विस्तारात्मकता का अभिगृहीत: Difference between revisions

From Vigyanwiki
No edit summary
 
(4 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Concept of axiomatic set theory}}
{{short description|Concept of axiomatic set theory}}
[[स्वयंसिद्ध]] समुच्चय सिद्धांत और [[तर्क|तर्कशास्त्र]], गणित और [[कंप्यूटर विज्ञान]] की शाखाओं में इसका उपयोग करते हैं, विस्तार का स्वयंसिद्ध या विस्तार का स्वयंसिद्ध ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के स्वयंसिद्धों में से एक है। '''यह कहता है कि समान अवयवों वाले समुच्चय समान समुच्चय होते हैं।'''
[[स्वयंसिद्ध]] समुच्चय सिद्धांत और [[तर्क|तर्कशास्त्र]], गणित और [[कंप्यूटर विज्ञान]] की शाखाओं में इसका उपयोग करते हैं, विस्तार का स्वयंसिद्ध या विस्तार का स्वयंसिद्ध ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के स्वयंसिद्धों में से एक है। यह कहता है कि समान अवयवों वाले समुच्चय समान समुच्चय होते हैं।


== औपचारिक वक्तव्य ==
== औपचारिक वक्तव्य ==
ज़र्मेलो-फ्रेंकेल स्वयंसिद्धों की [[औपचारिक भाषा]] में, स्वयंसिद्ध पढ़ा जाता है:
ज़र्मेलो-फ्रेंकेल स्वयंसिद्धों की [[औपचारिक भाषा]] में, स्वयंसिद्ध पढ़ा जाता है:  


:<math>\forall A \, \forall B \, ( \forall X \, (X \in A \iff X \in B) \implies A = B)</math>
:<math>\forall A \, \forall B \, ( \forall X \, (X \in A \iff X \in B) \implies A = B)</math>
या शब्दों में:
या शब्दों में:
: किसी भी [[सेट (गणित)|समुच्चय (गणित)]] ''A'' और किसी भी समुच्चय ''B'' को देखते हुए, यदि प्रत्येक समुच्चय ''X'' के लिए, ''X'', ''A'' का सदस्य है और केवल यदि ''X'',  ''B'' का सदस्य है, तो ''A,'' ''B'' के बराबर है।
: किसी भी [[सेट (गणित)|समुच्चय (गणित)]] ''A'' और किसी भी समुच्चय ''B'' को देखते हुए, यदि प्रत्येक समुच्चय ''X'' के लिए ''X'', ''A'' का सदस्य है और केवल यदि ''X'',  ''B'' का सदस्य है, तो ''A,'' ''B'' के बराबर है।
:(यह वास्तव में जरूरी नहीं है कि ''X'' यहां एक समुच्चय हो - लेकिन जेडएफ में, सबकुछ है। इसका उल्लंघन होने पर नीचे उर-तत्व देखें।)
:(यह वास्तव में जरूरी नहीं है कि ''X'' यहां एक समुच्चय हो - लेकिन जेडएफ में, सबकुछ है। इसका उल्लंघन होने पर नीचे उर-तत्व देखें।)


Line 13: Line 13:


== व्याख्या ==
== व्याख्या ==
इस स्वयंसिद्ध को समझने के लिए, ध्यान दें कि उपरोक्त प्रतीकात्मक कथन में कोष्ठकों में खंड केवल यह बताता है कि ''A'' और ''B'' में बिल्कुल समान सदस्य हैं। इस प्रकार, स्वयंसिद्ध वास्तव में यह कह रहा है कि दो समुच्चय समान हैं यदि और केवल यदि उनके ठीक समान सदस्य हैं। इसका सार यह है:
इस स्वयंसिद्ध को समझने के लिए, ध्यान दें कि उपरोक्त प्रतीकात्मक कथन में कोष्ठकों में खंड केवल यह बताता है कि ''A'' और ''B'' में बिल्कुल समान सदस्य हैं। इस प्रकार, स्वयंसिद्ध वास्तव में यह कह रहा है कि दो समुच्चय समान हैं यदि और केवल यदि उनके ठीक समान सदस्य हैं। इसका सार यह है:  
: समुच्चय अपने सदस्यों द्वारा विशिष्ट रूप से निर्धारित किया जाता है।
: समुच्चय अपने सदस्यों द्वारा विशिष्ट रूप से निर्धारित किया जाता है।


