मुख्य क्वांटम संख्या: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 48: Line 48:
==बाहरी संबंध==
==बाहरी संबंध==
* [https://web.archive.org/web/20051219211349/http://www.colorado.edu/physics/2000/applets/a2.html Periodic Table Applet: showing principal and azimuthal quantum number for each element]
* [https://web.archive.org/web/20051219211349/http://www.colorado.edu/physics/2000/applets/a2.html Periodic Table Applet: showing principal and azimuthal quantum number for each element]
[[Category: क्वांटम रसायन]] [[Category: परमाणु भौतिकी]] [[Category: क्वांटम संख्याएं]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category:CS1 English-language sources (en)]]
[[Category: Machine Translated Page]]
[[Category:Created On 06/02/2023]]
[[Category:Created On 06/02/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:क्वांटम रसायन]]
[[Category:क्वांटम संख्याएं]]
[[Category:परमाणु भौतिकी]]

Latest revision as of 10:46, 21 February 2023

क्वांटम यांत्रिकी में मुख्य क्वांटम संख्या (n) उस इलेक्ट्रॉन की स्थिति का वर्णन करने के लिए एक परमाणु में प्रत्येक इलेक्ट्रॉन को सौंपी गई चार क्वांटम संख्याओं में से एक है। इसके मान प्राकृतिक संख्याएँ हैं (एक से) जो इसे असतत चर बनाती हैं।

मुख्य क्वांटम संख्या के अतिरिक्त बाध्य इलेक्ट्रॉनों के लिए अन्य क्वांटम संख्याएँ अज़ीमुथल क्वांटम संख्या ℓ, चुंबकीय क्वांटम संख्या m और स्पिन क्वांटम संख्या s हैं।

सिंहावलोकन और इतिहास

जैसे-जैसे n बढ़ता है इलेक्ट्रॉन कवच उच्च ऊर्जा पर होता है इसलिए नाभिक से कम मजबूती से बंधा होता है। उच्च स्तर n के लिए इलेक्ट्रॉन औसतन नाभिक से दूर होता है। n के प्रत्येक मान के लिए n स्वीकृत ℓ (अज़ीमुथल) मान हैं जो 0 से n - 1 तक सम्मिलित हैं इसलिए उच्च स्तर- n इलेक्ट्रॉन अवस्थाएँ अधिक असंख्य हैं। चक्रण की दो अवस्थाओं को ध्यान में रखते हुए प्रत्येक n- कोश 2 n2 इलेक्ट्रॉनों को समायोजित कर सकता है ।

नीचे वर्णित सरलीकृत एक-इलेक्ट्रॉन मॉडल में एक इलेक्ट्रॉन की कुल ऊर्जा प्रमुख क्वांटम संख्या एन (n) का एक ऋणात्मक व्युत्क्रम द्विघात फलन है, जिससे प्रत्येक n > 1 पर ऊर्जा का स्तर कम हो जाता है।[1] अधिक जटिल प्रणालियों में- जिनके पास नाभिक-इलेक्ट्रॉन कूलम्ब बल के अलावा अन्य बल- ये स्तर विभाजित होते हैं । मल्टीइलेक्ट्रॉन परमाणुओं के लिए इस विभाजन का परिणाम "सबशेल्स" में होता है जिसे ℓ द्वारा पैरामीट्रिज किया जाता है। केवल एन (n) पर आधारित ऊर्जा स्तर का विवरण 5 (बोरॉन) से शुरू होने वाले परमाणु क्रमांक के लिए धीरे-धीरे अपर्याप्त हो जाता है और पोटैशियम (Z = 19) पूरी तरह से विफल हो जाता है।

विभिन्न ऊर्जा स्तरों के बीच भेद करते हुए, परमाणु के अर्ध-शास्त्रीय बोह्र मॉडल में उपयोग के लिए सबसे पहले प्रमुख क्वांटम संख्या बनाई गई थी । आधुनिक क्वांटम यांत्रिकी के विकास के साथ सरल बोह्र मॉडल को परमाणु कक्षाओं के अधिक जटिल सिद्धांत के साथ बदल दिया गया । हालाँकि आधुनिक सिद्धांत को अभी भी प्रमुख क्वांटम संख्या की आवश्यकता है।

व्युत्पत्ति

परमाणु की ऊर्जा अवस्थाओं से जुड़ी क्वांटम संख्याओं का एक समूह है। चार क्वांटम संख्याएँ n, ℓ, m और s एक परमाणु में एक एकल इलेक्ट्रॉन की पूर्ण और अद्वितीय क्वांटम अवस्था निर्दिष्ट करते हैं। जिसे इसका तरंग कार्य या कक्षीय कहा जाता है। पाउली अपवर्जन सिद्धांत के कारण एक ही परमाणु से संबंधित दो इलेक्ट्रॉनों के सभी चार क्वांटम संख्याओं के लिए समान मान नहीं हो सकते हैं। श्रोडिंगर तरंग समीकरण तीन समीकरणों को कम कर देता है जो हल करने पर पहले तीन क्वांटम संख्याओं तक ले जाता है। इसलिए पहले तीन क्वांटम संख्याओं के समीकरण आपस में जुड़े हुए हैं जैसा कि नीचे दिखाया गया है। तरंग समीकरण के रेडियल भाग के समाधान में प्रमुख क्वांटम संख्या उत्पन्न हुई।

