कोफिनलिटी: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Size of subsets in order theory}} {{Distinguish|cofiniteness}} गणित में, विशेष रूप से आदेश सिद्धा...")
 
No edit summary
 
(16 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Size of subsets in order theory}}
{{Short description|Size of subsets in order theory}}
{{Distinguish|cofiniteness}}
गणित में, विशेष रूप से [[आदेश सिद्धांत|क्रम सिद्धांत में,]] आंशिक रूप से ऑर्डर किए गए सेट A की कॉफ़िनालिटी सीएफ (A) A के कोफ़ाइनल सबसेट की कार्डिनैलिटी में से सबसे कम होती है।
गणित में, विशेष रूप से [[आदेश सिद्धांत]] में, आंशिक रूप से ऑर्डर किए गए सेट '' ए '' के कोफिनिटी सीएफ ('' '') [[कोफिनल (गणित)]] के [[प्रमुखता]] का सबसे कम है।


कोफिनिटी की यह परिभाषा पसंद के स्वयंसिद्ध पर निर्भर करती है, क्योंकि यह इस तथ्य का उपयोग करती है कि [[बुनियादी संख्या]]ों के प्रत्येक गैर-खाली सेट में कम से कम सदस्य होता है।आंशिक रूप से ऑर्डर किए गए सेट '' ए '' की कोफ़िनिटी को वैकल्पिक रूप से कम से कम [[क्रमसूचक संख्या]] '' एक्स '' के रूप में परिभाषित किया जा सकता है, जैसे कि कोफिनल इमेज (गणित) के साथ '' एक्स '' '' '' 'तक एक फ़ंक्शन है।।यह दूसरी परिभाषा पसंद के स्वयंसिद्ध के बिना समझ में आती है।यदि पसंद के स्वयंसिद्ध को माना जाता है, जैसा कि इस लेख के बाकी हिस्सों में होगा, तो दो परिभाषाएँ समतुल्य हैं।
कॉफ़िनालिटी की यह परिभाषा विकल्पों के स्वीकृत पर निर्भर करती है, क्योंकि यह इस तथ्य का उपयोग करती है कि [[बुनियादी संख्या|बुनियादी संख्याओ]] के प्रत्येक गैर-खाली सेट में कम से कम सदस्य होते है। आंशिक रूप से ऑर्डर किए गए सेट A की सह-संबद्धता को वैकल्पिक रूप से कम से [[क्रमसूचक संख्या]] ''x'' के रूप में परिभाषित किया जा सकता है, जैसे कि x से A तक एक फलन होता है, जिसमें कोफ़ाइनल छवि होती है। विकल्पों के स्वीकृत के बिना यह दूसरी परिभाषा समझ में आती है। यदि विकल्पों को स्वीकृत किया जाता है, जैसा कि इस लेख के बाकी हिस्सों में होगा, तो दो परिभाषाएँ समतुल्य होती हैं।


कोफिनिटी को एक [[निर्देशित सेट]] के लिए समान रूप से परिभाषित किया जा सकता है और इसका उपयोग नेट (गणित) में एक बाद की धारणा को सामान्य करने के लिए किया जाता है।
एक [[निर्देशित सेट]] के लिए समान रूप से परिभाषित किया जा सकता है और एक नेट में बाद की धारणा को सामान्य बनाने के लिए उपयोग किया जाता है।


