कोफिनलिटी: Difference between revisions
No edit summary |
|||
(2 intermediate revisions by 2 users not shown) | |||
Line 60: | Line 60: | ||
* {{annotated link|क्लब सेट}} | * {{annotated link|क्लब सेट}} | ||
* {{annotated link|प्रारंभिक क्रमसूचक}} | * {{annotated link|प्रारंभिक क्रमसूचक}} | ||
==संदर्भ== | |||
{{reflist}} | |||
* Jech, Thomas, 2003. ''Set Theory: The Third Millennium Edition, Revised and Expanded''. Springer. {{ISBN|3-540-44085-2}}. | |||
* Kunen, Kenneth, 1980. ''Set Theory: An Introduction to Independence Proofs''. Elsevier. {{ISBN|0-444-86839-9}}. | |||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Created On 14/02/2023]] | [[Category:Created On 14/02/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | [[Category:Machine Translated Page]] | ||
[[Category:Pages with script errors]] | [[Category:Pages with script errors]] | ||
Line 71: | Line 90: | ||
[[Category:Templates that generate short descriptions]] | [[Category:Templates that generate short descriptions]] | ||
[[Category:Templates using TemplateData]] | [[Category:Templates using TemplateData]] | ||
[[Category:आदेश सिद्धांत]] | |||
[[Category:कार्डिनल संख्या]] | |||
[[Category:क्रमसूचक संख्या]] | |||
[[Category:समुच्चय सिद्धान्त]] | |||
[[Category: | |||
[[Category: |
Latest revision as of 10:41, 23 February 2023
गणित में, विशेष रूप से क्रम सिद्धांत में, आंशिक रूप से ऑर्डर किए गए सेट A की कॉफ़िनालिटी सीएफ (A) A के कोफ़ाइनल सबसेट की कार्डिनैलिटी में से सबसे कम होती है।
कॉफ़िनालिटी की यह परिभाषा विकल्पों के स्वीकृत पर निर्भर करती है, क्योंकि यह इस तथ्य का उपयोग करती है कि बुनियादी संख्याओ के प्रत्येक गैर-खाली सेट में कम से कम सदस्य होते है। आंशिक रूप से ऑर्डर किए गए सेट A की सह-संबद्धता को वैकल्पिक रूप से कम से क्रमसूचक संख्या x के रूप में परिभाषित किया जा सकता है, जैसे कि x से A तक एक फलन होता है, जिसमें कोफ़ाइनल छवि होती है। विकल्पों के स्वीकृत के बिना यह दूसरी परिभाषा समझ में आती है। यदि विकल्पों को स्वीकृत किया जाता है, जैसा कि इस लेख के बाकी हिस्सों में होगा, तो दो परिभाषाएँ समतुल्य होती हैं।
एक निर्देशित सेट के लिए समान रूप से परिभाषित किया जा सकता है और एक नेट में बाद की धारणा को सामान्य बनाने के लिए उपयोग किया जाता है।
उदाहरण
- सबसे बड़े तत्व के साथ आंशिक रूप से ऑर्डर किए गए सेट की कॉफ़िनलिटी 1 है क्योंकि केवल सबसे बड़ा तत्व वाला सेट कॉफ़ाइनल है (और हर दूसरे कॉफ़िनल उपसमुच्चय में समाहित होना चाहिए)।
- विशेष रूप से, किसी भी गैर-शून्य परिमित क्रमिक, या वास्तव में किसी भी परिमित निर्देशित सेट की अंतिमता 1 है, क्योंकि इस तरह के सेट में सबसे बड़ा तत्व है।
- आंशिक रूप से आदेशित सेट के प्रत्येक कोफिनल उपसमुच्चय में उस सेट के सभी अधिकतम तत्व सम्मलित होने चाहिए। इस प्रकार एक परिमित आंशिक रूप से आदेशित सेट की सह-संख्या इसके अधिकतम तत्वों की संख्या के बराबर होती है।
- विशेष रूप से, लेट आकार का सेट हो और के सबसेट के सेट पर विचार करें से अधिक नहीं है तत्व। यह आंशिक रूप से समावेशन और सबसेट के तहत आदेश दिया गया है तत्व अधिकतम हैं। इस प्रकार द्विपद गुणांक इस पोज़िट की कोफ़िनिटी है चुनें
- प्राकृतिक संख्याओं का एक सबसेट में कोफिनल है यदि और केवल यह अनंत है, और इसलिए की अंतिमता है इस प्रकार एक नियमित कार्डिनल है।