विस्तार के स्वयंसिद्ध का उपयोग प्रपत्र के किसी भी कथन के साथ किया जा सकता है<math>\exists A \, \forall X \, (X \in A \iff P(X) \, )</math>, जहां P कोई एकल [[विधेय (गणित)|निर्धारक (गणित)]] है जिसमें A का उल्लेख नहीं है, अद्वितीय समुच्चय को परिभाषित करने के लिए <math>A</math> जिसके सदस्य सटीक रूप से निर्धारक को आपूर्ति करने वाले समुच्चय हैं<math>P</math>। हम इसके लिए नया प्रतीक पेश कर सकते हैं <math>A</math>; यह इस तरह से है कि सामान्य गणित में [[परिभाषा]]एँ अंततः तब काम करती हैं जब उनके बयानों को विशुद्ध रूप से समुच्चय-सैद्धांतिक शर्तों तक सीमित कर दिया जाता है।
विस्तार के स्वयंसिद्ध का उपयोग प्रपत्र के किसी भी कथन के साथ किया जा सकता है <math>\exists A \, \forall X \, (X \in A \iff P(X) \, )</math>, जहां P कोई एकल [[विधेय (गणित)|निर्धारक (गणित)]] है जिसमें A का उल्लेख नहीं है, अद्वितीय समुच्चय को परिभाषित करने के लिए <math>A</math> जिसके सदस्य सटीक रूप से निर्धारक को आपूर्ति करने वाले समुच्चय हैं <math>P</math>। हम इसके लिए नया प्रतीक पेश कर सकते हैं <math>A</math>; यह इस तरह से है कि सामान्य गणित में [[परिभाषा]]एँ अंततः तब काम करती हैं जब उनके बयानों को विशुद्ध रूप से समुच्चय-सैद्धांतिक शर्तों तक सीमित कर दिया जाता है।


गणित की समुच्चय-सैद्धांतिक नींव में व्यापकता का सिद्धांत सामान्यतः विवादास्पद नहीं है, और यह या समकक्ष समुच्चय सिद्धांत के किसी भी वैकल्पिक स्वयंसिद्धता के बारे में प्रकट होता है। हालाँकि, इसमें कुछ उद्देश्यों के लिए संशोधन की आवश्यकता हो सकती है, जैसा कि नीचे दिया गया है।
गणित की समुच्चय-सैद्धांतिक नींव में व्यापकता का सिद्धांत सामान्यतः विवादास्पद नहीं है, और यह या समकक्ष समुच्चय सिद्धांत के किसी भी वैकल्पिक स्वयंसिद्धता के बारे में प्रकट होता है। हालाँकि, इसमें कुछ उद्देश्यों के लिए संशोधन की आवश्यकता हो सकती है, जैसा कि नीचे दिया गया है।
Line 24: Line 24:
:<math>\forall A \, \forall B \, ( \forall X \, (X \in A \iff X \in B) \implies \forall Y \, (A \in Y \iff B \in Y) \, ),</math>
:<math>\forall A \, \forall B \, ( \forall X \, (X \in A \iff X \in B) \implies \forall Y \, (A \in Y \iff B \in Y) \, ),</math>
:और यह यह स्वयंसिद्ध बन जाता है जिसे इस संदर्भ में विस्तार की स्वयंसिद्धता के रूप में जाना जाता है।
:और यह यह स्वयंसिद्ध बन जाता है जिसे इस संदर्भ में विस्तार की स्वयंसिद्धता के रूप में जाना जाता है।
== [[उर-तत्व|उर-तत्वों]] के साथ समुच्चय सिद्धांत में ==
== [[उर-तत्व|यूआर -अवयव]] के साथ समुच्चय सिद्धांत में ==
उर-तत्व समुच्चय का सदस्य है जो स्वयं एक समुच्चय नहीं है। ज़र्मेलो-फ्रेंकेल स्वयंसिद्धों में, कोई उर-तत्व नहीं हैं, लेकिन वे समुच्चय सिद्धांत के कुछ वैकल्पिक स्वयंसिद्धों में सम्मिलित  हैं। उर-तत्वों को समुच्चय से भिन्न [[तार्किक प्रकार]] के रूप में माना जा सकता है; इस मामले में, <math>B \in A</math> यदि कोई मतलब नहीं है <math>A</math> एक उर-तत्व है, इसलिए विस्तार का सिद्धांत केवल समुच्चय पर ही लागू होता है।
उर-तत्व समुच्चय का सदस्य है जो स्वयं एक समुच्चय नहीं है। ज़र्मेलो-फ्रेंकेल स्वयंसिद्धों में, कोई उर-तत्व नहीं हैं, लेकिन वे समुच्चय सिद्धांत के कुछ वैकल्पिक स्वयंसिद्धों में सम्मिलित  हैं। यूआर -अवयव को समुच्चय से भिन्न [[तार्किक प्रकार]] के रूप में माना जा सकता है; इस मामले में, <math>B \in A</math> यदि कोई मतलब नहीं है <math>A</math> एक उर-तत्व है, इसलिए विस्तार का सिद्धांत केवल समुच्चय पर ही लागू होता है।