== उदाहरण ==
== उदाहरण ==


* सबसे बड़े तत्व के साथ आंशिक रूप से ऑर्डर किए गए सेट की कोफ़िनिटी 1 है क्योंकि सेट केवल [[सबसे बड़ा तत्व]] है जो कोफिनल है (और हर दूसरे कोफिनल सबसेट में निहित होना चाहिए)।
* सबसे बड़े तत्व के साथ आंशिक रूप से ऑर्डर किए गए सेट की कॉफ़िनलिटी 1 है क्योंकि केवल [[सबसे बड़ा तत्व]] वाला सेट कॉफ़ाइनल है (और हर दूसरे कॉफ़िनल उपसमुच्चय में समाहित होना चाहिए)।
** विशेष रूप से, किसी भी गैर -परिमित परिमित अध्यादेश की कोफ़िनिटी, या वास्तव में कोई भी परिमित निर्देशित सेट, 1 है, क्योंकि इस तरह के सेट का एक सबसे बड़ा तत्व है।
** विशेष रूप से, किसी भी गैर-शून्य परिमित क्रमिक, या वास्तव में किसी भी परिमित निर्देशित सेट की अंतिमता 1 है, क्योंकि इस तरह के सेट में सबसे बड़ा तत्व है।
* आंशिक रूप से ऑर्डर किए गए सेट के प्रत्येक कोफ़िनल सबसेट में उस सेट के सभी [[अधिकतम तत्व]] होने चाहिए।इस प्रकार आंशिक रूप से ऑर्डर किए गए सेट की कोफ़िनिटी इसके अधिकतम तत्वों की संख्या के बराबर है।
* आंशिक रूप से आदेशित सेट के प्रत्येक कोफिनल उपसमुच्चय में उस सेट के सभी [[अधिकतम तत्व]] सम्मलित होने चाहिए। इस प्रकार एक परिमित आंशिक रूप से आदेशित सेट की सह-संख्या इसके अधिकतम तत्वों की संख्या के बराबर होती है।
** विशेष रूप से, चलो <math>A</math> आकार का एक सेट हो <math>n,</math> और सबसेट के सेट पर विचार करें <math>A</math> से अधिक नहीं है <math>m</math> तत्व।यह आंशिक रूप से समावेश और सबसेट के साथ आदेश दिया गया है <math>m</math> तत्व अधिकतम हैं।इस प्रकार इस पोज़िट की कोफ़िनिटी है <math>n</math> [[द्विपद गुणांक]] <math>m.</math>
** विशेष रूप से, लेट <math>A</math> आकार का सेट हो <math>n,</math> और के सबसेट के सेट पर विचार करें <math>A</math> से अधिक नहीं है <math>m</math> तत्व। यह आंशिक रूप से समावेशन और सबसेट के तहत आदेश दिया गया है <math>m</math> तत्व अधिकतम हैं। इस प्रकार <math>m</math> [[द्विपद गुणांक]] इस पोज़िट की कोफ़िनिटी है <math>n</math> चुनें
* [[प्राकृतिक संख्या]]ओं का एक सबसेट <math>\N</math> में कोफिनल है <math>\N</math> यदि और केवल अगर यह अनंत है, और इसलिए की कोफ़िनिटी <math>\aleph_0</math> है <math>\aleph_0.</math> इस प्रकार <math>\aleph_0</math> एक [[नियमित कार्डिनल]] है।
* [[प्राकृतिक संख्या]]ओं का एक सबसेट <math>\N</math> में कोफिनल है <math>\N</math> यदि और केवल यह अनंत है, और इसलिए की अंतिमता <math>\aleph_0</math> है <math>\aleph_0.</math> इस प्रकार <math>\aleph_0</math> एक [[नियमित कार्डिनल]] है।
* उनके सामान्य आदेश के साथ [[वास्तविक संख्या]]ओं की कोफ़िनिटी है <math>\aleph_0,</math> तब से <math>\N</math> में कोफिनल है <math>\R.</math> का सामान्य आदेश <math>\R</math> आइसोमॉर्फिक का आदेश नहीं है <math>c,</math> सातत्य की कार्डिनलिटी, जिसमें कॉफिनलिटी से अधिक से अधिक है <math>\aleph_0.</math> यह दर्शाता है कि कोफिनिटी ऑर्डर पर निर्भर करता है;एक ही सेट पर अलग -अलग ऑर्डर में अलग -अलग कोफ़िनिटी हो सकती है।
* उनके सामान्य क्रम के साथ [[वास्तविक संख्या]]ओं की सह-सख्या है <math>\aleph_0,</math> चूँकि <math>\N</math> में कोफिनल है <math>\R</math>का सामान्य क्रम  <math>\R</math> क्रम तुल्याकारी नहीं है, <math>c,</math>वास्तविक संख्याओं की कार्डिनैलिटी, जिसकी तुलना में कॉफिनलिटी से अधिक है <math>\aleph_0.</math>यह दर्शाता है कि अंतिमता क्रम पर निर्भर करती है; एक ही सेट पर अलग-अलग ऑर्डर में अलग-अलग कॉफ़िनलिटी हो सकती है।