श्रोडिंगर तरंग समीकरण संबंधित वास्तविक संख्याओं Enऔर एक निश्चित कुल ऊर्जा En के मान के साथ ऊर्जा ईजेनवैल्यू और ईजेनवेक्टर का वर्णन करता है। हाइड्रोजन परमाणु में इलेक्ट्रॉन की बाध्य अवस्था ऊर्जाएँ निम्न द्वारा दी गई हैं :

पैरामीटर n केवल सकारात्मक पूर्णांक मान ले सकता है। ऊर्जा स्तर और अंकन की अवधारणा पहले के बोह्र मॉडल से ली गई थी। श्रोडिंगर के समीकरण ने एक फ्लैट द्वि-आयामी बोह्र परमाणु से त्रि-आयामी तरंग फलन मॉडल के विचार को विकसित किया हैं। बोह्र मॉडल में अनुमत कक्षाओं को समीकरण के अनुसार कक्षीय कोणीय गति, एल के परिमाणित (असतत) मूल्यों से प्राप्त किया गया था
जहाँ n = 1, 2, 3, … और इसे मुख्य क्वांटम संख्या कहा जाता है और h प्लांक स्थिरांक है। यह सूत्र क्वांटम यांत्रिकी में सही नहीं है क्योंकि कोणीय संवेग परिमाण को अज़ीमुथल क्वांटम संख्या द्वारा वर्णित किया गया है लेकिन ऊर्जा स्तर सटीक हैं और शास्त्रीय रूप से वे इलेक्ट्रॉन की संभावित ऊर्जा और गतिज ऊर्जा के योग के अनुरूप हैं।

मुख्य क्वांटम संख्या n प्रत्येक कक्षीय की सापेक्ष समग्र ऊर्जा का प्रतिनिधित्व करती है। जैसे-जैसे नाभिक से इसकी दूरी बढ़ती है प्रत्येक कक्षक का ऊर्जा स्तर बढ़ता जाता है। समान n मान वाले कक्षाओ के समुच्चय को प्रायः इलेक्ट्रॉन शेल के रूप में संदर्भित किया जाता है।

किसी भी वेव-मैटर इंटरेक्शन के दौरान न्यूनतम ऊर्जा का आदान-प्रदान, प्लैंक के स्थिरांक से गुणा की गई तरंग आवृत्ति का उत्पाद है। यह तरंग को क्वांटम नामक ऊर्जा के कण-जैसे पैकेट प्रदर्शित करने का कारण बनता है। अलग-अलग एन वाले ऊर्जा स्तरों के बीच का अंतर तत्व के उत्सर्जन स्पेक्ट्रम को निर्धारित करता है।

आवर्त सारणी के अंकन में इलेक्ट्रॉनों के मुख्य गोले स्तर किए गए हैं:

K (n = 1), L (n = 2), M (n = 3) आदि।

मुख्य क्वांटम संख्या के आधार पर मुख्य क्वांटम संख्या रेडियल क्वांटम संख्या nr से संबंधित है:

जहां ℓ अज़ीमुथल क्वांटम संख्या है और nr रेडियल तरंग क्रिया में नोड (भौतिकी) की संख्या के बराबर है। एक सामान्य कूलम्ब क्षेत्र में और एक असतत स्पेक्ट्रम के साथ एक कण गति के लिए निश्चित कुल ऊर्जा द्वारा दी गई है:
जहाँ बोह्र त्रिज्या है।

यह असतत ऊर्जा स्पेक्ट्रम कूलम्ब क्षेत्र में इलेक्ट्रॉन गति पर क्वांटम यांत्रिक समस्या के समाधान के परिणामस्वरूप हुआ उस स्पेक्ट्रम के साथ मेल खाता है जो शास्त्रीय समीकरणों के लिए बोह्र-सोमरफेल्ड परिमाणीकरण नियमों की मदद से प्राप्त किया गया था। रेडियल क्वांटम संख्या रेडियल तरंग फ़ंक्शन के नोड (भौतिकी) की संख्या निर्धारित करती है।[2]


मूल्य

रसायन विज्ञान में मान n = 1, 2, 3, 4, 5, 6, 7 का उपयोग इलेक्ट्रॉन खोल सिद्धांत के संबंध में किया जाता है। अभी तक अनदेखे अवधि 8 तत्वों के लिए n = 8 (और संभवतः 9) के अपेक्षित समावेशन के साथ लिए जा सकते है। परमाणु भौतिकी में उच्च एन (n) कभी-कभी उत्तेजित अवस्थाओं के विवरण के लिए होता है। इंटरस्टेलर माध्यम की टिप्पणियों से पता चलता है कि परमाणु हाइड्रोजन वर्णक्रमीय रेखाएँ सैकड़ों के क्रम में एन (n) को सम्मिलित करती हैं और 766 तक मूल्यों[3]का पता लगाया गया है।


यह भी देखें

संदर्भ

  1. Here we ignore spin. Accounting for s, every orbital (determined by n and ) is degenerate, assuming absence of external magnetic field.
  2. Andrew, A. V. (2006). "2. Schrödinger equation". Atomic spectroscopy. Introduction of theory to Hyperfine Structure (in English). p. 274. ISBN 978-0-387-25573-6.
  3. Tennyson, Jonathan (2005). Astronomical Spectroscopy (PDF). London: Imperial College Press. p. 39. ISBN 1-86094-513-9.


बाहरी संबंध