न्यूनतम बहुपद (क्षेत्र सिद्धांत): Difference between revisions
(Created page with "{{Use American English|date = March 2019}} {{Short description|Concept in abstract algebra}} {{for|the minimal polynomial of a matrix|Minimal polynomial (linear algebra)}} ...") |
No edit summary |
||
(9 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Concept in abstract algebra}} | {{Short description|Concept in abstract algebra}} | ||
{{for| | {{for|एक आव्यूह का न्यूनतम बहुपद|न्यूनतम बहुपद (रैखिक बीजगणित)}} | ||
[[ | [[गणित]] की एक शाखा, [[क्षेत्र सिद्धांत]] में, क्षेत्र विस्तार के एक तत्व α का न्यूनतम बहुपद क्षेत्र में गुणांक वाले सबसे कम स्तर का [[बहुपद]] है, जैसे कि α बहुपद का आधार है। यदि α का न्यूनतम बहुपद स्थित है, तो यह अद्वितीय है। बहुपद में उच्चतम घात पद का गुणांक 1 होना आवश्यक है। | ||
अधिक | अधिक नियमानुसार, एक न्यूनतम बहुपद को [[क्षेत्र विस्तार]] E/F और विस्तार क्षेत्र E/F के एक तत्व के सापेक्ष परिभाषित किया जाता है। किसी तत्व का न्यूनतम बहुपद, F [x] का एक सदस्य है,यदि वह स्थित है चर x में [[बहुपदों का वृत्त|बहुपदों का वलय]] F में गुणांक के साथ है। E के एक तत्व α को देखते हुए, Jα को F[x] में सभी बहुपदों f(x) का समुच्चय होने दें, जैसे कि f(α) = 0 . तत्व α को Jα में प्रत्येक बहुपद का [[मूल या शून्य]] कहा जाता है | ||
अधिक विशेष रूप से, Jα F [x] से E तकवलय [[वृत्त समरूपता|समरूपता]] का आधार है जो बहुपद g को तत्व α पर उनके मान g (α) में भेजता है। क्योंकि यह एक वलय समरूपता का आधार है, Jα बहुपद वलय F [x] का एक आदर्श है: यह बहुपद जोड़ और घटाव (शून्य बहुपद युक्त) के साथ-साथ F के तत्वों द्वारा गुणन के अंतर्गत अवस्र्द्ध है (जो [[अदिश गुणन]] है यदि F [x] को F पर एक [[सदिश स्थान]] माना जाता है)। | |||
शून्य बहुपद, जिसके सभी गुणांक 0 हैं, प्रत्येक Jα में है क्योंकि सभी α और i के लिए 0αi = 0 है। यह α के विभिन्न मानों के प्रकारों में वर्गीकृत करने के लिए शून्य बहुपद को निष्फल बनाता है इसलिए इसे छोड़ दिया जाता है। यदि Jα में कोई शून्येतर बहुपद हैं, अर्थात यदि उत्तरार्द्ध शून्य आदर्श नहीं है, तो α को F पर एक [[बीजगणितीय तत्व]] कहा जाता है और Jα में न्यूनतम स्तर का एक [[मोनिक बहुपद]] स्थित है। यह E/F के सन्दर्भ में α का न्यूनतम बहुपद है। यह F पर अद्वितीय और अपरिवर्तनीय है। यदि शून्य बहुपद Jα का एकमात्र सदस्य है, तो α को F पर [[अनुवांशिक तत्व]] कहा जाता है और E/F के संबंध में कोई न्यूनतम बहुपद नहीं है। | |||
क्षेत्र विस्तार के निर्माण और विश्लेषण के लिए न्यूनतम बहुपद उपयोगी होते हैं। जब α न्यूनतम बहुपद f(x) के साथ बीजगणितीय होता है, तो सबसे छोटा क्षेत्र जिसमें F और α दोनों सम्मिलित होते हैं, [[भागफल वलय]] F[x]/⟨f(x)⟩ के लिए [[समरूप]] होता है, जहां ⟨f(x)⟩ का आदर्श है F[x] f(x) द्वारा उत्पन्न। [[संयुग्मी तत्वों]] को परिभाषित करने के लिए न्यूनतम बहुपद का भी उपयोग किया जाता है। | |||
