बहु-मूल्यवान तर्क: Difference between revisions
No edit summary |
(→उदाहरण) |
||
(9 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Propositional calculus in which there are more than two truth values}} | {{Short description|Propositional calculus in which there are more than two truth values}} | ||
बहु-मूल्यवान तर्क (बहु- या बहु-मूल्यवान तर्क भी) | '''बहु-मूल्यवान तर्क''' (बहु- या बहु-मूल्यवान तर्क भी) प्रस्तावपरक कलन को संदर्भित करता है जिसमें दो से अधिक ट्रू मान होते हैं। परंपरागत रूप से, अरस्तू की तार्किक कलन में, किसी भी तर्कवाक्य के लिए केवल दो संभावित मान (अर्थात, ट्रू और अट्रू) थे। मौलिक द्वि-मूल्यवान तर्क को 2 से अधिक n के लिए n-मूल्यवान तर्क तक बढ़ाया जा सकता है। साहित्य में सबसे लोकप्रिय हैं तीन-मूल्यवान तर्क (उदाहरण के लिए, लुकासिविक्ज़ और क्लेन, जो "ट्रू", "गलत", और "मानों को अज्ञात स्वीकार करते हैं), चार-मूल्यवान तर्क, नौ-मूल्यवान तर्क, परिमित-मूल्यवान तर्क (परिमित-कई मूल्यवान) ) तीन से अधिक मानों के साथ, और अनंत-मूल्यवान तर्क (अनंत-अनेक-मूल्यवान), जैसे [[फजी लॉजिक]] और [[संभाव्य तर्क]] हैं। | ||
== इतिहास == | == इतिहास == | ||
यह <i>गलत</i> है कि पहले ज्ञात | यह <i>गलत</i> है कि पहले ज्ञात मौलिक तर्कशास्त्री, जिन्होंने बहिष्कृत मध्य के नियम को पूरी तरह से स्वीकार नहीं किया था, वह अरस्तू थे (जिन्हें, विडंबना यह है कि सामान्यतः पहले मौलिक तर्कशास्त्री और [दो- मूल्यवान] तर्कशास्त्र के पिता" भी माना जाता है<ref>Hurley, Patrick. ''A Concise Introduction to Logic'', 9th edition. (2006).</ref>)। वास्तव में, अरस्तू ने बहिष्कृत मध्य के नियम की सार्वभौमिकता का विरोध <i>नहीं</i> किया था, किन्तु द्विसंयोजक सिद्धांत की सार्वभौमिकता: उन्होंने स्वीकार किया कि यह सिद्धांत सभी भविष्य की घटनाओं पर प्रायुक्त नहीं होता (डी इंटरप्रिटेशन, अध्याय IX) ),<ref>Jules Vuillemin, <i>Necessity or Contingency</i>, CSLI Lecture Notes, N°56, Stanford, 1996, pp. 133-167</ref> किन्तु उन्होंने इस पृथक टिप्पणी की व्याख्या करने के लिए बहु-मूल्यवान तर्क की व्यवस्था नहीं बनाई। 20वीं सदी के आने तक, बाद के तर्कशास्त्रियों ने [[अरिस्टोटेलियन तर्क]]शास्त्र का अनुसरण किया, जिसमें बहिष्कृत मध्य का नियम सम्मिलित है या मान लिया गया है। | ||
20वीं शताब्दी बहु-मूल्यवान तर्कशास्त्र के विचार को वापस लेकर आई। पोलिश तर्कशास्त्री और दार्शनिक जन लुकासिविक्ज़ ने 1920 में अरस्तू की भविष्य की आकस्मिकताओं की समस्या से निपटने के लिए, तीसरे मूल्य का उपयोग करते हुए, बहु-मूल्यवान तर्क की प्रणालियाँ बनाना | 20वीं शताब्दी बहु-मूल्यवान तर्कशास्त्र के विचार को वापस लेकर आई। पोलिश तर्कशास्त्री और दार्शनिक जन लुकासिविक्ज़ ने 1920 में अरस्तू की भविष्य की आकस्मिकताओं की समस्या से निपटने के लिए, तीसरे मूल्य का उपयोग करते हुए, बहु-मूल्यवान तर्क की प्रणालियाँ बनाना प्रारंभ किया। इस बीच, अमेरिकी गणितज्ञ, एमिल पोस्ट|एमिल एल. पोस्ट (1921) ने भी n ≥ 2 के साथ अतिरिक्त ट्रू डिग्री के सूत्रीकरण की प्रारंभ की, जहाँ n ट्रू मान हैं। बाद में, जन लुकासिविक्ज़ और [[Alfred Tarski|अल्फ्रेड टार्स्की]] ने मिलकर n ≥ 2 ट्रू मानों पर तर्क तैयार किया। 1932 में, [[Hans Reichenbach|हंस रीचेनबैक]] ने कई ट्रू मानों का तर्क तैयार किया जहाँ n→∞। 1932 में कर्ट गोडेल ने दिखाया कि [[अंतर्ज्ञानवादी तर्क]] बहुत-बहुत मूल्यवान तर्क नहीं है, और गोडेल तर्कशास्त्र की प्रणाली को परिभाषित किया जो [[शास्त्रीय तर्क|मौलिक तर्क]] और अंतर्ज्ञानवादी तर्क के बीच मध्यवर्ती है; ऐसे लॉजिक्स को [[मध्यवर्ती तर्क]] के रूप में जाना जाता है। | ||
== उदाहरण == | == उदाहरण == | ||
{{main| | {{main|तीन-मूल्यवान तर्क|चार-मूल्यवान तर्क|नौ-मूल्यवान तर्क}} | ||
=== क्लीन ( | === क्लीन (शक्तिशाली) {{math|''K''<sub>3</sub>}} और प्रीस्ट तर्क {{math|''P''<sub>3</sub>}} === | ||
[[स्टीफन कोल क्लेन]] का ( | [[स्टीफन कोल क्लेन]] का (शक्तिशाली) अनिश्चितता का तर्क {{math|''K''<sub>3</sub>}} (कभी-कभी <math>K_3^S</math>) और [[ग्राहम पुजारी|ग्राहम प्रीस्ट]] का विरोधाभास का तर्क तीसरा अपरिभाषित या अनिश्चित ट्रू मूल्य जोड़ता है {{math|I}}. ट्रू निषेध (¬) के लिए कार्य करता है, [[तार्किक संयोजन]] (∧), संयोजन (∨), [[सामग्री सशर्त]] ({{underset|''K''|→}}), और [[द्विशर्त]] ({{underset|''K''|↔}}) द्वारा दिया गया है:<ref>{{harv|Gottwald|2005|p=19}}</ref> | ||
{| cellpadding="0" | {| cellpadding="0" | ||
|- valign="bottom" | |- valign="bottom" | ||
Line 109: | Line 109: | ||
|} | |} | ||
दो लॉजिक्स के बीच का अंतर निहित है कि कैसे [[टॉटोलॉजी (तर्क)]] को परिभाषित किया जाता है। | दो लॉजिक्स के बीच का अंतर निहित है कि कैसे [[टॉटोलॉजी (तर्क)]] को परिभाषित किया जाता है। {{math|''K''<sub>3</sub>}} में केवल {{math|T}} निर्दिष्ट ट्रू मान है, चूँकि में {{math|''P''<sub>3</sub>}} दोनों {{math|T}} और {{math|I}} दोनों हैं (तार्किक सूत्र को पुनरुक्ति माना जाता है यदि यह निर्दिष्ट ट्रू मान का मूल्यांकन करता है)। क्लेन के तर्क में {{math|I}} "अल्पनिर्धारित" होने के रूप में व्याख्या की जा सकती है, न तो ट्रू और न ही गलत, चूँकि प्रीस्ट के तर्क में {{math|I}} "अतिनिर्धारित" होने के रूप में व्याख्या की जा सकती है, जो ट्रू और अट्रू दोनों हैं। {{math|''K''<sub>3</sub>}} में कोई पुनरुक्ति नहीं है, चूँकि {{math|''P''<sub>3</sub>}} में मौलिक द्वि-मूल्यवान तर्क के समान ही पुनरुक्ति है।।<ref>{{cite book | ||
|last= Humberstone | |last= Humberstone | ||
|first= Lloyd | |first= Lloyd | ||
Line 125: | Line 125: | ||
=== बोचवर का आंतरिक तीन-मूल्यवान तर्क === | === बोचवर का आंतरिक तीन-मूल्यवान तर्क === | ||