== गुण ==
== गुण ==


अगर <math>A</math> कुल ऑर्डर कोफ़िनल सबसेट स्वीकार करता है, फिर हम एक सबसेट पा सकते हैं <math>B</math> यह अच्छी तरह से ऑर्डर किया गया है और कोफिनल है <math>A.</math> का कोई सबसेट <math>B</math> भी अच्छी तरह से आदेश दिया गया है।के दो कोफ़िनल सबसेट <math>B</math> न्यूनतम कार्डिनैलिटी के साथ (यानी, उनकी कार्डिनलिटी का कोफ़िनिटी है <math>B</math>) ऑर्डर आइसोमोर्फिक होने की आवश्यकता नहीं है (उदाहरण के लिए यदि <math>B = \omega + \omega,</math> फिर दोनों <math>\omega + \omega</math> और <math>\{\omega + n : n < \omega\}</math> के सबसेट के रूप में देखा गया <math>B</math> की कोफ़िनिटी की गिनती योग्य कार्डिनलिटी है <math>B</math> लेकिन ऑर्डर आइसोमोर्फिक नहीं हैं।) लेकिन कोफिनल सबसेट <math>B</math> न्यूनतम आदेश प्रकार के साथ ऑर्डर आइसोमॉर्फिक होगा।
यदि <math>A</math> पूरी तरह से ऑर्डर किए गए कोफाइनल सबसेट को स्वीकार करता है, फिर हम एक सबसेट पा सकते हैं <math>B</math> जो सुव्यवस्थित और कोफाइनल है <math>A</math> का कोई उपसमुच्चय <math>B</math> भी सुव्यवस्थित है। दो के कोफ़ाइनल उपसमुच्चय B न्यूनतम कार्डिनैलिटी के साथ (अर्थात, उनकी कार्डिनैलिटी की सह-संबद्धता है बी) ऑर्डर आइसोमोर्फिक होने की आवश्यकता नहीं है (उदाहरण के लिए यदि <math>B = \omega + \omega,</math> फिर दोनों <math>\omega + \omega</math> और <math>\{\omega + n : n < \omega\}</math> के सबसेट के रूप में देखा गया <math>B</math> की कोफिनलिटी की काउंटेबल कार्डिनैलिटी है <math>B</math> लेकिन ऑर्डर आइसोमोर्फिक नहीं हैं।) लेकिन कोफिनल सबसेट <math>B</math> न्यूनतम ऑर्डर प्रकार वाला बी ऑर्डर आइसोमोर्फिक होगा।


== ऑर्डिनल्स और अन्य अच्छी तरह से आदेशित सेटों की कोफ़िनिटी ==
== ऑर्डिनल्स और अन्य अच्छी तरह से आदेशित सेटों की कोफ़िनिटी ==


एक अध्यादेश की कोफ़िनिटी <math>\alpha</math> सबसे छोटा अध्यादेश है <math>\delta</math> यह एक [[कोफिनल सबसेट]] का ऑर्डर प्रकार है <math>\alpha.</math> ऑर्डिनल्स या किसी भी अन्य सुव्यवस्थित सेट के एक सेट की कोफ़िनिटी उस सेट के ऑर्डर प्रकार की कोफ़िनिटी है।
एक अध्यादेश की कोफ़िनिटी <math>\alpha</math> सबसे छोटा क्रमसूचक है <math>\delta</math> यह एक [[कोफिनल सबसेट]] का ऑर्डर प्रकार है <math>\alpha.</math>ऑर्डिनल्स या किसी अन्य सुव्यवस्थित सेट के सेट की कॉफ़िनलिटी उस सेट के ऑर्डर प्रकार की कॉफ़िनलिटी है।