== परिभाषा == | == परिभाषा == | ||
मान लीजिए | मान लीजिए E/F एक [[क्षेत्र विस्तार]] है, α E का एक अवयव है, और F[x] x पर F में बहुपदों का वलय है। तत्व α का एक न्यूनतम बहुपद होता है जब α, F पर बीजगणितीय होता है, अर्थात, जब F[x] में कुछ शून्येतर बहुपद f(x) के लिए f(α) = 0 होता है। तब α के न्यूनतम बहुपद को F [x] में सभी बहुपदों के बीच न्यूनतम स्तर के मोनिक बहुपद के रूप में परिभाषित किया जाता है जिसमें α एक आधार के रूप में होता है। | ||
== गुण == | == गुण == | ||
इस पूरे | इस पूरे भाग में, मान लीजिए कि E/F उपरोक्त के अनुसार F पर एक क्षेत्र विस्तार है, मान लीजिए α ∈ E, F पर एक बीजगणितीय तत्व है और Jα को α पर लुप्त होने वाले बहुपदों का आदर्श मान लीजिए। | ||
=== विशिष्टता === | === विशिष्टता === | ||
Line 23: | Line 23: | ||
α का न्यूनतम बहुपद f अद्वितीय है। | α का न्यूनतम बहुपद f अद्वितीय है। | ||
इसे सिद्ध करने के लिए, मान लीजिए कि | इसे सिद्ध करने के लिए, मान लीजिए कि न्यूनतम घात n > 0 वाले Jα में f और g एकात्मक बहुपद हैं। हमारे पास r := f−g ∈ Jα है (क्योंकि अनुवर्ती जोड़/घटाव के अंतर्गत अवस्र्द्ध है) और वह m := deg(r) < n (क्योंकि बहुपद एक ही स्तर के मोनिक हैं)। यदि r शून्य नहीं है, तो r / cm (r में उच्चतम स्तर के शून्येतर गुणांक के लिए सेमी ∈ F लिखना) स्तर m < n का एक मोनिक बहुपद है जैसे कि r / सेमी ∈ Jα (क्योंकि उत्तरार्द्ध के अंतर्गत अवस्र्द्ध है गुणन/विभाजन F के शून्येतर तत्वों द्वारा), जो n के लिए न्यूनतमता की हमारी मूल धारणा के विपरीत है। हम यह निष्कर्ष निकालते हैं कि 0 = r = f - g, अर्थात कि f = g। | ||
=== | === अपरिवर्तनीयता === | ||
α का न्यूनतम बहुपद f | α का न्यूनतम बहुपद f अपरिवर्तनीय है, अर्थात इसे दो बहुपदों g और h के दृढता से न्यूनतम स्तर के लिए f = gh के रूप में कारक नहीं बनाया जा सकता है। | ||
इसे सिद्ध करने के लिए, पहले देखें कि कोई भी गुणनखंडन f = gh का तात्पर्य है कि | इसे सिद्ध करने के लिए, पहले देखें कि कोई भी गुणनखंडन f = gh का तात्पर्य है कि g(α) = 0 या h(α) = 0, क्योंकि f(α) = 0 और F एक क्षेत्र है (इसलिए एक [[अभिन्न क्षेत्र]] भी है)। g और h दोनों को f दृढता से न्यूनतम स्तर का चयन करना तब f पर न्यूनतम आवश्यकता का खंडन करेगा, इसलिए f को अपरिवर्तनीय होना चाहिए। | ||
=== न्यूनतम बहुपद | === न्यूनतम बहुपद Jα उत्पन्न करता है === | ||
α का न्यूनतम बहुपद f आदर्श | α का न्यूनतम बहुपद f आदर्श Jα उत्पन्न करता है, अर्थात Jα में प्रत्येक g को F[x] में कुछ h' के लिए g=fh के रूप में गुणनखंडित किया जा सकता है। | ||