वैकल्पिक रूप से, अप्रकाशित तर्कशास्त्र में, हम आवश्यकता कर सकते हैं <math>B \in A</math> जब भी भ्रामक है <math>A</math> उर-तत्व है। इस मामले में, विस्तार की सामान्य स्वयंसिद्धता का अर्थ यह होगा कि प्रत्येक उर-तत्व [[खाली सेट|खाली समुच्चय]] के बराबर है। इस परिणाम से बचने के लिए, हम केवल गैर-खाली समुच्चय पर लागू करने के लिए विस्तार के स्वयंसिद्ध को संशोधित कर सकते हैं, जिससे कि यह पढ़ सके:
वैकल्पिक रूप से, अप्रकाशित तर्कशास्त्र में, हम आवश्यकता कर सकते हैं <math>B \in A</math> जब भी भ्रामक है <math>A</math> उर-तत्व है। इस मामले में, विस्तार की सामान्य स्वयंसिद्धता का अर्थ यह होगा कि प्रत्येक यूआर -अवयव [[खाली सेट|खाली समुच्चय]] के बराबर है। इस परिणाम से बचने के लिए, हम केवल गैर-खाली समुच्चय पर लागू करने के लिए विस्तार के स्वयंसिद्ध को संशोधित कर सकते हैं, जिससे कि यह पढ़ सके:


:<math>\forall A \, \forall B \, ( \exists X \, (X \in A) \implies [ \forall Y \, (Y \in A \iff Y \in B) \implies A = B ] \, ).</math>
:<math>\forall A \, \forall B \, ( \exists X \, (X \in A) \implies [ \forall Y \, (Y \in A \iff Y \in B) \implies A = B ] \, ).</math>
Line 33: Line 33:
: किसी भी समुच्चय ''A'' और किसी भी समुच्चय ''B'' को देखते हुए, यदि ''A'' गैर-खाली समुच्चय है (अर्थात, यदि ''A'' का कोई सदस्य X सम्मिलित  है), तो यदि ''A'' और ''B'' के समान सदस्य हैं, तो वे बराबर हैं।
: किसी भी समुच्चय ''A'' और किसी भी समुच्चय ''B'' को देखते हुए, यदि ''A'' गैर-खाली समुच्चय है (अर्थात, यदि ''A'' का कोई सदस्य X सम्मिलित  है), तो यदि ''A'' और ''B'' के समान सदस्य हैं, तो वे बराबर हैं।


