity]]
[[Category:संख्या सिद्धांत में नींबू|Bezouts Identity]]

Latest revision as of 10:49, 17 February 2023

गणित में, बेज़ाउट की पहचान (जिसे बेज़ाउट की लेम्मा भी कहा जाता है), एटिएन बेज़ाउट के नाम पर, निम्नलिखित प्रमेय है:

बेज़ाउट की पहचान — मान लीजिए कि a और b पूर्णांक महानतम उभयनिष्ठ भाजक d . फिर पूर्णांक x और y मौजूद हैं जैसे कि ax + by = d । इसके अलावा, az + bt के रूप के पूर्णांक d के गुणज हैं।

यहाँ 0 का सबसे बड़ा सामान्य विभाजक 0 है और 0 होने के लिए सबसे बड़ा सामान्य विभाजक लिया जाना अनिवार्य है . (a, b) पूर्णांक x और y के लिए बेज़ाउट गुणांक कहलाते हैं जो कि अद्वितीय नहीं हैं। बेज़ाउट गुणांक की एक जोड़ी की विस्तारित यूक्लिडियन एल्गोरिदम द्वारा गणना की जा सकती है, और यह जोड़ी पूर्णांक के सन्दर्भ में दो जोड़े में से एक है जैसे कि और में समानता तभी होती है जब a और b एक दूसरे का गुणज है।

उदाहरण के रूप में, 15 और 69 का सबसे बड़ा सामान्य विभाजक 3 है, और 3 को 15 और 69 के संयोजन के रूप में 3 = 15 × (−9) + 69 × 2, बेज़ाउट गुणांक -9 और 2 के साथ लिखा जा सकता है ।

प्राथमिक संख्या सिद्धांत में कई अन्य प्रमेय, जैसे यूक्लिड की लेम्मा या चीनी शेष प्रमेय, बेज़ाउट की पहचान से उत्पन्न होते हैं।

बेज़ाउट डोमेन एक अभिन्न डोमेन है जिसमें बेज़ाउट की पहचान होती है। विशेष रूप से, बेज़ाउट की पहचान प्रमुख आदर्श डोमेन में है। बेज़ाउट की पहचान से उत्पन्न होने वाला प्रत्येक प्रमेय इस प्रकार सभी प्रमुख आदर्श डोमेन में सत्य है।

समाधान की संरचना

अगर a और b बेज़ाउट गुणांकों की शून्य और एक जोड़ी दोनों नहीं हैं, तो गणना की गई है कि (उदाहरण के लिए, विस्तारित यूक्लिडियन एल्गोरिथम का उपयोग करके), सभी जोड़ियों को (x, y) फॉर्म में दर्शाया जा सकता है

कहाँ k एक मनमाना पूर्णांक है, d का सबसे बड़ा सामान्य विभाजक a और b है, और भिन्न पूर्णांकों में सरल हो जाते हैं।

अगर a और b दोनों अशून्य हैं, तो बेज़ाउट गुणांक के इन जोड़े में से दो संतुष्ट हैं

और समानता तभी हो सकती है जब इनमें से कोई एक हो, a और b को एक दूसरे से विभक्त करता है।

यह यूक्लिडियन विभाजन की संपत्ति पर निर्भर करता है: दो गैर-शून्य पूर्णांक c और d दिए गए हैं, अगर d (q, r) विभाजित नहीं करता तो c, बिल्कुल एक जोड़ी है, ऐसा है कि और और दूसरा ऐसा है और छोटे बेज़ाउट के गुणांकों के दो जोड़े दिए गए एक से प्राप्त होते हैं (x, y) के लिए चयन करके k उपरोक्त सूत्र में दो पूर्णांकों में से किसी एक के आगे के रूप में प्राप्त होता है।

विस्तारित यूक्लिडियन एल्गोरिथ्म सदैव इन दो न्यूनतम जोड़े में से एक का उत्पादन करता है।

उदाहरण

a = 12 और b = 42, तब gcd (12, 42) = 6. फिर बेज़ाउट की निम्नलिखित पहचानें हैं, बेज़ाउट गुणांक को न्यूनतम जोड़े के लिए लाल रंग में और दूसरे के लिए नीले रंग में लिखा गया है।

अगर बेज़ाउट गुणांकों की मूल जोड़ी है, तब के माध्यम से न्यूनतम जोड़े उत्पन्न करता है k = 2, क्रमश k = 3; वह है, (18 − 2 ⋅ 7, −5 + 2 ⋅ 2) = (4, −1), और (18 − 3 ⋅ 7, −5 + 3 ⋅ 2) = (−3, 1).

प्रमाण

किसी भी अशून्य पूर्णांक को देखते हुए a और b, का कोई सेट S खाली नहीं है क्योंकि इसमें दोनों सम्मिलित हैं जो कि a या a (साथ और ) तब से S धनात्मक पूर्णांकों का एक अरिक्त समुच्चय है, इसमें एक न्यूनतम अवयव होता है जो कि , सुव्यवस्थित सिद्धांत द्वारा यह प्रमाणित करने के लिए d का सबसे बड़ा सामान्य विभाजक है। a और b के द्वारा यह सिद्ध होना चाहिए कि a और b का सामान्य भाजक d है, और वह किसी अन्य उभयनिष्ठ भाजक के लिए c, किसी के पास का यूक्लिडियन विभाजन a द्वारा d लिखा जा सकता है।