अन्य तर्क दिमित्री बोचवार का आंतरिक तीन-मूल्यवान तर्क | अन्य तर्क दिमित्री बोचवार का आंतरिक तीन-मूल्यवान तर्क <math>B_3^I</math> है, जिसे क्लेन का कमजोर तीन-मूल्यवान तर्क भी कहा जाता है। निषेध और द्विप्रतिबंध को छोड़कर, इसकी ट्रू तालिकाएँ उपरोक्त सभी से भिन्न हैं।<ref name="Bergmann 2008 80">{{harv|Bergmann|2008|p=80}}</ref> | ||
{| | {| | ||
Line 184: | Line 184: | ||
|} | |} | ||
बोचवार के आंतरिक तर्क में मध्यवर्ती | बोचवार के आंतरिक तर्क में मध्यवर्ती ट्रू मान को संक्रामक के रूप में वर्णित किया जा सकता है क्योंकि यह किसी अन्य चर के मान की परवाह किए बिना सूत्र में प्रसारित होता है।<ref name="Bergmann 2008 80"/> | ||
=== बेलनाप तर्क ({{math|''B''<sub>4</sub>}}) === | === बेलनाप तर्क ({{math|''B''<sub>4</sub>}}) === | ||
न्युएल बेलनाप का तर्क {{math|''B''<sub>4</sub>}} {{math|''K''<sub>3</sub>}} और {{math|''P''<sub>3</sub>}} को जोड़ती है. अतिनिर्धारित ट्रू मान को यहाँ B और अधोनिर्धारित ट्रू मान को N के रूप में दर्शाया गया है। | |||
{| | {| | ||
Line 257: | Line 257: | ||
|} | |} | ||
=== गोडेल लॉजिक्स | === गोडेल लॉजिक्स G<sub>k</sub>और G<sub>∞</sub> === | ||
1932 में कर्ट गोडेल | 1932 में कर्ट गोडेल<ref>{{cite journal | ||
| last = Gödel | first = Kurt | | last = Gödel | first = Kurt | ||
| title = Zum intuitionistischen Aussagenkalkül | | title = Zum intuitionistischen Aussagenkalkül | ||
| journal = Anzeiger der Akademie der Wissenschaften in Wien | | journal = Anzeiger der Akademie der Wissenschaften in Wien | ||
| date = 1932 | issue = 69 | pages = 65f | | date = 1932 | issue = 69 | pages = 65f | ||
}}</ref> परिवार <math>G_k</math> | }}</ref> ने कई-मूल्यवान लॉजिक्स के एक परिवार परिवार <math>G_k</math> को परिभाषित किया, जिसमें बहुत से ट्रू मान <math>0, \tfrac{1}{k - 1}, \tfrac{2}{k - 1}, \ldots, \tfrac{k - 2}{k - 1}, 1</math> है, उदाहरण के लिए <math>G_3</math> ट्रू मूल्य <math>0, \tfrac{1}{2}, 1</math> और <math>G_4</math> है <math>0, \tfrac{1}{3}, \tfrac{2}{3}, 1</math> हैं. इसी प्रकार उन्होंने तर्क को असीम रूप से कई ट्रू मूल्यों <math>G_\infty</math> के साथ परिभाषित किया, जिसमें ट्रू मान <math>[0, 1]</math> अंतराल में सभी [[वास्तविक संख्या]]एँ हैं. इन लॉजिक्स में निर्दिष्ट ट्रू मान 1 है। | ||
संयोजन <math>\wedge</math> और वियोग <math>\vee</math> क्रमशः [[न्यूनतम]] और [[अधिकतम]] ऑपरेंड के रूप में परिभाषित किया गया है: | संयोजन <math>\wedge</math> और वियोग <math>\vee</math> क्रमशः [[न्यूनतम]] और [[अधिकतम]] ऑपरेंड के रूप में परिभाषित किया गया है: | ||
Line 284: | Line 284: | ||
\end{cases} | \end{cases} | ||
\end{align}</math> | \end{align}</math> | ||
गोडेल लॉजिक्स पूरी तरह से स्वयंसिद्ध हैं, | गोडेल लॉजिक्स पूरी तरह से स्वयंसिद्ध हैं, अर्थात् यह कहना संभव है कि तार्किक कलन को परिभाषित करना संभव है जिसमें सभी पुनरुत्पादन सिद्ध होते हैं। उपरोक्त निहितार्थ इस तथ्य से परिभाषित अद्वितीय हेयटिंग निहितार्थ है कि सुप्रीमा और मिनिमा ऑपरेशन अनंत वितरण नियम के साथ पूर्ण जाली बनाते हैं, जो जाली पर अद्वितीय पूर्ण हेटिंग बीजगणित संरचना को परिभाषित करता है। | ||
=== लुकासिविक्ज़ लॉजिक्स {{mvar|L<sub>v</sub>}} और {{math|''L''<sub>∞</sub>}}=== | === लुकासिविक्ज़ लॉजिक्स {{mvar|L<sub>v</sub>}} और {{math|''L''<sub>∞</sub>}}=== | ||
Line 294: | Line 294: | ||
u \mathrel{\xrightarrow[L]{}} v &:= \min\{1, 1 - u + v\} | u \mathrel{\xrightarrow[L]{}} v &:= \min\{1, 1 - u + v\} | ||
\end{align}</math> | \end{align}</math> | ||
सबसे पहले | सबसे पहले लुकासिविक्ज़ ने 1920 में अपने तीन-मूल्यवान तर्क <math>L_3</math> के लिए इन परिभाषाओं का उपयोग किया, ट्रू मूल्यों के साथ <math>0, \frac{1}{2}, 1</math>. 1922 में उन्होंने अपरिमित रूप से अनेक मानों वाला तर्क <math>L_\infty</math> विकसित किया, जिसमें ट्रू मान <math>[0, 1]</math> अंतराल में वास्तविक संख्याओं को फैलाते हैं. दोनों स्थितियों में नामित ट्रू मान 1 था।<ref>{{cite book | ||
|last1= Kreiser |first1= Lothar | |last1= Kreiser |first1= Lothar | ||
|last2 = Gottwald |first2 = Siegfried | |last2 = Gottwald |first2 = Siegfried | ||
Line 305: | Line 305: | ||
|isbn= 978-3-05-000274-3 | |isbn= 978-3-05-000274-3 | ||
}}</ref> | }}</ref> | ||
गोडेल लॉजिक्स के लिए उसी | |||
गोडेल लॉजिक्स के लिए उसी प्रकार परिभाषित ट्रू मूल्यों को अपनाने से <math>0, \tfrac{1}{v-1}, \tfrac{2}{v-1}, \ldots, \tfrac {v-2} {v-1}, 1</math>, लॉजिक्स <math>L_v</math> का अंतिम-मूल्यवान परिवार बनाना संभव है, उपर्युक्त <math>L_\infty</math> और तर्क <math>L_{\aleph_0}</math>, जिसमें अंतराल में परिमेय संख्याओं द्वारा ट्रू मान <math>[0,1]</math> दिए जाते हैं. में टॉटोलॉजी का समुच्चय <math>L_\infty</math> और <math>L_{\aleph_0}</math> समान है। | |||
=== उत्पाद तर्क {{math|Π}} === | === उत्पाद तर्क {{math|Π}} === | ||
उत्पाद तर्क में हमारे पास अंतराल में | उत्पाद तर्क में हमारे पास अंतराल में ट्रू मूल्य हैं <math>[0,1]</math>, संयोजन <math>\odot</math> और निहितार्थ <math>\xrightarrow [\Pi]{}</math>, इस प्रकार परिभाषित किया गया है<ref>Hajek, Petr: ''Fuzzy Logic''. In: Edward N. Zalta: ''The Stanford Encyclopedia of Philosophy'', Spring 2009. ([http://plato.stanford.edu/archives/spr2009/entries/logic-fuzzy/])</ref> | ||
: <math>\begin{align} | : <math>\begin{align} | ||
u \odot v &:= uv \\ | u \odot v &:= uv \\ | ||
Line 318: | Line 319: | ||