अनटाइप्ड लॉजिक में अन्य विकल्प परिभाषित करना है <math>A</math> स्वयं का एकमात्र तत्व <math>A</math> है जब भी <math>A</math> उर-तत्व है। जबकि यह दृष्टिकोण विस्तार के स्वयंसिद्ध को संरक्षित करने के लिए काम कर सकता है, नियमितता के स्वयंसिद्ध को इसके बजाय समायोजन की आवश्यकता होगी।
अनटाइप्ड लॉजिक में अन्य विकल्प परिभाषित करना है <math>A</math> स्वयं का एकमात्र तत्व <math>A</math> है जब भी <math>A</math> यूआर -अवयव है। जबकि यह दृष्टिकोण विस्तार के स्वयंसिद्ध को संरक्षित करने के लिए काम कर सकता है, नियमितता के स्वयंसिद्ध को इसके बजाय समायोजन की आवश्यकता होगी।


== यह भी देखें ==
== यह भी देखें ==
Line 43: Line 43:
*[[Kenneth Kunen|Kunen, Kenneth]], 1980. ''Set Theory: An Introduction to Independence Proofs''. Elsevier.  {{ISBN|0-444-86839-9}}.
*[[Kenneth Kunen|Kunen, Kenneth]], 1980. ''Set Theory: An Introduction to Independence Proofs''. Elsevier.  {{ISBN|0-444-86839-9}}.


{{Set theory}}
[[Category: समुच्चय सिद्धांत के अभिगृहीत]] [[Category: मूत्रालय]]
[[Category: Machine Translated Page]]
[[Category:Created On 13/02/2023]]
[[Category:Created On 13/02/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:मूत्रालय]]
[[Category:समुच्चय सिद्धांत के अभिगृहीत]]

Latest revision as of 12:06, 28 August 2023

स्वयंसिद्ध समुच्चय सिद्धांत और तर्कशास्त्र, गणित और कंप्यूटर विज्ञान की शाखाओं में इसका उपयोग करते हैं, विस्तार का स्वयंसिद्ध या विस्तार का स्वयंसिद्ध ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के स्वयंसिद्धों में से एक है। यह कहता है कि समान अवयवों वाले समुच्चय समान समुच्चय होते हैं।

औपचारिक वक्तव्य

ज़र्मेलो-फ्रेंकेल स्वयंसिद्धों की औपचारिक भाषा में, स्वयंसिद्ध पढ़ा जाता है:

या शब्दों में:

किसी भी समुच्चय (गणित) A और किसी भी समुच्चय B को देखते हुए, यदि प्रत्येक समुच्चय X के लिए X, A का सदस्य है और केवल यदि X, B का सदस्य है, तो A, B के बराबर है।
(यह वास्तव में जरूरी नहीं है कि X यहां एक समुच्चय हो - लेकिन जेडएफ में, सबकुछ है। इसका उल्लंघन होने पर नीचे उर-तत्व देखें।)

संभाषण, समानता (गणित) की प्रतिस्थापन गुण से इस स्वयंसिद्ध का अनुसरण होता है।

व्याख्या

इस स्वयंसिद्ध को समझने के लिए, ध्यान दें कि उपरोक्त प्रतीकात्मक कथन में कोष्ठकों में खंड केवल यह बताता है कि A और B में बिल्कुल समान सदस्य हैं। इस प्रकार, स्वयंसिद्ध वास्तव में यह कह रहा है कि दो समुच्चय समान हैं यदि और केवल यदि उनके ठीक समान सदस्य हैं। इसका सार यह है:

समुच्चय अपने सदस्यों द्वारा विशिष्ट रूप से निर्धारित किया जाता है।

विस्तार के स्वयंसिद्ध का उपयोग प्रपत्र के किसी भी कथन के साथ किया जा सकता है , जहां P कोई एकल निर्धारक (गणित) है जिसमें A का उल्लेख नहीं है, अद्वितीय समुच्चय को परिभाषित करने के लिए जिसके सदस्य सटीक रूप से निर्धारक को आपूर्ति करने वाले समुच्चय हैं । हम इसके लिए नया प्रतीक पेश कर सकते हैं ; यह इस तरह से है कि सामान्य गणित में परिभाषाएँ अंततः तब काम करती हैं जब उनके बयानों को विशुद्ध रूप से समुच्चय-सैद्धांतिक शर्तों तक सीमित कर दिया जाता है।