- उनके सामान्य क्रम के साथ वास्तविक संख्याओं की सह-सख्या है चूँकि में कोफिनल है का सामान्य क्रम क्रम तुल्याकारी नहीं है, वास्तविक संख्याओं की कार्डिनैलिटी, जिसकी तुलना में कॉफिनलिटी से अधिक है यह दर्शाता है कि अंतिमता क्रम पर निर्भर करती है; एक ही सेट पर अलग-अलग ऑर्डर में अलग-अलग कॉफ़िनलिटी हो सकती है।
गुण
यदि पूरी तरह से ऑर्डर किए गए कोफाइनल सबसेट को स्वीकार करता है, फिर हम एक सबसेट पा सकते हैं जो सुव्यवस्थित और कोफाइनल है का कोई उपसमुच्चय भी सुव्यवस्थित है। दो के कोफ़ाइनल उपसमुच्चय B न्यूनतम कार्डिनैलिटी के साथ (अर्थात, उनकी कार्डिनैलिटी की सह-संबद्धता है बी) ऑर्डर आइसोमोर्फिक होने की आवश्यकता नहीं है (उदाहरण के लिए यदि फिर दोनों और के सबसेट के रूप में देखा गया की कोफिनलिटी की काउंटेबल कार्डिनैलिटी है लेकिन ऑर्डर आइसोमोर्फिक नहीं हैं।) लेकिन कोफिनल सबसेट न्यूनतम ऑर्डर प्रकार वाला बी ऑर्डर आइसोमोर्फिक होगा।
ऑर्डिनल्स और अन्य अच्छी तरह से आदेशित सेटों की कोफ़िनिटी
एक अध्यादेश की कोफ़िनिटी सबसे छोटा क्रमसूचक है यह एक कोफिनल सबसेट का ऑर्डर प्रकार है ऑर्डिनल्स या किसी अन्य सुव्यवस्थित सेट के सेट की कॉफ़िनलिटी उस सेट के ऑर्डर प्रकार की कॉफ़िनलिटी है।
इस प्रकार एक सीमा के लिए वहाँ सम्मलित है - सीमा के साथ सख्ती से बढ़ते अनुक्रम को अनुक्रमित किया गया उदाहरण के लिए, कोफ़िनिटी है क्योंकि अनुक्रम (जहा m प्राकृतिक संख्या से अधिक होता है) की ओर जाता है लेकिन, अधिक सामान्यतः, किसी भी गणनीय सीमा क्रमसूचक में अंतिमता होती है सीमा क्रमसूचक में या तो सह-अंतिमता हो सकती है जैसा करता है एक अगणनीय या सह-अंतिमता होती है ।
0 की सह-अंतिमता 0 है। किसी भी परिणात्मक क्रमसूचक की अंतिमता 1 है। किसी भी गैर-शून्य सीमा क्रमसूचक की अंतिमता एक अनंत नियमित कार्डिनल है।
नियमित और एकवचन अध्यादेश
एक नियमित क्रमसूचक एक क्रमसूचक होता है जो इसकी सह-अन्तिमता के बराबर होता है। एक विलक्षण क्रमवाचक कोई भी क्रमसूचक है जो नियमित नहीं है।
प्रत्येक नियमित अध्यादेश एक कार्डिनल का प्रारंभिक क्रमसूचक है। नियमित अध्यादेशों की कोई भी सीमा प्रारंभिक अध्यादेशों की एक सीमा है और इस प्रकार प्रारंभिक भी है लेकिन नियमित होने की आवश्यकता नहीं है। विकल्पों के स्वीकृत मानते हुए, प्रत्येक के लिए नियमित है इस स्थितियो में, अध्यादेश और नियमित होते हैं, जबकि और प्रारंभिक क्रमसूचक हैं जो नियमित नहीं हैं।
किसी भी अध्यादेश की सह-अस्तित्व एक नियमित क्रमसूचक है, अर्थात्, कोफिनलिटी की कोफ़िनिटी की सह-अंतिमता के समान है तो कोफिनिटी का संचालन इडेम्पोटेन्ट द्वारा होता है।
कार्डिनल्स की कोफ़िनिटी
यदि एक अनंत कार्डिनल नंबर है, फिर कम से कम कार्डिनल है जैसे कि एक असीमित फलन सीएफ़ को सख्ती से छोटे कार्डिनल्स के सबसे छोटे सेट की कार्डिनैलिटी भी है जिसका योग है अधिक सटीकता से होता है।
कोनिग के प्रमेय का प्रयोग करके, कोई सिद्ध कर सकता है और किसी भी अनंत कार्डिनल के लिए अंतिम असमानता का अर्थ है कि सातत्य की कार्डिनैलिटी की अंतिमता बेशुमार होनी चाहिए। वहीं दूसरी ओर,
इस तर्क को सामान्यीकृत करते हुए, कोई यह सिद्ध कर सकता है कि एक सीमा के लिए
यह भी देखें
संदर्भ
- Jech, Thomas, 2003. Set Theory: The Third Millennium Edition, Revised and Expanded. Springer. ISBN 3-540-44085-2.
- Kunen, Kenneth, 1980. Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9.