यह | यह सिद्ध करने के लिए, यह निरीक्षण करना पर्याप्त है कि F[x] एक [[प्रमुख आदर्श क्षेत्र]] है, क्योंकि F एक क्षेत्र है: इसका अर्थ है कि F[x] में प्रत्येक आदर्श से Jα, एक तत्व f द्वारा उत्पन्न होता है। शून्य आदर्श ''I'' = {0} के अपवाद के साथ, उत्पादक वस्तु f को शून्येतर होना चाहिए और यह न्यूनतम स्तर का अद्वितीय बहुपद होना चाहिए, F में एक कारक तक (क्योंकि fg की स्तर दृढता से उससे बड़ी है) f जब भी g शून्य से अधिक स्तर का हो। विशेष रूप से, एक अद्वितीय मोनिक उत्पादक वस्तु f है और सभी उत्पादक वस्तु को अलघुकरणीय होना चाहिए। जब ''I'' को F पर α बीजगणितीय के लिए Jα चुना जाता है, तो मोनिक उत्पादक f α का न्यूनतम बहुपद होता है। | ||
== उदाहरण == | == उदाहरण == | ||
=== | === गाल्वा क्षेत्र विस्तार का न्यूनतम बहुपद === | ||
गाल्वा क्षेत्र विस्तार दिया गया है <math>L/K</math> किसी का न्यूनतम बहुपद कोई <math>\alpha \in L</math> के अंदर <math>K</math> के रूप में गणना नही की जा सकती है | |||
<math>f(x) = \prod_{\sigma \in \text{Gal}(L/K)} (x - \sigma(\alpha))</math> | |||
अगर <math>\alpha</math> गैलोज क्रिया में कोई स्थिरक नहीं है। चूँकि यह अपरिवर्तनीय है, जिसके आधार को देखकर इसका अनुमान लगाया जा सकता है <math>f'</math>, यह न्यूनतम बहुपद है। ध्यान दें कि उसी प्रकार का सूत्र प्रतिस्थापित करके पाया जा सकता है <math>G = \text{Gal}(L/K)</math> साथ <math>G/N</math> जहां <math>N = \text{Stab}(\alpha)</math> का स्थिरक समूह है <math>\alpha</math>. उदाहरण के लिए, यदि <math>\alpha \in K</math> तो इसका स्थिरक है <math>G</math>, इसलिए <math>(x-\alpha)</math> इसका न्यूनतम बहुपद है। | |||
=== द्विघात क्षेत्र विस्तार === | === द्विघात क्षेत्र विस्तार === | ||
==== क्यू ({{radic|2}}) ==== | ==== क्यू ({{radic|2}}) ==== | ||
यदि ''F'' = '''Q'''<nowiki/>', ''E'' = ''''R'''<nowiki/>', α = {{radic|2}}, तो α के लिए न्यूनतम बहुपद a(x) = ''x''<sup>2</sup> − 2 है। आधार क्षेत्र F महत्वपूर्ण है क्योंकि यह a(x) के गुणांकों की संभावनाओं को निर्धारित करता है। उदाहरण के लिए, यदि हम F = 'R' लेते हैं, तो α = {{radic|2}} के लिए न्यूनतम बहुपद a(x) = x - {{radic|2}} है। | |||
==== क्यू ({{radic|d}}) ==== | ==== क्यू ({{radic|d}}) ==== | ||
सामान्यता, वर्ग-मुक्त द्वारा दिए गए द्विघात विस्तार के लिए <math>d</math>, किसी तत्व के न्यूनतम बहुपद की गणना करना <math>a + b\sqrt{d}</math> गाल्वा सिद्धांत का उपयोग करके पाया जा सकता है। तब | |||
<math>\begin{align} | |||
f(x) &= (x - (a+b\sqrt{d}))(x - (a - b\sqrt{d})) \\ | f(x) &= (x - (a+b\sqrt{d}))(x - (a - b\sqrt{d})) \\ | ||
&= x^2 - 2ax + (a^2 - b^2d) | &= x^2 - 2ax + (a^2 - b^2d) | ||
\end{align}</math> | \end{align}</math> | ||