इस प्रकार एक सीमा के लिए <math>\alpha,</math> वहाँ मौजूद है <math>\delta</math>-इंडेक्स्ड सख्ती से सीमा के साथ बढ़ते अनुक्रम <math>\alpha.</math> उदाहरण के लिए, की कोफ़िनिटी <math>\omega^2</math> है <math>\omega,</math> क्योंकि अनुक्रम <math>\omega \cdot m</math> (कहाँ <math>m</math> प्राकृतिक संख्याओं पर रेंज) की ओर जाता है <math>\omega^2;</math> लेकिन, अधिक आम तौर पर, किसी भी गणना योग्य सीमा के क्रम में कोफ़िनिटी होती है <math>\omega.</math> एक बेशुमार सीमा क्रम में या तो कोफ़िनिटी हो सकती है <math>\omega</math> के रूप में करता है <math>\omega_\omega</math> या एक बेशुमार कोफ़िनिटी।
इस प्रकार एक सीमा के लिए <math>\alpha,</math> वहाँ सम्मलित है <math>\delta</math>- सीमा के साथ सख्ती से बढ़ते अनुक्रम को अनुक्रमित किया गया <math>\alpha.</math> उदाहरण के लिए, कोफ़िनिटी <math>\omega^2</math> है <math>\omega,</math> क्योंकि अनुक्रम <math>\omega \cdot m</math> (जहा ''m'' प्राकृतिक संख्या से अधिक होता है) की ओर जाता है <math>\omega^2;</math> लेकिन, अधिक सामान्यतः, किसी भी गणनीय सीमा क्रमसूचक में अंतिमता होती है <math>\omega.</math> सीमा क्रमसूचक में या तो सह-अंतिमता हो सकती है <math>\omega</math> जैसा करता है <math>\omega_\omega</math> एक अगणनीय या सह-अंतिमता होती है ।


0 का कोफ़िनिटी 0. है। किसी भी [[उत्तराधिकारी]] के क्रम में कोफ़िनिटी 1. है। किसी भी नॉनज़ेरो सीमा के क्रम में कोफ़िनिटी एक अनंत नियमित कार्डिनल है।
0 की सह-अंतिमता 0 है। किसी भी [[उत्तराधिकारी|परिणात्मक]] क्रमसूचक की अंतिमता 1 है। किसी भी गैर-शून्य सीमा क्रमसूचक की अंतिमता एक अनंत नियमित कार्डिनल है।


== नियमित और एकवचन अध्यादेश ==
== नियमित और एकवचन अध्यादेश ==
{{Main|Regular cardinal}}
{{Main|
एक नियमित रूप से अध्यादेश एक अध्यादेश है जो इसकी कोफिनिटी के बराबर है।एक विलक्षण अध्यादेश कोई भी अध्यादेश है जो नियमित नहीं है।
नियमित कार्डिनल}}
एक नियमित क्रमसूचक एक क्रमसूचक होता है जो इसकी सह-अन्तिमता के बराबर होता है। एक विलक्षण क्रमवाचक कोई भी क्रमसूचक है जो नियमित नहीं है।


प्रत्येक नियमित रूप से एक कार्डिनल का प्रारंभिक क्रम है।नियमित रूप से ऑर्डिनल्स की कोई भी सीमा प्रारंभिक ऑर्डिनल्स की एक सीमा है और इस प्रकार यह भी प्रारंभिक है लेकिन नियमित होने की आवश्यकता नहीं है।पसंद के स्वयंसिद्ध मानते हुए, <math>\omega_{\alpha+1}</math> प्रत्येक के लिए नियमित है <math>\alpha.</math> इस मामले में, ऑर्डिनल्स <math>0, 1, \omega, \omega_1,</math> और <math>\omega_2</math> नियमित हैं, जबकि <math>2, 3, \omega_\omega,</math> और <math>\omega_{\omega \cdot 2}</math> प्रारंभिक ऑर्डिनल हैं जो नियमित नहीं हैं।
प्रत्येक नियमित अध्यादेश एक कार्डिनल का प्रारंभिक क्रमसूचक है। नियमित अध्यादेशों की कोई भी सीमा प्रारंभिक अध्यादेशों की एक सीमा है और इस प्रकार प्रारंभिक भी है लेकिन नियमित होने की आवश्यकता नहीं है। विकल्पों के स्वीकृत मानते हुए, <math>\omega_{\alpha+1}</math>प्रत्येक के लिए नियमित है <math>\alpha.</math> इस स्थितियो में, अध्यादेश <math>0, 1, \omega, \omega_1,</math> और <math>\omega_2</math> नियमित होते हैं, जबकि <math>2, 3, \omega_\omega,</math> और <math>\omega_{\omega \cdot 2}</math> प्रारंभिक क्रमसूचक हैं जो नियमित नहीं हैं।