\end{cases} | \end{cases} | ||
\end{align}</math> | \end{align}</math> | ||
इसके अतिरिक्त | इसके अतिरिक्त ऋणात्मक नामित मूल्य है <math>\overline{0}</math> जो अट्रू की अवधारणा को दर्शाता है। इस मूल्य के माध्यम से निषेध <math>\underset{\Pi}{\neg}</math> को परिभाषित करना संभव है और अतिरिक्त संयोजन <math>\underset{\Pi}{\wedge}</math> निम्नलिखित नुसार: | ||
: <math>\begin{align} | : <math>\begin{align} | ||
Line 328: | Line 329: | ||
और तब <math>u \mathbin{\underset{\Pi}{\wedge}} v = \min\{u, v\}</math>. | और तब <math>u \mathbin{\underset{\Pi}{\wedge}} v = \min\{u, v\}</math>. | ||
=== पोस्ट लॉजिक्स | === पोस्ट लॉजिक्स P<sub>m</sub>=== | ||
1921 में [[एमिल लियोन पोस्ट]] ने लॉजिक्स के परिवार को परिभाषित किया <math>P_m</math> के साथ (के रूप में <math>L_v</math> और <math>G_k</math>) | 1921 में [[एमिल लियोन पोस्ट]] ने लॉजिक्स के परिवार को परिभाषित किया <math>P_m</math> के साथ (के रूप में <math>L_v</math> और <math>G_k</math>) ट्रू मान <math>0, \tfrac 1 {m-1}, \tfrac 2 {m-1}, \ldots, \tfrac {m-2} {m-1}, 1</math>. नकार <math>\underset{P}{\neg}</math> और संयोजन <math>\underset{P}{\wedge}</math> और विच्छेदन <math>\underset{P}{\vee}</math> निम्नानुसार परिभाषित किया गया है: | ||
: <math>\begin{align} | : <math>\begin{align} | ||
Line 344: | Line 345: | ||
=== रोज लॉजिक्स === | === रोज लॉजिक्स === | ||
1951 में, एलन रोज़ ने उन प्रणालियों के लिए लॉजिक्स के और परिवार को परिभाषित किया, जिनके | 1951 में, एलन रोज़ ने उन प्रणालियों के लिए लॉजिक्स के और परिवार को परिभाषित किया, जिनके ट्रू-मूल्य [[जाली (आदेश सिद्धांत)]] का निर्माण करते हैं।<ref>{{cite journal|title=Systems of logic whose truth-values form lattices|journal=Mathematische Annalen|volume=123|date=December 1951|pages=152–165|doi=10.1007/BF02054946|last1=Rose|first1=Alan|s2cid=119735870}}</ref> | ||
== | == मौलिक [[तर्क]] से संबंध == | ||
लॉजिक्स | लॉजिक्स सामान्यतः ऐसे प्रणाली होते हैं जिनका उद्देश्य परिवर्तनों के समय प्रस्तावों की कुछ सिमेंटिक गुण को संरक्षित करने के लिए नियमों को संहिताबद्ध करना होता है। मौलिक तर्क में, यह गुण ट्रू है। वैध तर्क में, व्युत्पन्न प्रस्ताव की सच्चाई की गारंटी दी जाती है यदि परिसर संयुक्त रूप से ट्रू हैं, क्योंकि वैध चरणों का प्रयोग गुण को संरक्षित करता है। चूँकि, वह गुण ट्रू का होना आवश्यक नहीं है; किन्तु यह कोई अन्य अवधारणा हो सकती है। | ||
बहु-मूल्यवान लॉजिक्स का उद्देश्य पदनाम (या नामित) की | बहु-मूल्यवान लॉजिक्स का उद्देश्य पदनाम (या नामित) की गुण को संरक्षित करना है। चूंकि दो से अधिक ट्रू मूल्य हैं, अनुमान के नियमों का उद्देश्य ट्रू के अनुरूप (प्रासंगिक [[अर्थ]] में) से अधिक को संरक्षित करना हो सकता है। उदाहरण के लिए, तीन-मूल्य वाले तर्क में, कभी-कभी दो सबसे बड़े ट्रू-मान (जब उन्हें सकारात्मक पूर्णांक के रूप में दर्शाया जाता है) निर्दिष्ट किए जाते हैं और अनुमान के नियम इन मूल्यों को संरक्षित करते हैं। संक्षेप में, वैध तर्क ऐसा होगा कि संयुक्त रूप से लिए गए परिसर का मूल्य हमेशा निष्कर्ष से कम या उसके बराबर होगा। | ||
उदाहरण के लिए, संरक्षित | उदाहरण के लिए, संरक्षित गुण औचित्य हो सकती है, अंतर्ज्ञानवादी तर्क की मूलभूत अवधारणा। इस प्रकार, प्रस्ताव सही या गलत नहीं है; इसके अतिरिक्त, यह उचित या त्रुटिपूर्ण है। इस स्थितियों में, औचित्य और ट्रू के बीच महत्वपूर्ण अंतर यह है कि बहिष्कृत मध्य का नियम पकड़ में नहीं आता है: प्रस्ताव जो त्रुटिपूर्ण नहीं है वह आवश्यक रूप से उचित नहीं है; इसके अतिरिक्त, यह केवल सिद्ध नहीं है कि यह त्रुटिपूर्ण है। मुख्य अंतर संरक्षित गुण की निर्धारकता है: कोई यह सिद्ध कर सकता है कि पी न्यायोचित है, कि पी त्रुटिपूर्ण है, या या तो सिद्ध करने में असमर्थ है। वैध तर्क परिवर्तनों में औचित्य को बरकरार रखता है, इसलिए न्यायसंगत प्रस्तावों से प्राप्त प्रस्ताव अभी भी उचित है। चूँकि, मौलिक तर्क में ऐसे प्रमाण हैं जो बहिष्कृत मध्य के नियम पर निर्भर करते हैं; चूँकि वह नियम इस योजना के अनुसार प्रयोग करने योग्य नहीं है, ऐसे प्रस्ताव हैं जिन्हें इस प्रकार से सिद्ध नहीं किया जा सकता है। | ||
=== सुज़्को की थीसिस === | === सुज़्को की थीसिस === | ||
{{see also| | {{see also|प्रतिद्वंद्विता का सिद्धांत # सुज़्को की थीसिस}} | ||
== बहु-मूल्यवान लॉजिक्स की [[कार्यात्मक पूर्णता|फलनात्मक पूर्णता]] == | |||
फलनात्मक पूर्णता शब्द है जिसका प्रयोग परिमित लॉजिक्स और बीजगणित की विशेष गुण का वर्णन करने के लिए किया जाता है। संयोजकों के तर्क समुच्चय को क्रियात्मक रूप से पूर्ण या पर्याप्त कहा जाता है यदि और केवल तभी जब संयोजकों के समुच्चय का उपयोग प्रत्येक संभव ट्रू फलन के अनुरूप सूत्र बनाने के लिए किया जा सकता है।<ref>{{cite book|last1=Smith|first1=Nicholas|title=Logic: The Laws of Truth|date=2012|publisher=Princeton University Press|pages=124}}</ref> पर्याप्त बीजगणित वह है जिसमें चर के प्रत्येक परिमित मानचित्रण को उसके संचालन की कुछ संरचना द्वारा व्यक्त किया जा सकता है।<ref name=":02">{{cite book|last1=Malinowski|first1=Grzegorz|title=Many-Valued Logics|date=1993|publisher=Clarendon Press|pages=26–27}}</ref> | |||
क्लासिकल लॉजिक: CL = ({0,1}, ¬, →, ∨, ∧, ↔) फलनात्मक रूप से पूर्ण है, चूँकि कोई लुकासिविक्ज़ लॉजिक या असीम रूप से कई-मूल्यवान लॉजिक में यह गुण नहीं है।<ref name=":02" /><ref>{{Cite book|last=Church|first=Alonzo|url=https://books.google.com/books?id=JDLQOMKbdScC&pg=PA162|title=Introduction to Mathematical Logic|date=1996|publisher=Princeton University Press|isbn=978-0-691-02906-1|language=en}}</ref> | |||