, क्योंकि r शेषफल में है
इस प्रकार r का स्वरूप है, और इसलिए हालाँकि, और d, S का सबसे छोटा धनात्मक पूर्णांक है: इसलिए शेष r, S में नहीं हो सकता है, जिससे r आवश्यक रूप से 0 बनता है। इसका अर्थ है कि d, a का भाजक है। इसी प्रकार d भी b का एक भाजक है, और इसलिए d, a और b का एक सामान्य भाजक है।

अब, मान लीजिए c, a और b का कोई उभयनिष्ठ भाजक है; अर्थात्, वहां U और V इस प्रकार उपलब्ध हैं

अर्थात् c, d का भाजक है। तब से इसका तात्पर्य है


सामान्यीकरण

तीन या अधिक पूर्णांकों के लिए

बेज़ाउट की पहचान को दो से अधिक पूर्णांकों तक बढ़ाया जा सकता है: यदि

फिर पूर्णांक हैं ऐसा है कि

निम्नलिखित गुण हैं:

  • d इस रूप का सबसे छोटा धनात्मक पूर्णांक है
  • इस रूप की प्रत्येक संख्या d का गुणज है

बहुपदों के लिए

बेज़ाउट की पहचान सदैव बहुपदों के लिए नहीं होती है। उदाहरण के लिए, पूर्णांकों के बहुपद वलय में काम करते समय का सबसे बड़ा सामान्य विभाजक 2x और x2 x है, लेकिन कोई पूर्णांक-गुणांक बहुपद 2xp + x2q = x में p और q संतोषजनक रूप से उपलब्ध नहीं है।

हालाँकि, बेज़ाउट की पहचान एक क्षेत्र (गणित) पर एकतरफा बहुपदों के लिए ठीक उसी तरह से काम करती है जैसे पूर्णांकों के लिए। विशेष रूप से बेज़ाउट के गुणांक और सबसे बड़ा साधारण विभाजक विस्तारित यूक्लिडियन एल्गोरिथम के साथ गणना की जा सकती है।

चूंकि दो बहुपदों के बहुपदों की साधारण मूल उनके सबसे बड़े साधारण भाजक की मूल हैं, बेज़ाउट की पहचान और बीजगणित के मौलिक प्रमेय निम्नलिखित परिणाम दर्शाते हैं:

अविभाजित बहुपद f और g के लिए एक क्षेत्र में गुणांक के साथ, बहुपद a और b मौजूद हैं जैसे कि af' ' + bg = 1 यदि और केवल यदि f और g का किसी भी बीजगणितीय रूप से बंद क्षेत्र में कोई उभयनिष्ठ मूल नहीं है (आमतौर पर [[ का क्षेत्र] जटिल आंकड़े)।

इस परिणाम का किसी भी संख्या में बहुपदों और अनिश्चितों का सामान्यीकरण हिल्बर्ट का नलस्टेलेंसैट्ज है।

प्रमुख आदर्श डोमेन के लिए

जैसा कि परिचय में उल्लेख किया गया है, बेज़ाउट की पहचान न केवल पूर्णांकों के वलय (बीजगणित) में काम करती है, बल्कि किसी अन्य प्रमुख आदर्श डोमेन (PID) में भी काम करती है।

अर्थात अगर R एक पीआईडी ​​है, और a और b के तत्व हैं R, और d का सबसे बड़ा सामान्य विभाजक है a और b, फिर तत्व हैं x और y में R ऐसा है कि कारण यह है कि आदर्श (रिंग थ्योरी) प्रधान और के समतुल्य है।

एक अभिन्न डोमेन जिसमें बेज़ाउट की पहचान होती है उसे बेज़ाउट डोमेन कहा जाता है।

इतिहास

फ्रांसीसी लोग गणितज्ञ एटिने बेज़ाउट (1730-1783) ने बहुपदों के लिए इस पहचान को प्रमाणित किया।[1] पूर्णांकों के लिए यह कथन पहले से ही फ्रांसीसी गणितज्ञ, क्लॉड गैसपार्ड बाचेत डी मेजिरियाक (1581-1638) के काम में पाया जा सकता है।[2][3][4]


यह भी देखें


टिप्पणियाँ

  1. Bézout, É. (1779). Théorie générale des équations algébriques. Paris, France: Ph.-D. Pierres.
  2. Tignol, Jean-Pierre (2001). Galois' Theory of Algebraic Equations. Singapore: World Scientific. ISBN 981-02-4541-6.
  3. Claude Gaspard Bachet (sieur de Méziriac) (1624). Problèmes plaisants & délectables qui se font par les nombres (2nd ed.). Lyons, France: Pierre Rigaud & Associates. pp. 18–33. On these pages, Bachet proves (without equations) "Proposition XVIII. Deux nombres premiers entre eux estant donnez, treuver le moindre multiple de chascun d’iceux, surpassant de l’unité un multiple de l’autre." (Given two numbers [which are] relatively prime, find the lowest multiple of each of them [such that] one multiple exceeds the other by unity (1).) This problem (namely, ax - by = 1) is a special case of Bézout's equation and was used by Bachet to solve the problems appearing on pages 199 ff.
  4. See also: Maarten Bullynck (February 2009). "Modular arithmetic before C.F. Gauss: Systematizations and discussions on remainder problems in 18th-century Germany" (PDF). Historia Mathematica. 36 (1): 48–72. doi:10.1016/j.hm.2008.08.009. Archived (PDF) from the original on 2022-10-09.


बाहरी संबंध