किसी भी अध्यादेश की कोफ़िनिटी <math>\alpha</math> एक नियमित रूप से अध्यादेश है, अर्थात्, कोफिनलिटी का कोफ़िनिटी <math>\alpha</math> की कोफ़िनिटी के समान है <math>\alpha.</math> तो कोफिनिटी ऑपरेशन [[idempotent]] है।
किसी भी अध्यादेश की सह-अस्तित्व <math>\alpha</math> एक नियमित क्रमसूचक है, अर्थात्, कोफिनलिटी की कोफ़िनिटी <math>\alpha</math> की सह-अंतिमता के समान है <math>\alpha.</math> तो कोफिनिटी का संचालन [[idempotent|इडेम्पोटेन्ट]] द्वारा होता है।


== कार्डिनल्स की कोफ़िनिटी ==
== कार्डिनल्स की कोफ़िनिटी ==


अगर <math>\kappa</math> एक अनंत कार्डिनल नंबर है, फिर <math>\operatorname{cf}(\kappa)</math> कम से कम कार्डिनल ऐसा है कि एक बाउंडेड (सेट थ्योरी) फ़ंक्शन है <math>\operatorname{cf}(\kappa)</math> को <math>\kappa;</math> <math>\operatorname{cf}(\kappa)</math> कड़ाई से छोटे कार्डिनल्स के सबसे छोटे सेट की कार्डिनलिटी भी है, जिसका योग है <math>\kappa;</math> ज्यादा ठीक
यदि <math>\kappa</math> एक अनंत कार्डिनल नंबर है, फिर <math>\operatorname{cf}(\kappa)</math> कम से कम कार्डिनल है जैसे कि एक असीमित फलन सीएफ़ <math>\operatorname{cf}(\kappa)</math> को <math>\kappa;</math> <math>\operatorname{cf}(\kappa)</math> सख्ती से छोटे कार्डिनल्स के सबसे छोटे सेट की कार्डिनैलिटी भी है जिसका योग है <math>\kappa;</math> अधिक सटीकता से होता है।
<math display=block>\mathrm{cf}(\kappa) = \min \left\{ |I|\ :\ \kappa = \sum_{i \in I} \lambda_i\ \land\ \text{ for all such } i \, \lambda_i < \kappa\right\}</math>
<math display=block>\mathrm{cf}(\kappa) = \min \left\{ |I|\ :\ \kappa = \sum_{i \in I} \lambda_i\ \land\ \text{ for all such } i \, \lambda_i < \kappa\right\}</math>
ऊपर दिया गया सेट गैर -रिक्त है कि इस तथ्य से आता है कि
यह कि ऊपर दिया गया सेट खाली नहीं है, इस तथ्य से आता है कि
<math display=block>\kappa = \bigcup_{i \in \kappa} \{i\}</math>
<math display=block>\kappa = \bigcup_{i \in \kappa} \{i\}</math>
अर्थात्, असंतुष्ट [[संघ]] <math>\kappa</math> सिंगलटन सेट।इसका मतलब है कि तुरंत <math>\operatorname{cf}(\kappa) \leq \kappa.</math> किसी भी पूरी तरह से ऑर्डर किए गए सेट की कोफ़िनिटी नियमित है, इसलिए <math>\operatorname{cf}(\kappa) = \operatorname{cf}(\operatorname{cf}(\kappa)).</math>
अर्थात्, का असंबद्ध [[संघ]] <math>\kappa</math> सिंगलटन सेट। इसका तात्पर्य है <math>\operatorname{cf}(\kappa) \leq \kappa.</math> किसी भी पूरी तरह से ऑर्डर किए गए सेट की सह-अंतिमता नियमित होती है, इसलिए<math>\operatorname{cf}(\kappa) = \operatorname{cf}(\operatorname{cf}(\kappa)).</math>
कोनिग के प्रमेय (सेट थ्योरी) का उपयोग करना | कोनिग के प्रमेय, कोई भी साबित कर सकता है <math>\kappa < \kappa^{\operatorname{cf}(\kappa)}</math> और <math>\kappa < \operatorname{cf}\left(2^\kappa\right)</math> किसी भी अनंत कार्डिनल के लिए <math>\kappa.</math>
 