हम L<sub>n</sub> ({1, 2, ..., n} ƒ<sub>1</sub>, ..., ƒ<sub>m</sub>) के रूप में बहुत से मूल्यवान तर्क को परिभाषित कर सकते हैं जहां n ≥ 2 दी गई प्राकृत संख्या है। एमिल लियोन पोस्ट (1921) सिद्ध करता है कि एक तर्क मानते हुए किसी भी m<sup>वी</sup> ऑर्डर मॉडल के एक फ़ंक्शन का उत्पादन करने में सक्षम है, एक पर्याप्त तर्क L<sub>n</sub> में संयोजकों का कुछ संगत संयोजन होता है जो ऑर्डर m+1 के मॉडल का उत्पादन कर सकता है।<ref>{{Cite journal|last=Post|first=Emil L.|date=1921|title=Introduction to a General Theory of Elementary Propositions|url=https://www.jstor.org/stable/2370324|journal=American Journal of Mathematics|volume=43|issue=3|pages=163–185|doi=10.2307/2370324|jstor=2370324|hdl=2027/uiuo.ark:/13960/t9j450f7q|issn=0002-9327|hdl-access=free}}</ref> | |||
== अनुप्रयोग == | == अनुप्रयोग == | ||
बहु-मूल्यवान तर्क के ज्ञात अनुप्रयोगों को मोटे तौर पर दो समूहों में वर्गीकृत किया जा सकता है।<ref>Dubrova, Elena (2002). [http://dl.acm.org/citation.cfm?id=566849 Multiple-Valued Logic Synthesis and Optimization], in Hassoun S. and Sasao T., editors, ''Logic Synthesis and Verification'', Kluwer Academic Publishers, pp. 89-114</ref> बाइनरी समस्याओं को अधिक कुशलता से | बहु-मूल्यवान तर्क के ज्ञात अनुप्रयोगों को मोटे तौर पर दो समूहों में वर्गीकृत किया जा सकता है।<ref>Dubrova, Elena (2002). [http://dl.acm.org/citation.cfm?id=566849 Multiple-Valued Logic Synthesis and Optimization], in Hassoun S. and Sasao T., editors, ''Logic Synthesis and Verification'', Kluwer Academic Publishers, pp. 89-114</ref> बाइनरी समस्याओं को अधिक कुशलता से समाधान करने के लिए पहला समूह कई-मूल्यवान तर्क का उपयोग करता है। उदाहरण के लिए, बहु-आउटपुट बूलियन फ़ंक्शन का प्रतिनिधित्व करने के लिए प्रसिद्ध दृष्टिकोण इसके आउटपुट भाग को एकल-मूल्यवान चर के रूप में व्यवहार करना और इसे एकल-आउटपुट विशेषता फ़ंक्शन (विशेष रूप से, संकेतक फ़ंक्शन) में परिवर्तित करना है। बहु-मूल्यवान लॉजिक के अन्य अनुप्रयोगों में इनपुट डिकोडर्स के साथ [[प्रोग्राम करने योग्य तर्क सरणी]] (पीएलए) का डिज़ाइन, [[परिमित अवस्था मशीन|परिमित अवस्था मशीनों]] का अनुकूलन, परीक्षण और ट्रूापन सम्मिलित हैं। | ||
दूसरा समूह इलेक्ट्रॉनिक सर्किट के डिजाइन को लक्षित करता है जो संकेतों के दो से अधिक असतत स्तरों को नियोजित करता है, जैसे कि कई-मूल्यवान यादें, अंकगणितीय सर्किट और [[क्षेत्र में प्रोग्राम की जा सकने वाली द्वार श्रंखला]] ( | दूसरा समूह इलेक्ट्रॉनिक सर्किट के डिजाइन को लक्षित करता है जो संकेतों के दो से अधिक असतत स्तरों को नियोजित करता है, जैसे कि कई-मूल्यवान यादें, अंकगणितीय सर्किट और [[क्षेत्र में प्रोग्राम की जा सकने वाली द्वार श्रंखला]] (एफपीजीए)। बहु-मूल्यवान परिपथों में मानक बाइनरी परिपथों की तुलना में कई सैद्धांतिक लाभ हैं। उदाहरण के लिए, यदि सर्किट में सिग्नल केवल दो के अतिरिक्त चार या अधिक स्तर ग्रहण करते हैं, तो इंटरकनेक्ट ऑन और ऑफ चिप को कम किया जा सकता है। मेमोरी डिज़ाइन में, प्रति मेमोरी सेल में बिट सूचना के अतिरिक्त दो स्टोर करने से उसी डाई (एकीकृत सर्किट) आकार में मेमोरी का घनत्व दोगुना हो जाता है। अंकगणित सर्किट का उपयोग करने वाले अनुप्रयोग अधिकांश बाइनरी नंबर प्रणाली के विकल्प का उपयोग करने से लाभान्वित होते हैं। उदाहरण के लिए, [[अवशेष संख्या प्रणाली]] और [[निरर्थक बाइनरी प्रतिनिधित्व]]<ref name="Meher_2009">{{cite journal |first1=Pramod Kumar |last1=Meher |first2=Javier |last2=Valls |first3=Tso-Bing |last3=Juang | first4=K. |last4=Sridharan |first5=Koushik |last5=Maharatna |title=CORDIC के 50 वर्ष: एल्गोरिथम, आर्किटेक्चर और अनुप्रयोग|journal=IEEE Transactions on Circuits & Systems I: Regular Papers |volume=56 |issue=9 |pages=1893–1907 |publication-date=2009-09-09 |date=2008-08-22<!-- revised November 26, 2008-11-26, 2009-04-10, first published: 2009-06-19, current version first published: 2009-09-02 --> |url=http://core.ac.uk/download/files/34/1509903.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://core.ac.uk/download/files/34/1509903.pdf |archive-date=2022-10-09 |url-status=live |access-date=2016-01-03|doi=10.1109/TCSI.2009.2025803 |s2cid=5465045 }}<!-- ([http://www1.i2r.a-star.edu.sg/~pkmeher/papers/CORDIC-TUT-TACS-I.pdf]) --></ref> [[रिपल-कैरी योजक]] को कम या समाप्त कर सकता है जो सामान्य बाइनरी जोड़ या घटाव में सम्मिलित होते हैं, जिसके परिणामस्वरूप उच्च-गति अंकगणितीय संचालन होते हैं। इन संख्या प्रणालियों में कई मूल्यवान सर्किटों का उपयोग करके प्राकृतिक कार्यान्वयन होता है। चूंकि, इन संभावित लाभों की व्यावहारिकता अधिक सीमा तक सर्किट प्राप्तियों की उपलब्धता पर निर्भर करती है, जो वर्तमान मानक प्रौद्योगिकियों के साथ संगत या प्रतिस्पर्धी होनी चाहिए। इलेक्ट्रॉनिक सर्किट के डिजाइन में सहायता के अतिरिक्त, दोषों और दोषों के लिए सर्किट का परीक्षण करने के लिए कई-मूल्यवान तर्क का विस्तृत रूप से उपयोग किया जाता है। मूल रूप से डिजिटल सर्किट परीक्षण के लिए उपयोग किए जाने वाले सभी ज्ञात [[स्वचालित परीक्षण पैटर्न पीढ़ी]] (एटीजी) एल्गोरिदम को सिम्युलेटर की आवश्यकता होती है जो 5-मूल्यवान तर्क (0, 1, x, D, D') को समाधान कर सके। अतिरिक्त मान-x, D, और D'- (1) अज्ञात/असंरंभीकृत, (2) 1 के अतिरिक्त 0, और (3) 0 के अतिरिक्त 1 का प्रतिनिधित्व करते हैं। | ||
== अनुसंधान स्थान == | == अनुसंधान स्थान == | ||
