वास्तविक प्रोजेक्टिव स्पेस: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 120: Line 120:
* {{cite book | last = Hatcher | first = Allen | author-link=Allen Hatcher| title = Algebraic Topology | publisher = [[Cambridge University Press]] | year = 2001 | isbn=978-0-521-79160-1 | url=http://www.math.cornell.edu/~hatcher/AT/ATpage.html}}
* {{cite book | last = Hatcher | first = Allen | author-link=Allen Hatcher| title = Algebraic Topology | publisher = [[Cambridge University Press]] | year = 2001 | isbn=978-0-521-79160-1 | url=http://www.math.cornell.edu/~hatcher/AT/ATpage.html}}


{{DEFAULTSORT:Real Projective Space}}[[Category: बीजगणितीय टोपोलॉजी]] [[Category: विभेदक ज्यामिति]] [[Category: प्रक्षेपी ज्यामिति]]
{{DEFAULTSORT:Real Projective Space}}


 
[[Category:All articles with unsourced statements|Real Projective Space]]
 
[[Category:Articles with unsourced statements from April 2020|Real Projective Space]]
[[Category: Machine Translated Page]]
[[Category:Created On 08/02/2023|Real Projective Space]]
[[Category:Created On 08/02/2023]]
[[Category:Lua-based templates|Real Projective Space]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page|Real Projective Space]]
[[Category:Pages with script errors|Real Projective Space]]
[[Category:Short description with empty Wikidata description|Real Projective Space]]
[[Category:Templates Vigyan Ready|Real Projective Space]]
[[Category:Templates that add a tracking category|Real Projective Space]]
[[Category:Templates that generate short descriptions|Real Projective Space]]
[[Category:Templates using TemplateData|Real Projective Space]]
[[Category:प्रक्षेपी ज्यामिति|Real Projective Space]]
[[Category:बीजगणितीय टोपोलॉजी|Real Projective Space]]
[[Category:विभेदक ज्यामिति|Real Projective Space]]

Latest revision as of 10:19, 22 February 2023

गणित में, वास्तविक प्रक्षेपी स्थान, या द्वारा निरूपित, मूल 0 में से होकर निकलने वाली रेखाओं का सांस्थितिक स्थान है। यह आयाम n का कॉम्पैक्ट स्मूथ मैनिफोल्ड हैं, और ग्रासमानियन स्पेस का विशेष स्थिति है।

मूल गुण

निर्माण

जैसा कि सभी प्रक्षेप्य स्पेस के साथ होता है, सभी वास्तविक संख्याओं के लिए λ ≠ 0 के लिए तुल्यता संबंध के xλx के अंतर्गत Rn+1 ∖ {0} का भागफल स्थान (टोपोलॉजी) लेकर RPn बनता है। सभी x के लिए Rn+1 ∖ {0} कोई हमेशा λ पा सकता है जैसे कि λx में मापदंड (गणित) 1 है। ठीक ऐसे दो λ हैं जो चिह्न से भिन्न हैं।

इस प्रकार 'RPn को Rn+1 में इकाई n-क्षेत्र, Sn के प्रतिमुख बिंदुओं की पहचान करके भी बनाया जा सकता है।

आगे Sn के ऊपरी गोलार्द्ध तक सीमित किया जा सकता है और केवल बाउंडिंग भूमध्य रेखा पर प्रतिलोम बिंदुओं की पहचान करें। इससे पता चलता है कि 'RPn बंद n-डायमेंशनल डिस्क, Dn के समतुल्य भी है, सीमा, Dn = Sn−1, पर प्रतिलोम बिंदुओं के साथ पहचान किया था।

कम आयामी उदाहरण

  • RP1 वास्तविक प्रक्षेपी रेखा कहलाती है, जो वृत्त के समतुल्य टोपोलॉजी है।
  • RP2 को वास्तविक प्रक्षेपी तल कहा जाता है। यह स्थान R3 में एम्बेडिंग नहीं किया जा सकता है। चूंकि इसे R4 में एम्बेड किया जा सकता है और R3 में विसर्जन (गणित) हो सकता है (यहाँ देखें)। प्रक्षेप्य n-स्पेस के लिए एंबेडेबिलिटी और इमर्सिबिलिटी के सवालों का अच्छी तरह से अध्ययन किया गया है।[1]
  • RP3 SO(3) के लिए (भिन्नरूपी) है, इसलिए समूह संरचना को स्वीकार करता है; कवरिंग मैप S3 → RP3 समूह स्पिन(3) → SO(3) का मानचित्र है, जहां स्पिन समूह(3) लाइ समूह है जो SO(3) का सार्वभौमिक आवरण है।