विशेष रूप से, इसका तात्पर्य है <math>2a \in \mathbb{Z}</math> और <math>a^2 - b^2d \in \mathbb{Z}</math>. यह निर्धारित करने के लिए उपयोग किया जा सकता है <math>\mathcal{O}_{\mathbb{Q}(\sqrt{d})}</math> [[मापांक अंकगणित का उपयोग करके संबंधों की एक श्रृंखला]] के माध्यम से। | |||
=== द्विवर्गीय क्षेत्र विस्तार === | |||
यदि α = {{radic|2}} + {{radic|3}}, तो Q[''x''] में न्यूनतम बहुपद ''a''(''x'') = ''x''<sup>4</sup> − 10x<sup>2</sup> + 1 = (x - {{radic|2}} − {{radic|3}})(x + {{radic|2}} − {{radic|3}})(x - {{radic|2}} + {{radic|3}})(x + {{radic|2}} + {{radic|3}}). | |||
=== [[एकता | ध्यान दें यदि <math>\alpha = \sqrt{2}</math> तब गाल्वा पर क्रिया <math>\sqrt{3}</math> स्थिर <math>\alpha</math>. अतः भागफल समूह का प्रयोग करके न्यूनतम बहुपद ज्ञात किया जा सकता है <math>\text{Gal}(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})/\text{Gal}(\mathbb{Q}(\sqrt{3})/\mathbb{Q})</math>. | ||
एकता | |||
=== एकता [[एकता के मूलों|के मूल]] === | |||
[[एकता के मूलों]] के Q[x] में न्यूनतम बहुपद [[साइक्लोटोमिक बहुपद|चक्रीय बहुपद]] हैं। | |||
=== [[स्विनर्टन-डायर बहुपद]] === | === [[स्विनर्टन-डायर बहुपद]] === | ||
प्रथम ''n'' अभाज्य संख्याओं के वर्गमूलों के योग के Q[''x''] में न्यूनतम बहुपद | प्रथम ''n'' अभाज्य संख्याओं के वर्गमूलों के योग के Q[''x''] में न्यूनतम बहुपद समान रूप से निर्माण होता है, और इसे [[स्विनर्टन-डायर बहुपद]] कहा जाता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 68: | Line 76: | ||
* [[पूर्णांकों का वलय]] | * [[पूर्णांकों का वलय]] | ||
* [[बीजगणितीय संख्या क्षेत्र]] | * [[बीजगणितीय संख्या क्षेत्र]] | ||
* | * [[न्यूनतम बहुपद का]] <math>2\cos(2\pi/n)</math> | ||
== संदर्भ == | == संदर्भ == | ||
Line 77: | Line 85: | ||
* {{PlanetMath|urlname=MinimalPolynomial|title=Minimal polynomial}} | * {{PlanetMath|urlname=MinimalPolynomial|title=Minimal polynomial}} | ||
* Pinter, Charles C. ''A Book of Abstract Algebra''. Dover Books on Mathematics Series. Dover Publications, 2010, p. 270–273. {{isbn|978-0-486-47417-5}} | * Pinter, Charles C. ''A Book of Abstract Algebra''. Dover Books on Mathematics Series. Dover Publications, 2010, p. 270–273. {{isbn|978-0-486-47417-5}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Created On 13/02/2023]] | [[Category:Created On 13/02/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:क्षेत्र (गणित)]] | |||
[[Category:बहुपदों]] |
Latest revision as of 16:30, 2 March 2023