गणित की समुच्चय-सैद्धांतिक नींव में व्यापकता का सिद्धांत सामान्यतः विवादास्पद नहीं है, और यह या समकक्ष समुच्चय सिद्धांत के किसी भी वैकल्पिक स्वयंसिद्धता के बारे में प्रकट होता है। हालाँकि, इसमें कुछ उद्देश्यों के लिए संशोधन की आवश्यकता हो सकती है, जैसा कि नीचे दिया गया है।

समानता के बिना निर्धारक तर्कशास्त्र में

ऊपर दिया गया स्वयंसिद्ध मानता है कि निर्धारक तर्कशास्त्र में समानता आदिम प्रतीक है। स्वयंसिद्ध समुच्चय सिद्धांत के कुछ उपचार इसके बिना करना पसंद करते हैं, और इसके बजाय उपरोक्त कथन को स्वयंसिद्ध नहीं बल्कि समानता की परिभाषा के रूप में मानते हैं। फिर इस परिभाषित प्रतीक के बारे में स्वयंसिद्धों के रूप में निर्धारक तर्कशास्त्र से समानता के सामान्य स्वयंसिद्धों को सम्मिलित करना आवश्यक है। समानता के अधिकांश स्वयंसिद्ध अभी भी परिभाषा से अनुसरण करते हैं; शेष एक प्रतिस्थापन गुण है,

और यह यह स्वयंसिद्ध बन जाता है जिसे इस संदर्भ में विस्तार की स्वयंसिद्धता के रूप में जाना जाता है।

यूआर -अवयव के साथ समुच्चय सिद्धांत में

उर-तत्व समुच्चय का सदस्य है जो स्वयं एक समुच्चय नहीं है। ज़र्मेलो-फ्रेंकेल स्वयंसिद्धों में, कोई उर-तत्व नहीं हैं, लेकिन वे समुच्चय सिद्धांत के कुछ वैकल्पिक स्वयंसिद्धों में सम्मिलित हैं। यूआर -अवयव को समुच्चय से भिन्न तार्किक प्रकार के रूप में माना जा सकता है; इस मामले में, यदि कोई मतलब नहीं है एक उर-तत्व है, इसलिए विस्तार का सिद्धांत केवल समुच्चय पर ही लागू होता है।

वैकल्पिक रूप से, अप्रकाशित तर्कशास्त्र में, हम आवश्यकता कर सकते हैं जब भी भ्रामक है उर-तत्व है। इस मामले में, विस्तार की सामान्य स्वयंसिद्धता का अर्थ यह होगा कि प्रत्येक यूआर -अवयव खाली समुच्चय के बराबर है। इस परिणाम से बचने के लिए, हम केवल गैर-खाली समुच्चय पर लागू करने के लिए विस्तार के स्वयंसिद्ध को संशोधित कर सकते हैं, जिससे कि यह पढ़ सके:

वह है:

किसी भी समुच्चय A और किसी भी समुच्चय B को देखते हुए, यदि A गैर-खाली समुच्चय है (अर्थात, यदि A का कोई सदस्य X सम्मिलित है), तो यदि A और B के समान सदस्य हैं, तो वे बराबर हैं।

अनटाइप्ड लॉजिक में अन्य विकल्प परिभाषित करना है स्वयं का एकमात्र तत्व है जब भी यूआर -अवयव है। जबकि यह दृष्टिकोण विस्तार के स्वयंसिद्ध को संरक्षित करने के लिए काम कर सकता है, नियमितता के स्वयंसिद्ध को इसके बजाय समायोजन की आवश्यकता होगी।

यह भी देखें

  • सामान्य अवलोकन के लिए व्यापकता।

संदर्भ

  • Paul Halmos, Naive set theory. Princeton, NJ: D. Van Nostrand Company, 1960. Reprinted by Springer-Verlag, New York, 1974. ISBN 0-387-90092-6 (Springer-Verlag edition).
  • Jech, Thomas, 2003. Set Theory: The Third Millennium Edition, Revised and Expanded. Springer. ISBN 3-540-44085-2.
  • Kunen, Kenneth, 1980. Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9.