अंतिम असमानता का तात्पर्य है कि सातत्य के कार्डिनलिटी की कोफ़िनिटी बेशुमार होनी चाहिए।वहीं दूसरी ओर,
कोनिग के प्रमेय का प्रयोग करके, कोई सिद्ध कर सकता है <math>\kappa < \kappa^{\operatorname{cf}(\kappa)}</math> और <math>\kappa < \operatorname{cf}\left(2^\kappa\right)</math> किसी भी अनंत कार्डिनल के लिए <math>\kappa.</math> अंतिम असमानता का अर्थ है कि सातत्य की कार्डिनैलिटी की अंतिमता बेशुमार होनी चाहिए। वहीं दूसरी ओर,
<math display=block>\aleph_\omega = \bigcup_{n < \omega} \aleph_n.</math>
<math display="block">\aleph_\omega = \bigcup_{n < \omega} \aleph_n.</math>
ऑर्डिनल नंबर the पहला अनंत अध्यादेश है, ताकि की कोफ़िनिटी <math>\aleph_\omega</math> कार्ड है (() = <math>\aleph_0.</math> (विशेष रूप से, <math>\aleph_\omega</math> एकवचन है।) इसलिए,
क्रमसूचक संख्या ω पहला अनंत क्रमसूचक है, जिससे कि की अंतिमता <math>\aleph_\omega</math> है = <math>\aleph_0.</math> (विशेष रूप से, <math>\aleph_\omega</math> एकवचन है।) इसलिए,
<math display=block>2^{\aleph_0} \neq \aleph_\omega.</math>
<math display="block">2^{\aleph_0} \neq \aleph_\omega.</math>
(सातत्य परिकल्पना की तुलना करें, जो बताता है <math>2^{\aleph_0} = \aleph_1.</math>)
(सातत्य परिकल्पना की तुलना करें, जो बताता है <math>2^{\aleph_0} = \aleph_1.</math>)


इस तर्क को सामान्य करते हुए, कोई भी यह साबित कर सकता है कि एक सीमा के लिए <math>\delta</math>
इस तर्क को सामान्यीकृत करते हुए, कोई यह सिद्ध कर सकता है कि <math>\delta</math> एक सीमा के लिए
<math display=block>\mathrm{cf} (\aleph_\delta) = \mathrm{cf} (\delta).</math>
<math display="block">\mathrm{cf} (\aleph_\delta) = \mathrm{cf} (\delta).</math>
दूसरी ओर, यदि पसंद का स्वयंसिद्ध धारण करता है, तो एक उत्तराधिकारी या शून्य क्रम के लिए <math>\delta</math>
दूसरी ओर, यदि विकल्पों को स्वीकृती दी जाती है, तो एक परिणात्मक  <math>\delta</math> क्रमसूचक मान या शून्य पर निर्भर करता है।
<math display=block>\mathrm{cf} (\aleph_\delta) = \aleph_\delta.</math>
<math display="block">\mathrm{cf} (\aleph_\delta) = \aleph_\delta.</math>




== यह भी देखें ==
== यह भी देखें ==


* {{annotated link|Club set}}
* {{annotated link|क्लब सेट}}
* {{annotated link|Initial ordinal}}
* {{annotated link|प्रारंभिक क्रमसूचक}}
 
 
 
 
 
 
 
 
 
 




Line 69: Line 79:
* Kunen, Kenneth, 1980. ''Set Theory: An Introduction to Independence Proofs''. Elsevier.  {{ISBN|0-444-86839-9}}.
* Kunen, Kenneth, 1980. ''Set Theory: An Introduction to Independence Proofs''. Elsevier.  {{ISBN|0-444-86839-9}}.


{{Order theory}}
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category: कार्डिनल संख्या]] [[Category: आदेश सिद्धांत]] [[Category: क्रमसूचक संख्या]] [[Category: समुच्चय सिद्धान्त]]
 
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 14/02/2023]]
[[Category:Created On 14/02/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Template documentation pages|Short description/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:आदेश सिद्धांत]]
[[Category:कार्डिनल संख्या]]
[[Category:क्रमसूचक संख्या]]
[[Category:समुच्चय सिद्धान्त]]

Latest revision as of 10:41, 23 February 2023

गणित में, विशेष रूप से क्रम सिद्धांत में, आंशिक रूप से ऑर्डर किए गए सेट A की कॉफ़िनालिटी सीएफ (A) A के कोफ़ाइनल सबसेट की कार्डिनैलिटी में से सबसे कम होती है।