मल्टीपल-वैल्यूड लॉजिक (ISMVL) पर [[IEEE]] अंतर्राष्ट्रीय संगोष्ठी 1970 से प्रतिवर्ष आयोजित की जाती रही है। यह ज्यादातर डिजिटल डिजाइन और | मल्टीपल-वैल्यूड लॉजिक (ISMVL) पर [[IEEE]] अंतर्राष्ट्रीय संगोष्ठी 1970 से प्रतिवर्ष आयोजित की जाती रही है। यह ज्यादातर डिजिटल डिजाइन और ट्रूापन में अनुप्रयोगों को पूरा करती है।<ref>{{cite web |url=http://www.informatik.uni-trier.de/~ley/db/conf/ismvl/index.html |title=IEEE International Symposium on Multiple-Valued Logic (ISMVL) |website=www.informatik.uni-trier.de/~ley}}</ref> [[जर्नल ऑफ़ मल्टीपल-वैल्यूड लॉजिक एंड सॉफ्ट कंप्यूटिंग]] जर्नल भी है।<ref>{{Cite web |url=http://www.oldcitypublishing.com/MVLSC/MVLSC.html |title=MVLSC home |access-date=2011-08-12 |archive-url=https://web.archive.org/web/20140315074532/http://www.oldcitypublishing.com/MVLSC/MVLSC.html |archive-date=2014-03-15 |url-status=dead }}</ref> | ||
Line 377: | Line 381: | ||
{{Portal|Philosophy|Psychology}} | {{Portal|Philosophy|Psychology}} | ||
गणितीय तर्क | गणितीय तर्क | ||
* | * ट्रू की डिग्री | ||
* फजी लॉजिक | * फजी लॉजिक | ||
* गोडेल तर्क | * गोडेल तर्क | ||
Line 391: | Line 395: | ||
दार्शनिक तर्क | दार्शनिक तर्क | ||
* मिथ्या दुविधा | * मिथ्या दुविधा | ||
* म्यू ( | * म्यू (ऋणात्मक) | ||
डिजिटल लॉजिक | डिजिटल लॉजिक | ||
* [[एमवीसीएमएल]], बहु-मूल्यवान वर्तमान-मोड तर्क | * [[एमवीसीएमएल]], बहु-मूल्यवान वर्तमान-मोड तर्क | ||
* [[IEEE 1164]] [[VHDL]] के लिए नौ-मूल्यवान मानक | * [[IEEE 1164]] [[VHDL]] के लिए नौ-मूल्यवान मानक | ||
* [[Verilog]] | * [[Verilog]] चार-मूल्यवान तर्क Verilog के लिए चार-मूल्यवान मानक | ||
* [[तीन-राज्य तर्क]] | * [[तीन-राज्य तर्क]] | ||
* [[शोर आधारित तर्क]] | * [[शोर आधारित तर्क|ध्वनि आधारित तर्क]] | ||
==संदर्भ== | ==संदर्भ== | ||
Line 440: | Line 444: | ||
* Carlos Caleiro, Walter Carnielli, Marcelo E. Coniglio and João Marcos, [http://sqig.math.ist.utl.pt/pub/caleiroc/05-cccm-dyadic.pdf Two's company: "The humbug of many logical values"] in {{cite book|editor=Jean-Yves Beziau|title=Logica Universalis: Towards a General Theory of Logic|year=2007|publisher=Springer Science & Business Media|isbn=978-3-7643-8354-1|pages=174–194|edition=2nd}} | * Carlos Caleiro, Walter Carnielli, Marcelo E. Coniglio and João Marcos, [http://sqig.math.ist.utl.pt/pub/caleiroc/05-cccm-dyadic.pdf Two's company: "The humbug of many logical values"] in {{cite book|editor=Jean-Yves Beziau|title=Logica Universalis: Towards a General Theory of Logic|year=2007|publisher=Springer Science & Business Media|isbn=978-3-7643-8354-1|pages=174–194|edition=2nd}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page|Multi-Valued Logic]] | |||
[[Category:CS1 English-language sources (en)]] | |||
[[Category:CS1 errors|Multi-Valued Logic]] | |||
[[Category:CS1 maint|Multi-Valued Logic]] | |||
[[Category:Collapse templates|Multi-Valued Logic]] | |||
[[Category:Created On 16/02/2023|Multi-Valued Logic]] | |||
[[Category: | [[Category:Lua-based templates]] | ||
[[Category:Created On 16/02/2023]] | [[Category:Machine Translated Page|Multi-Valued Logic]] | ||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Multi-Valued Logic]] | |||
[[Category:Pages with empty portal template|Multi-Valued Logic]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Portal templates with redlinked portals]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] |
Latest revision as of 13:35, 13 September 2023
बहु-मूल्यवान तर्क (बहु- या बहु-मूल्यवान तर्क भी) प्रस्तावपरक कलन को संदर्भित करता है जिसमें दो से अधिक ट्रू मान होते हैं। परंपरागत रूप से, अरस्तू की तार्किक कलन में, किसी भी तर्कवाक्य के लिए केवल दो संभावित मान (अर्थात, ट्रू और अट्रू) थे। मौलिक द्वि-मूल्यवान तर्क को 2 से अधिक n के लिए n-मूल्यवान तर्क तक बढ़ाया जा सकता है। साहित्य में सबसे लोकप्रिय हैं तीन-मूल्यवान तर्क (उदाहरण के लिए, लुकासिविक्ज़ और क्लेन, जो "ट्रू", "गलत", और "मानों को अज्ञात स्वीकार करते हैं), चार-मूल्यवान तर्क, नौ-मूल्यवान तर्क, परिमित-मूल्यवान तर्क (परिमित-कई मूल्यवान) ) तीन से अधिक मानों के साथ, और अनंत-मूल्यवान तर्क (अनंत-अनेक-मूल्यवान), जैसे फजी लॉजिक और संभाव्य तर्क हैं।
इतिहास
यह गलत है कि पहले ज्ञात मौलिक तर्कशास्त्री, जिन्होंने बहिष्कृत मध्य के नियम को पूरी तरह से स्वीकार नहीं किया था, वह अरस्तू थे (जिन्हें, विडंबना यह है कि सामान्यतः पहले मौलिक तर्कशास्त्री और [दो- मूल्यवान] तर्कशास्त्र के पिता" भी माना जाता है[1])। वास्तव में, अरस्तू ने बहिष्कृत मध्य के नियम की सार्वभौमिकता का विरोध नहीं किया था, किन्तु द्विसंयोजक सिद्धांत की सार्वभौमिकता: उन्होंने स्वीकार किया कि यह सिद्धांत सभी भविष्य की घटनाओं पर प्रायुक्त नहीं होता (डी इंटरप्रिटेशन, अध्याय IX) ),[2] किन्तु उन्होंने इस पृथक टिप्पणी की व्याख्या करने के लिए बहु-मूल्यवान तर्क की व्यवस्था नहीं बनाई। 20वीं सदी के आने तक, बाद के तर्कशास्त्रियों ने अरिस्टोटेलियन तर्कशास्त्र का अनुसरण किया, जिसमें बहिष्कृत मध्य का नियम सम्मिलित है या मान लिया गया है।