टोपोलॉजी

n-स्फीयर पर प्रतिलोम मानचित्र (x से -x को भेजने वाला नक्शा) Sn पर Z2 चक्रीय समूह क्रिया उत्पन्न करता है। जैसा कि ऊपर बताया गया है, इस क्रिया के लिए कक्षा स्थान 'RPn है. यह क्रिया वास्तविक में कवरिंग स्पेस क्रिया है जो Sn को RPn के दोहरे आवरण (टोपोलॉजी) के रूप में देती है। चूंकि Sn केवल n ≥ 2 के लिए जुड़ा हुआ है, यह इन स्थितियों में सार्वभौमिक आवरण के रूप में भी कार्य करता है। यह इस प्रकार है कि RPn का मौलिक समूह Z2 है जब n > 1. (जब n = 1 मूल समूह S1 के साथ होमोमोर्फिज्म के कारण 'Z' होता है)। मौलिक समूह के लिए जनरेटर एस में प्रतिलोम बिंदुओं को RPn से जोड़ने वाले किसी भी वक्र को प्रक्षेपित करके प्राप्त किया जाता है।

प्रक्षेप्य n-स्पेस कॉम्पैक्ट, जुड़ा हुआ है, और ऑर्डर 2 के चक्रीय समूह के लिए मौलिक समूह आइसोमॉर्फिक है: इसका सार्वभौमिक कवरिंग स्पेस n-स्फीयर से एंटीपोडी क्वांटेंट मैप द्वारा दिया जाता है, जो साधारण कनेक्टेड स्पेस है। यह डबल कवरिंग ग्रुप है। Rp पर एंटीपोड मानचित्र का चिह्न है, इसलिए यह अभिविन्यास-संरक्षण है यदि और केवल यदि p सम है। अभिविन्यास चरित्र इस प्रकार है: नॉन-ट्रिविअल लूप इन के समान अभिविन्यास पर एक्ट करें, इसलिए RPn ओरिएंटेबल है यदि और केवल यदि n + 1 सम है, अर्थात n विषम है।[2]

प्रक्षेप्य n-स्पेस वास्तविक में R(n+1)2 के सबमनीफोल्ड के लिए भिन्न है जिसमें सभी सममित हैं (n + 1) × (n + 1) ट्रेस (रैखिक बीजगणित) 1 के मैट्रिसेस जो कि उदासीन रैखिक परिवर्तन भी हैं।[citation needed]


वास्तविक प्रक्षेप्य रिक्त स्थान की ज्यामिति

वास्तविक प्रक्षेप्य स्थान निरंतर सकारात्मक स्केलर वक्रता मीट्रिक को स्वीकार करता है, जो मानक गोल क्षेत्र (प्रतिलोम मानचित्र स्थानीय रूप से आइसोमेट्री) द्वारा डबल कवर से आ रहा है।

मानक गोल मीट्रिक के लिए, इसमें अनुभागीय वक्रता समान रूप से 1 है।

मानक गोल मीट्रिक में, प्रक्षेप्य स्थान का माप गोले के माप का ठीक आधा है।

चिकनी संरचना

वास्तविक प्रक्षेप्य स्थान कई गुना हैं। Sn पर, समरूप निर्देशांकों में, (x1, ..., Xn+1), उपसमुच्चय Ui को Xi ≠ 0 के साथ मानें। 'RPn' और समन्वय संक्रमण कार्य सुचारू हैं। यह RPn को एक चिकनी संरचना संरचना देता है। प्रत्येक UiRn में दो खुली इकाई गेंदों के असंयुक्त संघ के लिए होमोमोर्फिक है।

सीडब्ल्यू कॉम्प्लेक्स के रूप में संरचना

रियल प्रक्षेप्य स्पेस RPn प्रत्येक आयाम में 1 सेल वाले CW कॉम्प्लेक्स की संरचना को स्वीकार करता है।

सजातीय निर्देशांक में (x1 ... Xn+1) Sn पर, निर्देशांक निकटतम U1 = {(X1 ... Xn+1) | X1 ≠ 0} को n-डिस्क Dn के आंतरिक भाग से पहचाना जा सकता है। जब Xi= 0, के पास RPn−1 है। इसलिए 'RPn' का n−1 संरचना 'RPn−1' है, और संलग्न मानचित्र f: Sn−1 → 'RP'n−1 2-to-1 कवरिंग मैप है। कोई लगा सकता है

इंडक्शन से पता चलता है कि RPn CW कॉम्प्लेक्स है जिसमें n तक के प्रत्येक आयाम में 1 सेल है।

सेलों शूबर्ट सेलों हैं, जैसा कि झंडा कई गुना पर है। अर्थात्, पूर्ण ध्वज (रैखिक बीजगणित) लें (मानक ध्वज कहें) 0 = V0 <V1 <...< Vn; तब बंद k-सेल वे रेखाएँ होती हैं जो Vk में स्थित होती हैं. इसके अलावा ओपन K-सेल (के-सेल का इंटीरियर) Vk \ Vk−1 (Vk में लाइनें लेकिन Vk−1 नहीं) लाइन में है .