कॉफ़िनालिटी की यह परिभाषा विकल्पों के स्वीकृत पर निर्भर करती है, क्योंकि यह इस तथ्य का उपयोग करती है कि बुनियादी संख्याओ के प्रत्येक गैर-खाली सेट में कम से कम सदस्य होते है। आंशिक रूप से ऑर्डर किए गए सेट A की सह-संबद्धता को वैकल्पिक रूप से कम से क्रमसूचक संख्या x के रूप में परिभाषित किया जा सकता है, जैसे कि x से A तक एक फलन होता है, जिसमें कोफ़ाइनल छवि होती है। विकल्पों के स्वीकृत के बिना यह दूसरी परिभाषा समझ में आती है। यदि विकल्पों को स्वीकृत किया जाता है, जैसा कि इस लेख के बाकी हिस्सों में होगा, तो दो परिभाषाएँ समतुल्य होती हैं।

एक निर्देशित सेट के लिए समान रूप से परिभाषित किया जा सकता है और एक नेट में बाद की धारणा को सामान्य बनाने के लिए उपयोग किया जाता है।

उदाहरण

  • सबसे बड़े तत्व के साथ आंशिक रूप से ऑर्डर किए गए सेट की कॉफ़िनलिटी 1 है क्योंकि केवल सबसे बड़ा तत्व वाला सेट कॉफ़ाइनल है (और हर दूसरे कॉफ़िनल उपसमुच्चय में समाहित होना चाहिए)।
    • विशेष रूप से, किसी भी गैर-शून्य परिमित क्रमिक, या वास्तव में किसी भी परिमित निर्देशित सेट की अंतिमता 1 है, क्योंकि इस तरह के सेट में सबसे बड़ा तत्व है।
  • आंशिक रूप से आदेशित सेट के प्रत्येक कोफिनल उपसमुच्चय में उस सेट के सभी अधिकतम तत्व सम्मलित होने चाहिए। इस प्रकार एक परिमित आंशिक रूप से आदेशित सेट की सह-संख्या इसके अधिकतम तत्वों की संख्या के बराबर होती है।
    • विशेष रूप से, लेट आकार का सेट हो और के सबसेट के सेट पर विचार करें से अधिक नहीं है तत्व। यह आंशिक रूप से समावेशन और सबसेट के तहत आदेश दिया गया है तत्व अधिकतम हैं। इस प्रकार द्विपद गुणांक इस पोज़िट की कोफ़िनिटी है चुनें
  • प्राकृतिक संख्याओं का एक सबसेट में कोफिनल है यदि और केवल यह अनंत है, और इसलिए की अंतिमता है इस प्रकार एक नियमित कार्डिनल है।
  • उनके सामान्य क्रम के साथ वास्तविक संख्याओं की सह-सख्या है चूँकि में कोफिनल है का सामान्य क्रम क्रम तुल्याकारी नहीं है, वास्तविक संख्याओं की कार्डिनैलिटी, जिसकी तुलना में कॉफिनलिटी से अधिक है यह दर्शाता है कि अंतिमता क्रम पर निर्भर करती है; एक ही सेट पर अलग-अलग ऑर्डर में अलग-अलग कॉफ़िनलिटी हो सकती है।

गुण

यदि पूरी तरह से ऑर्डर किए गए कोफाइनल सबसेट को स्वीकार करता है, फिर हम एक सबसेट पा सकते हैं जो सुव्यवस्थित और कोफाइनल है का कोई उपसमुच्चय भी सुव्यवस्थित है। दो के कोफ़ाइनल उपसमुच्चय B न्यूनतम कार्डिनैलिटी के साथ (अर्थात, उनकी कार्डिनैलिटी की सह-संबद्धता है बी) ऑर्डर आइसोमोर्फिक होने की आवश्यकता नहीं है (उदाहरण के लिए यदि फिर दोनों और के सबसेट के रूप में देखा गया की कोफिनलिटी की काउंटेबल कार्डिनैलिटी है लेकिन ऑर्डर आइसोमोर्फिक नहीं हैं।) लेकिन कोफिनल सबसेट न्यूनतम ऑर्डर प्रकार वाला बी ऑर्डर आइसोमोर्फिक होगा।