20वीं शताब्दी बहु-मूल्यवान तर्कशास्त्र के विचार को वापस लेकर आई। पोलिश तर्कशास्त्री और दार्शनिक जन लुकासिविक्ज़ ने 1920 में अरस्तू की भविष्य की आकस्मिकताओं की समस्या से निपटने के लिए, तीसरे मूल्य का उपयोग करते हुए, बहु-मूल्यवान तर्क की प्रणालियाँ बनाना प्रारंभ किया। इस बीच, अमेरिकी गणितज्ञ, एमिल पोस्ट|एमिल एल. पोस्ट (1921) ने भी n ≥ 2 के साथ अतिरिक्त ट्रू डिग्री के सूत्रीकरण की प्रारंभ की, जहाँ n ट्रू मान हैं। बाद में, जन लुकासिविक्ज़ और अल्फ्रेड टार्स्की ने मिलकर n ≥ 2 ट्रू मानों पर तर्क तैयार किया। 1932 में, हंस रीचेनबैक ने कई ट्रू मानों का तर्क तैयार किया जहाँ n→∞। 1932 में कर्ट गोडेल ने दिखाया कि अंतर्ज्ञानवादी तर्क बहुत-बहुत मूल्यवान तर्क नहीं है, और गोडेल तर्कशास्त्र की प्रणाली को परिभाषित किया जो मौलिक तर्क और अंतर्ज्ञानवादी तर्क के बीच मध्यवर्ती है; ऐसे लॉजिक्स को मध्यवर्ती तर्क के रूप में जाना जाता है।
उदाहरण
क्लीन (शक्तिशाली) K3 और प्रीस्ट तर्क P3
स्टीफन कोल क्लेन का (शक्तिशाली) अनिश्चितता का तर्क K3 (कभी-कभी ) और ग्राहम प्रीस्ट का विरोधाभास का तर्क तीसरा अपरिभाषित या अनिश्चित ट्रू मूल्य जोड़ता है I. ट्रू निषेध (¬) के लिए कार्य करता है, तार्किक संयोजन (∧), संयोजन (∨), सामग्री सशर्त (), और द्विशर्त () द्वारा दिया गया है:[3]
|
|
|
|
|
दो लॉजिक्स के बीच का अंतर निहित है कि कैसे टॉटोलॉजी (तर्क) को परिभाषित किया जाता है। K3 में केवल T निर्दिष्ट ट्रू मान है, चूँकि में P3 दोनों T और I दोनों हैं (तार्किक सूत्र को पुनरुक्ति माना जाता है यदि यह निर्दिष्ट ट्रू मान का मूल्यांकन करता है)। क्लेन के तर्क में I "अल्पनिर्धारित" होने के रूप में व्याख्या की जा सकती है, न तो ट्रू और न ही गलत, चूँकि प्रीस्ट के तर्क में I "अतिनिर्धारित" होने के रूप में व्याख्या की जा सकती है, जो ट्रू और अट्रू दोनों हैं। K3 में कोई पुनरुक्ति नहीं है, चूँकि P3 में मौलिक द्वि-मूल्यवान तर्क के समान ही पुनरुक्ति है।।[4]
बोचवर का आंतरिक तीन-मूल्यवान तर्क
अन्य तर्क दिमित्री बोचवार का आंतरिक तीन-मूल्यवान तर्क है, जिसे क्लेन का कमजोर तीन-मूल्यवान तर्क भी कहा जाता है। निषेध और द्विप्रतिबंध को छोड़कर, इसकी ट्रू तालिकाएँ उपरोक्त सभी से भिन्न हैं।[5]
|
|
|
बोचवार के आंतरिक तर्क में मध्यवर्ती ट्रू मान को संक्रामक के रूप में वर्णित किया जा सकता है क्योंकि यह किसी अन्य चर के मान की परवाह किए बिना सूत्र में प्रसारित होता है।[5]
बेलनाप तर्क (B4)
न्युएल बेलनाप का तर्क B4 K3 और P3 को जोड़ती है. अतिनिर्धारित ट्रू मान को यहाँ B और अधोनिर्धारित ट्रू मान को N के रूप में दर्शाया गया है।
|
|
|
गोडेल लॉजिक्स Gkऔर G∞
1932 में कर्ट गोडेल[6] ने कई-मूल्यवान लॉजिक्स के एक परिवार परिवार को परिभाषित किया, जिसमें बहुत से ट्रू मान है, उदाहरण के लिए ट्रू मूल्य और है हैं. इसी प्रकार उन्होंने तर्क को असीम रूप से कई ट्रू मूल्यों के साथ परिभाषित किया, जिसमें ट्रू मान अंतराल में सभी वास्तविक संख्याएँ हैं. इन लॉजिक्स में निर्दिष्ट ट्रू मान 1 है।
संयोजन और वियोग क्रमशः न्यूनतम और अधिकतम ऑपरेंड के रूप में परिभाषित किया गया है:
नकार और निहितार्थ निम्नानुसार परिभाषित किया गया है:
गोडेल लॉजिक्स पूरी तरह से स्वयंसिद्ध हैं, अर्थात् यह कहना संभव है कि तार्किक कलन को परिभाषित करना संभव है जिसमें सभी पुनरुत्पादन सिद्ध होते हैं। उपरोक्त निहितार्थ इस तथ्य से परिभाषित अद्वितीय हेयटिंग निहितार्थ है कि सुप्रीमा और मिनिमा ऑपरेशन अनंत वितरण नियम के साथ पूर्ण जाली बनाते हैं, जो जाली पर अद्वितीय पूर्ण हेटिंग बीजगणित संरचना को परिभाषित करता है।
लुकासिविक्ज़ लॉजिक्स Lv और L∞
निहितार्थ और निषेध जन लुकासिविक्ज़ द्वारा निम्नलिखित कार्यों के माध्यम से परिभाषित किया गया था:
सबसे पहले लुकासिविक्ज़ ने 1920 में अपने तीन-मूल्यवान तर्क के लिए इन परिभाषाओं का उपयोग किया, ट्रू मूल्यों के साथ . 1922 में उन्होंने अपरिमित रूप से अनेक मानों वाला तर्क विकसित किया, जिसमें ट्रू मान अंतराल में वास्तविक संख्याओं को फैलाते हैं. दोनों स्थितियों में नामित ट्रू मान 1 था।[7]
गोडेल लॉजिक्स के लिए उसी प्रकार परिभाषित ट्रू मूल्यों को अपनाने से , लॉजिक्स का अंतिम-मूल्यवान परिवार बनाना संभव है, उपर्युक्त और तर्क , जिसमें अंतराल में परिमेय संख्याओं द्वारा ट्रू मान दिए जाते हैं. में टॉटोलॉजी का समुच्चय और समान है।
उत्पाद तर्क Π
उत्पाद तर्क में हमारे पास अंतराल में ट्रू मूल्य हैं , संयोजन और निहितार्थ , इस प्रकार परिभाषित किया गया है[8]
इसके अतिरिक्त ऋणात्मक नामित मूल्य है जो अट्रू की अवधारणा को दर्शाता है। इस मूल्य के माध्यम से निषेध को परिभाषित करना संभव है और अतिरिक्त संयोजन निम्नलिखित नुसार:
और तब .
पोस्ट लॉजिक्स Pm
1921 में एमिल लियोन पोस्ट ने लॉजिक्स के परिवार को परिभाषित किया के साथ (के रूप में और ) ट्रू मान . नकार और संयोजन और विच्छेदन निम्नानुसार परिभाषित किया गया है:
रोज लॉजिक्स
1951 में, एलन रोज़ ने उन प्रणालियों के लिए लॉजिक्स के और परिवार को परिभाषित किया, जिनके ट्रू-मूल्य जाली (आदेश सिद्धांत) का निर्माण करते हैं।[9]
मौलिक तर्क से संबंध
लॉजिक्स सामान्यतः ऐसे प्रणाली होते हैं जिनका उद्देश्य परिवर्तनों के समय प्रस्तावों की कुछ सिमेंटिक गुण को संरक्षित करने के लिए नियमों को संहिताबद्ध करना होता है। मौलिक तर्क में, यह गुण ट्रू है। वैध तर्क में, व्युत्पन्न प्रस्ताव की सच्चाई की गारंटी दी जाती है यदि परिसर संयुक्त रूप से ट्रू हैं, क्योंकि वैध चरणों का प्रयोग गुण को संरक्षित करता है। चूँकि, वह गुण ट्रू का होना आवश्यक नहीं है; किन्तु यह कोई अन्य अवधारणा हो सकती है।
बहु-मूल्यवान लॉजिक्स का उद्देश्य पदनाम (या नामित) की गुण को संरक्षित करना है। चूंकि दो से अधिक ट्रू मूल्य हैं, अनुमान के नियमों का उद्देश्य ट्रू के अनुरूप (प्रासंगिक अर्थ में) से अधिक को संरक्षित करना हो सकता है। उदाहरण के लिए, तीन-मूल्य वाले तर्क में, कभी-कभी दो सबसे बड़े ट्रू-मान (जब उन्हें सकारात्मक पूर्णांक के रूप में दर्शाया जाता है) निर्दिष्ट किए जाते हैं और अनुमान के नियम इन मूल्यों को संरक्षित करते हैं। संक्षेप में, वैध तर्क ऐसा होगा कि संयुक्त रूप से लिए गए परिसर का मूल्य हमेशा निष्कर्ष से कम या उसके बराबर होगा।