सजातीय निर्देशांक (ध्वज के संबंध में) में, सेल हैं

यह नियमित सीडब्ल्यू संरचना नहीं है, क्योंकि संलग्न मानचित्र 2-से-1 हैं। चूंकि, इसका आवरण गोले पर नियमित CW संरचना है, जिसमें प्रत्येक आयाम में 2 सेलों हैं; वास्तव में, क्षेत्र पर न्यूनतम नियमित सीडब्ल्यू संरचना है।

चिकनी संरचना के प्रकाश में, मोर्स फलन का अस्तित्व RPn दिखाएगा सीडब्ल्यू कॉम्प्लेक्स है। ऐसा ही कार्य सजातीय निर्देशांक में दिया जाता है,

प्रत्येक मोहल्ले में यूi, g का गैर-डीजेनरेट महत्वपूर्ण बिंदु (0,...,1,...,0) है जहां 1 मोर्स इंडेक्स i के साथ i-वें स्थान पर होता है। यह 'RPn' दिखाता है प्रत्येक आयाम में 1 सेल वाला CW कॉम्प्लेक्स है।

टॉटोलॉजिकल बंडलों

रियल प्रक्षेप्य स्पेस के ऊपर नेचुरल लाइन बंडल होता है, जिसे टॉटोलॉजिकल बंडल कहा जाता है। अधिक त्रुटिहीन रूप से, इसे टॉटोलॉजिकल सबबंडल कहा जाता है, और दोहरी n-डायमेंशनल बंडल भी होता है जिसे टॉटोलॉजिकल भागफल बंडल कहा जाता है।

वास्तविक प्रक्षेप्य स्थानों की बीजगणितीय टोपोलॉजी

होमोटॉपी समूह

RP के उच्च होमोटॉपी समूहn वास्तव में Sn के उच्च होमोटॉपी समूह हैं, कंपन से जुड़े होमोटॉपी पर लंबे त्रुटिहीन अनुक्रम के माध्यम से।

स्पष्ट रूप से, फाइबर बंडल है:

आप इसे ऐसे भी लिख सकते हैं
या
जटिल प्रक्षेप्य स्थान के अनुरूप।

होमोटॉपी समूह हैं:


समरूपता

उपरोक्त सीडब्ल्यू संरचना से जुड़े सेलुलर चेन कॉम्प्लेक्स में प्रत्येक आयाम 0, ..., n में 1 सेल है। प्रत्येक आयामी k के लिए, सीमा मानचित्र dk : δDkRPk−1/RPk−2 वह मानचित्र है जो भूमध्य रेखा को Sk−1 पर गिराता है, और फिर प्रतिव्यासांत बिंदुओं की पहचान करता है। विषम (प्रतिक्रिया सम) आयामों में, इसकी डिग्री 0 (प्रतिक्रिया 2) है:

इस प्रकार अभिन्न सेलुलर समरूपता है
RPn ओरिएंटेबल है यदि और केवल यदि n विषम है, जैसा कि उपरोक्त होमोलॉजी गणना से पता चलता है।

अनंत वास्तविक प्रक्षेप्य स्थान

अनंत वास्तविक प्रक्षेप्य स्पेस को सीमित प्रक्षेप्य स्पेस की प्रत्यक्ष सीमा या संघ के रूप में बनाया गया है:

यह स्थान O(n) के लिए स्थान को वर्गीकृत कर रहा है | O(1) के स्थान, पहला ओर्थोगोनल समूह को वर्गीकृत कर रहा है।

इस स्थान का दोहरा आवरण अनंत गोला है , जो संविदात्मक है। अनंत प्रक्षेपी स्थान इसलिए ईलेनबर्ग-मैकलेन अंतरिक्ष K('Z2',1) है।

प्रत्येक गैर-ऋणात्मक पूर्णांक q के लिए, मॉड्यूल 2 समरूपता समूह .

इसका कोहोलॉजी रिंग मोडुलो (शब्दजाल) 2 है

कहाँ पहला स्टिफ़ेल-व्हिटनी वर्ग है: यह मुफ़्त है -बीजगणित है , जिसकी डिग्री 1 है।

यह भी देखें

टिप्पणियाँ

  1. See the table of Don Davis for a bibliography and list of results.
  2. J. T. Wloka; B. Rowley; B. Lawruk (1995). Boundary Value Problems for Elliptic Systems. Cambridge University Press. p. 197. ISBN 978-0-521-43011-1.


संदर्भ