ऑर्डिनल्स और अन्य अच्छी तरह से आदेशित सेटों की कोफ़िनिटी

एक अध्यादेश की कोफ़िनिटी सबसे छोटा क्रमसूचक है यह एक कोफिनल सबसेट का ऑर्डर प्रकार है ऑर्डिनल्स या किसी अन्य सुव्यवस्थित सेट के सेट की कॉफ़िनलिटी उस सेट के ऑर्डर प्रकार की कॉफ़िनलिटी है।

इस प्रकार एक सीमा के लिए वहाँ सम्मलित है - सीमा के साथ सख्ती से बढ़ते अनुक्रम को अनुक्रमित किया गया उदाहरण के लिए, कोफ़िनिटी है क्योंकि अनुक्रम (जहा m प्राकृतिक संख्या से अधिक होता है) की ओर जाता है लेकिन, अधिक सामान्यतः, किसी भी गणनीय सीमा क्रमसूचक में अंतिमता होती है सीमा क्रमसूचक में या तो सह-अंतिमता हो सकती है जैसा करता है एक अगणनीय या सह-अंतिमता होती है ।

0 की सह-अंतिमता 0 है। किसी भी परिणात्मक क्रमसूचक की अंतिमता 1 है। किसी भी गैर-शून्य सीमा क्रमसूचक की अंतिमता एक अनंत नियमित कार्डिनल है।

नियमित और एकवचन अध्यादेश

एक नियमित क्रमसूचक एक क्रमसूचक होता है जो इसकी सह-अन्तिमता के बराबर होता है। एक विलक्षण क्रमवाचक कोई भी क्रमसूचक है जो नियमित नहीं है।

प्रत्येक नियमित अध्यादेश एक कार्डिनल का प्रारंभिक क्रमसूचक है। नियमित अध्यादेशों की कोई भी सीमा प्रारंभिक अध्यादेशों की एक सीमा है और इस प्रकार प्रारंभिक भी है लेकिन नियमित होने की आवश्यकता नहीं है। विकल्पों के स्वीकृत मानते हुए, प्रत्येक के लिए नियमित है इस स्थितियो में, अध्यादेश और नियमित होते हैं, जबकि और प्रारंभिक क्रमसूचक हैं जो नियमित नहीं हैं।

किसी भी अध्यादेश की सह-अस्तित्व एक नियमित क्रमसूचक है, अर्थात्, कोफिनलिटी की कोफ़िनिटी की सह-अंतिमता के समान है तो कोफिनिटी का संचालन इडेम्पोटेन्ट द्वारा होता है।

कार्डिनल्स की कोफ़िनिटी

यदि एक अनंत कार्डिनल नंबर है, फिर कम से कम कार्डिनल है जैसे कि एक असीमित फलन सीएफ़ को सख्ती से छोटे कार्डिनल्स के सबसे छोटे सेट की कार्डिनैलिटी भी है जिसका योग है अधिक सटीकता से होता है।

यह कि ऊपर दिया गया सेट खाली नहीं है, इस तथ्य से आता है कि
अर्थात्, का असंबद्ध संघ सिंगलटन सेट। इसका तात्पर्य है किसी भी पूरी तरह से ऑर्डर किए गए सेट की सह-अंतिमता नियमित होती है, इसलिए

कोनिग के प्रमेय का प्रयोग करके, कोई सिद्ध कर सकता है और किसी भी अनंत कार्डिनल के लिए अंतिम असमानता का अर्थ है कि सातत्य की कार्डिनैलिटी की अंतिमता बेशुमार होनी चाहिए। वहीं दूसरी ओर,

क्रमसूचक संख्या ω पहला अनंत क्रमसूचक है, जिससे कि की अंतिमता है = (विशेष रूप से, एकवचन है।) इसलिए,
(सातत्य परिकल्पना की तुलना करें, जो बताता है )

इस तर्क को सामान्यीकृत करते हुए, कोई यह सिद्ध कर सकता है कि एक सीमा के लिए

दूसरी ओर, यदि विकल्पों को स्वीकृती दी जाती है, तो एक परिणात्मक क्रमसूचक मान या शून्य पर निर्भर करता है।


यह भी देखें







संदर्भ

  • Jech, Thomas, 2003. Set Theory: The Third Millennium Edition, Revised and Expanded. Springer. ISBN 3-540-44085-2.
  • Kunen, Kenneth, 1980. Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9.