उदाहरण के लिए, संरक्षित गुण औचित्य हो सकती है, अंतर्ज्ञानवादी तर्क की मूलभूत अवधारणा। इस प्रकार, प्रस्ताव सही या गलत नहीं है; इसके अतिरिक्त, यह उचित या त्रुटिपूर्ण है। इस स्थितियों में, औचित्य और ट्रू के बीच महत्वपूर्ण अंतर यह है कि बहिष्कृत मध्य का नियम पकड़ में नहीं आता है: प्रस्ताव जो त्रुटिपूर्ण नहीं है वह आवश्यक रूप से उचित नहीं है; इसके अतिरिक्त, यह केवल सिद्ध नहीं है कि यह त्रुटिपूर्ण है। मुख्य अंतर संरक्षित गुण की निर्धारकता है: कोई यह सिद्ध कर सकता है कि पी न्यायोचित है, कि पी त्रुटिपूर्ण है, या या तो सिद्ध करने में असमर्थ है। वैध तर्क परिवर्तनों में औचित्य को बरकरार रखता है, इसलिए न्यायसंगत प्रस्तावों से प्राप्त प्रस्ताव अभी भी उचित है। चूँकि, मौलिक तर्क में ऐसे प्रमाण हैं जो बहिष्कृत मध्य के नियम पर निर्भर करते हैं; चूँकि वह नियम इस योजना के अनुसार प्रयोग करने योग्य नहीं है, ऐसे प्रस्ताव हैं जिन्हें इस प्रकार से सिद्ध नहीं किया जा सकता है।
सुज़्को की थीसिस
बहु-मूल्यवान लॉजिक्स की फलनात्मक पूर्णता
फलनात्मक पूर्णता शब्द है जिसका प्रयोग परिमित लॉजिक्स और बीजगणित की विशेष गुण का वर्णन करने के लिए किया जाता है। संयोजकों के तर्क समुच्चय को क्रियात्मक रूप से पूर्ण या पर्याप्त कहा जाता है यदि और केवल तभी जब संयोजकों के समुच्चय का उपयोग प्रत्येक संभव ट्रू फलन के अनुरूप सूत्र बनाने के लिए किया जा सकता है।[10] पर्याप्त बीजगणित वह है जिसमें चर के प्रत्येक परिमित मानचित्रण को उसके संचालन की कुछ संरचना द्वारा व्यक्त किया जा सकता है।[11]
क्लासिकल लॉजिक: CL = ({0,1}, ¬, →, ∨, ∧, ↔) फलनात्मक रूप से पूर्ण है, चूँकि कोई लुकासिविक्ज़ लॉजिक या असीम रूप से कई-मूल्यवान लॉजिक में यह गुण नहीं है।[11][12]
हम Ln ({1, 2, ..., n} ƒ1, ..., ƒm) के रूप में बहुत से मूल्यवान तर्क को परिभाषित कर सकते हैं जहां n ≥ 2 दी गई प्राकृत संख्या है। एमिल लियोन पोस्ट (1921) सिद्ध करता है कि एक तर्क मानते हुए किसी भी mवी ऑर्डर मॉडल के एक फ़ंक्शन का उत्पादन करने में सक्षम है, एक पर्याप्त तर्क Ln में संयोजकों का कुछ संगत संयोजन होता है जो ऑर्डर m+1 के मॉडल का उत्पादन कर सकता है।[13]
अनुप्रयोग
बहु-मूल्यवान तर्क के ज्ञात अनुप्रयोगों को मोटे तौर पर दो समूहों में वर्गीकृत किया जा सकता है।[14] बाइनरी समस्याओं को अधिक कुशलता से समाधान करने के लिए पहला समूह कई-मूल्यवान तर्क का उपयोग करता है। उदाहरण के लिए, बहु-आउटपुट बूलियन फ़ंक्शन का प्रतिनिधित्व करने के लिए प्रसिद्ध दृष्टिकोण इसके आउटपुट भाग को एकल-मूल्यवान चर के रूप में व्यवहार करना और इसे एकल-आउटपुट विशेषता फ़ंक्शन (विशेष रूप से, संकेतक फ़ंक्शन) में परिवर्तित करना है। बहु-मूल्यवान लॉजिक के अन्य अनुप्रयोगों में इनपुट डिकोडर्स के साथ प्रोग्राम करने योग्य तर्क सरणी (पीएलए) का डिज़ाइन, परिमित अवस्था मशीनों का अनुकूलन, परीक्षण और ट्रूापन सम्मिलित हैं।
दूसरा समूह इलेक्ट्रॉनिक सर्किट के डिजाइन को लक्षित करता है जो संकेतों के दो से अधिक असतत स्तरों को नियोजित करता है, जैसे कि कई-मूल्यवान यादें, अंकगणितीय सर्किट और क्षेत्र में प्रोग्राम की जा सकने वाली द्वार श्रंखला (एफपीजीए)। बहु-मूल्यवान परिपथों में मानक बाइनरी परिपथों की तुलना में कई सैद्धांतिक लाभ हैं। उदाहरण के लिए, यदि सर्किट में सिग्नल केवल दो के अतिरिक्त चार या अधिक स्तर ग्रहण करते हैं, तो इंटरकनेक्ट ऑन और ऑफ चिप को कम किया जा सकता है। मेमोरी डिज़ाइन में, प्रति मेमोरी सेल में बिट सूचना के अतिरिक्त दो स्टोर करने से उसी डाई (एकीकृत सर्किट) आकार में मेमोरी का घनत्व दोगुना हो जाता है। अंकगणित सर्किट का उपयोग करने वाले अनुप्रयोग अधिकांश बाइनरी नंबर प्रणाली के विकल्प का उपयोग करने से लाभान्वित होते हैं। उदाहरण के लिए, अवशेष संख्या प्रणाली और निरर्थक बाइनरी प्रतिनिधित्व[15] रिपल-कैरी योजक को कम या समाप्त कर सकता है जो सामान्य बाइनरी जोड़ या घटाव में सम्मिलित होते हैं, जिसके परिणामस्वरूप उच्च-गति अंकगणितीय संचालन होते हैं। इन संख्या प्रणालियों में कई मूल्यवान सर्किटों का उपयोग करके प्राकृतिक कार्यान्वयन होता है। चूंकि, इन संभावित लाभों की व्यावहारिकता अधिक सीमा तक सर्किट प्राप्तियों की उपलब्धता पर निर्भर करती है, जो वर्तमान मानक प्रौद्योगिकियों के साथ संगत या प्रतिस्पर्धी होनी चाहिए। इलेक्ट्रॉनिक सर्किट के डिजाइन में सहायता के अतिरिक्त, दोषों और दोषों के लिए सर्किट का परीक्षण करने के लिए कई-मूल्यवान तर्क का विस्तृत रूप से उपयोग किया जाता है। मूल रूप से डिजिटल सर्किट परीक्षण के लिए उपयोग किए जाने वाले सभी ज्ञात स्वचालित परीक्षण पैटर्न पीढ़ी (एटीजी) एल्गोरिदम को सिम्युलेटर की आवश्यकता होती है जो 5-मूल्यवान तर्क (0, 1, x, D, D') को समाधान कर सके। अतिरिक्त मान-x, D, और D'- (1) अज्ञात/असंरंभीकृत, (2) 1 के अतिरिक्त 0, और (3) 0 के अतिरिक्त 1 का प्रतिनिधित्व करते हैं।
अनुसंधान स्थान
मल्टीपल-वैल्यूड लॉजिक (ISMVL) पर IEEE अंतर्राष्ट्रीय संगोष्ठी 1970 से प्रतिवर्ष आयोजित की जाती रही है। यह ज्यादातर डिजिटल डिजाइन और ट्रूापन में अनुप्रयोगों को पूरा करती है।[16] जर्नल ऑफ़ मल्टीपल-वैल्यूड लॉजिक एंड सॉफ्ट कंप्यूटिंग जर्नल भी है।[17]
यह भी देखें
गणितीय तर्क
- ट्रू की डिग्री
- फजी लॉजिक
- गोडेल तर्क
- जैन सात-मूल्य तर्क
- क्लेन तर्क
- क्लेन बीजगणित (इनवोल्यूशन के साथ)
- लुकासिविक्ज़ तर्क
- एमवी-बीजगणित
- एमिल लियोन पोस्ट
- द्वैधता का सिद्धांत
- ए. एन. प्रायर
- प्रासंगिकता तर्क
दार्शनिक तर्क
- मिथ्या दुविधा
- म्यू (ऋणात्मक)
डिजिटल लॉजिक
- एमवीसीएमएल, बहु-मूल्यवान वर्तमान-मोड तर्क
- IEEE 1164 VHDL के लिए नौ-मूल्यवान मानक
- Verilog चार-मूल्यवान तर्क Verilog के लिए चार-मूल्यवान मानक
- तीन-राज्य तर्क
- ध्वनि आधारित तर्क
संदर्भ
- ↑ Hurley, Patrick. A Concise Introduction to Logic, 9th edition. (2006).