गणित की एक शाखा, क्षेत्र सिद्धांत में, क्षेत्र विस्तार के एक तत्व α का न्यूनतम बहुपद क्षेत्र में गुणांक वाले सबसे कम स्तर का बहुपद है, जैसे कि α बहुपद का आधार है। यदि α का न्यूनतम बहुपद स्थित है, तो यह अद्वितीय है। बहुपद में उच्चतम घात पद का गुणांक 1 होना आवश्यक है।
अधिक नियमानुसार, एक न्यूनतम बहुपद को क्षेत्र विस्तार E/F और विस्तार क्षेत्र E/F के एक तत्व के सापेक्ष परिभाषित किया जाता है। किसी तत्व का न्यूनतम बहुपद, F [x] का एक सदस्य है,यदि वह स्थित है चर x में बहुपदों का वलय F में गुणांक के साथ है। E के एक तत्व α को देखते हुए, Jα को F[x] में सभी बहुपदों f(x) का समुच्चय होने दें, जैसे कि f(α) = 0 . तत्व α को Jα में प्रत्येक बहुपद का मूल या शून्य कहा जाता है
अधिक विशेष रूप से, Jα F [x] से E तकवलय समरूपता का आधार है जो बहुपद g को तत्व α पर उनके मान g (α) में भेजता है। क्योंकि यह एक वलय समरूपता का आधार है, Jα बहुपद वलय F [x] का एक आदर्श है: यह बहुपद जोड़ और घटाव (शून्य बहुपद युक्त) के साथ-साथ F के तत्वों द्वारा गुणन के अंतर्गत अवस्र्द्ध है (जो अदिश गुणन है यदि F [x] को F पर एक सदिश स्थान माना जाता है)।
शून्य बहुपद, जिसके सभी गुणांक 0 हैं, प्रत्येक Jα में है क्योंकि सभी α और i के लिए 0αi = 0 है। यह α के विभिन्न मानों के प्रकारों में वर्गीकृत करने के लिए शून्य बहुपद को निष्फल बनाता है इसलिए इसे छोड़ दिया जाता है। यदि Jα में कोई शून्येतर बहुपद हैं, अर्थात यदि उत्तरार्द्ध शून्य आदर्श नहीं है, तो α को F पर एक बीजगणितीय तत्व कहा जाता है और Jα में न्यूनतम स्तर का एक मोनिक बहुपद स्थित है। यह E/F के सन्दर्भ में α का न्यूनतम बहुपद है। यह F पर अद्वितीय और अपरिवर्तनीय है। यदि शून्य बहुपद Jα का एकमात्र सदस्य है, तो α को F पर अनुवांशिक तत्व कहा जाता है और E/F के संबंध में कोई न्यूनतम बहुपद नहीं है।
क्षेत्र विस्तार के निर्माण और विश्लेषण के लिए न्यूनतम बहुपद उपयोगी होते हैं। जब α न्यूनतम बहुपद f(x) के साथ बीजगणितीय होता है, तो सबसे छोटा क्षेत्र जिसमें F और α दोनों सम्मिलित होते हैं, भागफल वलय F[x]/⟨f(x)⟩ के लिए समरूप होता है, जहां ⟨f(x)⟩ का आदर्श है F[x] f(x) द्वारा उत्पन्न। संयुग्मी तत्वों को परिभाषित करने के लिए न्यूनतम बहुपद का भी उपयोग किया जाता है।
परिभाषा
मान लीजिए E/F एक क्षेत्र विस्तार है, α E का एक अवयव है, और F[x] x पर F में बहुपदों का वलय है। तत्व α का एक न्यूनतम बहुपद होता है जब α, F पर बीजगणितीय होता है, अर्थात, जब F[x] में कुछ शून्येतर बहुपद f(x) के लिए f(α) = 0 होता है। तब α के न्यूनतम बहुपद को F [x] में सभी बहुपदों के बीच न्यूनतम स्तर के मोनिक बहुपद के रूप में परिभाषित किया जाता है जिसमें α एक आधार के रूप में होता है।
गुण
इस पूरे भाग में, मान लीजिए कि E/F उपरोक्त के अनुसार F पर एक क्षेत्र विस्तार है, मान लीजिए α ∈ E, F पर एक बीजगणितीय तत्व है और Jα को α पर लुप्त होने वाले बहुपदों का आदर्श मान लीजिए।