- ↑ Jules Vuillemin, Necessity or Contingency, CSLI Lecture Notes, N°56, Stanford, 1996, pp. 133-167
- ↑ (Gottwald 2005, p. 19)
- ↑ Humberstone, Lloyd (2011). The Connectives. Cambridge, Massachusetts: The MIT Press. pp. 201. ISBN 978-0-262-01654-4.
- ↑ 5.0 5.1 (Bergmann 2008, p. 80)
- ↑ Gödel, Kurt (1932). "Zum intuitionistischen Aussagenkalkül". Anzeiger der Akademie der Wissenschaften in Wien (69): 65f.
- ↑ Kreiser, Lothar; Gottwald, Siegfried; Stelzner, Werner (1990). Nichtklassische Logik. Eine Einführung. Berlin: Akademie-Verlag. pp. 41ff–45ff. ISBN 978-3-05-000274-3.
- ↑ Hajek, Petr: Fuzzy Logic. In: Edward N. Zalta: The Stanford Encyclopedia of Philosophy, Spring 2009. ([1])
- ↑ Rose, Alan (December 1951). "Systems of logic whose truth-values form lattices". Mathematische Annalen. 123: 152–165. doi:10.1007/BF02054946. S2CID 119735870.
- ↑ Smith, Nicholas (2012). Logic: The Laws of Truth. Princeton University Press. p. 124.
- ↑ 11.0 11.1 Malinowski, Grzegorz (1993). Many-Valued Logics. Clarendon Press. pp. 26–27.
- ↑ Church, Alonzo (1996). Introduction to Mathematical Logic (in English). Princeton University Press. ISBN 978-0-691-02906-1.
- ↑ Post, Emil L. (1921). "Introduction to a General Theory of Elementary Propositions". American Journal of Mathematics. 43 (3): 163–185. doi:10.2307/2370324. hdl:2027/uiuo.ark:/13960/t9j450f7q. ISSN 0002-9327. JSTOR 2370324.
- ↑ Dubrova, Elena (2002). Multiple-Valued Logic Synthesis and Optimization, in Hassoun S. and Sasao T., editors, Logic Synthesis and Verification, Kluwer Academic Publishers, pp. 89-114
- ↑ Meher, Pramod Kumar; Valls, Javier; Juang, Tso-Bing; Sridharan, K.; Maharatna, Koushik (2008-08-22). "CORDIC के 50 वर्ष: एल्गोरिथम, आर्किटेक्चर और अनुप्रयोग" (PDF). IEEE Transactions on Circuits & Systems I: Regular Papers (published 2009-09-09). 56 (9): 1893–1907. doi:10.1109/TCSI.2009.2025803. S2CID 5465045. Archived (PDF) from the original on 2022-10-09. Retrieved 2016-01-03.
- ↑ "IEEE International Symposium on Multiple-Valued Logic (ISMVL)". www.informatik.uni-trier.de/~ley.
- ↑ "MVLSC home". Archived from the original on 2014-03-15. Retrieved 2011-08-12.
अग्रिम पठन
General
- Augusto, Luis M. (2017). Many-valued logics: A mathematical and computational introduction. London: College Publications. 340 pages. ISBN 978-1-84890-250-3. Webpage
- Béziau J.-Y. (1997), What is many-valued logic ? Proceedings of the 27th International Symposium on Multiple-Valued Logic, IEEE Computer Society, Los Alamitos, pp. 117–121.
- Malinowski, Gregorz, (2001), Many-Valued Logics, in Goble, Lou, ed., The Blackwell Guide to Philosophical Logic. Blackwell.
- Bergmann, Merrie (2008), An introduction to many-valued and fuzzy logic: semantics, algebras, and derivation systems, Cambridge University Press, ISBN 978-0-521-88128-9
- Cignoli, R. L. O., D'Ottaviano, I, M. L., Mundici, D., (2000). Algebraic Foundations of Many-valued Reasoning. Kluwer.
- Malinowski, Grzegorz (1993). Many-valued logics. Clarendon Press. ISBN 978-0-19-853787-8.
- S. Gottwald, A Treatise on Many-Valued Logics. Studies in Logic and Computation, vol. 9, Research Studies Press: Baldock, Hertfordshire, England, 2001.
- Gottwald, Siegfried (2005). "Many-Valued Logics" (PDF). Archived from the original on 2016-03-03.
{{cite journal}}
: Cite journal requires|journal=
(help)CS1 maint: bot: original URL status unknown (link) - Miller, D. Michael; Thornton, Mitchell A. (2008). Multiple valued logic: concepts and representations. Synthesis lectures on digital circuits and systems. Vol. 12. Morgan & Claypool Publishers. ISBN 978-1-59829-190-2.
- Hájek P., (1998), Metamathematics of fuzzy logic. Kluwer. (Fuzzy logic understood as many-valued logic sui generis.)
Specific
- Alexandre Zinoviev, Philosophical Problems of Many-Valued Logic, D. Reidel Publishing Company, 169p., 1963.
- Prior A. 1957, Time and Modality. Oxford University Press, based on his 1956 John Locke lectures
- Goguen J.A. 1968/69, The logic of inexact concepts, Synthese, 19, 325–373.
- Chang C.C. and Keisler H. J. 1966. Continuous Model Theory, Princeton, Princeton University Press.
- Gerla G. 2001, Fuzzy logic: Mathematical Tools for Approximate Reasoning, Kluwer Academic Publishers, Dordrecht.
- Pavelka J. 1979, On fuzzy logic I: Many-valued rules of inference, Zeitschr. f. math. Logik und Grundlagen d. Math., 25, 45–52.
- Metcalfe, George; Olivetti, Nicola; Dov M. Gabbay (2008). Proof Theory for Fuzzy Logics. Springer. ISBN 978-1-4020-9408-8. Covers proof theory of many-valued logics as well, in the tradition of Hájek.
- Hähnle, Reiner (1993). Automated deduction in multiple-valued logics. Clarendon Press. ISBN 978-0-19-853989-6.
- Azevedo, Francisco (2003). Constraint solving over multi-valued logics: application to digital circuits. IOS Press. ISBN 978-1-58603-304-0.
- Bolc, Leonard; Borowik, Piotr (2003). Many-valued Logics 2: Automated reasoning and practical applications. Springer. ISBN 978-3-540-64507-8.
- Stanković, Radomir S.; Astola, Jaakko T.; Moraga, Claudio (2012). Representation of Multiple-Valued Logic Functions. Morgan & Claypool Publishers. doi:10.2200/S00420ED1V01Y201205DCS037. ISBN 978-1-60845-942-1.
- Abramovici, Miron; Breuer, Melvin A.; Friedman, Arthur D. (1994). Digital Systems Testing and Testable Design. New York: Computer Science Press. ISBN 978-0-7803-1062-9.
बाहरी संबंध
- Gottwald, Siegfried (2022). "Many-Valued Logic". In Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy (Summer 2022 Edition).
- Shramko, Yaroslav and Wansing, Heinrich (2021). "Truth Values". In Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy (Winter 2021 Edition).
- IEEE Computer Society's Technical Committee on Multiple-Valued Logic
- Resources for Many-Valued Logic by Reiner Hähnle, Chalmers University
- Many-valued Logics W3 Server (archived)
- Yaroslav Shramko and Heinrich Wansing (2020). "Suszko's Thesis". Stanford Encyclopedia of Philosophy.
{{cite encyclopedia}}
: CS1 maint: uses authors parameter (link) - Carlos Caleiro, Walter Carnielli, Marcelo E. Coniglio and João Marcos, Two's company: "The humbug of many logical values" in Jean-Yves Beziau, ed. (2007). Logica Universalis: Towards a General Theory of Logic (2nd ed.). Springer Science & Business Media. pp. 174–194. ISBN 978-3-7643-8354-1.