विशिष्टता
α का न्यूनतम बहुपद f अद्वितीय है।
इसे सिद्ध करने के लिए, मान लीजिए कि न्यूनतम घात n > 0 वाले Jα में f और g एकात्मक बहुपद हैं। हमारे पास r := f−g ∈ Jα है (क्योंकि अनुवर्ती जोड़/घटाव के अंतर्गत अवस्र्द्ध है) और वह m := deg(r) < n (क्योंकि बहुपद एक ही स्तर के मोनिक हैं)। यदि r शून्य नहीं है, तो r / cm (r में उच्चतम स्तर के शून्येतर गुणांक के लिए सेमी ∈ F लिखना) स्तर m < n का एक मोनिक बहुपद है जैसे कि r / सेमी ∈ Jα (क्योंकि उत्तरार्द्ध के अंतर्गत अवस्र्द्ध है गुणन/विभाजन F के शून्येतर तत्वों द्वारा), जो n के लिए न्यूनतमता की हमारी मूल धारणा के विपरीत है। हम यह निष्कर्ष निकालते हैं कि 0 = r = f - g, अर्थात कि f = g।
अपरिवर्तनीयता
α का न्यूनतम बहुपद f अपरिवर्तनीय है, अर्थात इसे दो बहुपदों g और h के दृढता से न्यूनतम स्तर के लिए f = gh के रूप में कारक नहीं बनाया जा सकता है।
इसे सिद्ध करने के लिए, पहले देखें कि कोई भी गुणनखंडन f = gh का तात्पर्य है कि g(α) = 0 या h(α) = 0, क्योंकि f(α) = 0 और F एक क्षेत्र है (इसलिए एक अभिन्न क्षेत्र भी है)। g और h दोनों को f दृढता से न्यूनतम स्तर का चयन करना तब f पर न्यूनतम आवश्यकता का खंडन करेगा, इसलिए f को अपरिवर्तनीय होना चाहिए।
न्यूनतम बहुपद Jα उत्पन्न करता है
α का न्यूनतम बहुपद f आदर्श Jα उत्पन्न करता है, अर्थात Jα में प्रत्येक g को F[x] में कुछ h' के लिए g=fh के रूप में गुणनखंडित किया जा सकता है।
यह सिद्ध करने के लिए, यह निरीक्षण करना पर्याप्त है कि F[x] एक प्रमुख आदर्श क्षेत्र है, क्योंकि F एक क्षेत्र है: इसका अर्थ है कि F[x] में प्रत्येक आदर्श से Jα, एक तत्व f द्वारा उत्पन्न होता है। शून्य आदर्श I = {0} के अपवाद के साथ, उत्पादक वस्तु f को शून्येतर होना चाहिए और यह न्यूनतम स्तर का अद्वितीय बहुपद होना चाहिए, F में एक कारक तक (क्योंकि fg की स्तर दृढता से उससे बड़ी है) f जब भी g शून्य से अधिक स्तर का हो। विशेष रूप से, एक अद्वितीय मोनिक उत्पादक वस्तु f है और सभी उत्पादक वस्तु को अलघुकरणीय होना चाहिए। जब I को F पर α बीजगणितीय के लिए Jα चुना जाता है, तो मोनिक उत्पादक f α का न्यूनतम बहुपद होता है।
उदाहरण
गाल्वा क्षेत्र विस्तार का न्यूनतम बहुपद
गाल्वा क्षेत्र विस्तार दिया गया है किसी का न्यूनतम बहुपद कोई के अंदर के रूप में गणना नही की जा सकती है
अगर गैलोज क्रिया में कोई स्थिरक नहीं है। चूँकि यह अपरिवर्तनीय है, जिसके आधार को देखकर इसका अनुमान लगाया जा सकता है , यह न्यूनतम बहुपद है। ध्यान दें कि उसी प्रकार का सूत्र प्रतिस्थापित करके पाया जा सकता है साथ जहां का स्थिरक समूह है . उदाहरण के लिए, यदि तो इसका स्थिरक है , इसलिए इसका न्यूनतम बहुपद है।
द्विघात क्षेत्र विस्तार
क्यू (√2)
यदि F = Q', E = 'R', α = √2, तो α के लिए न्यूनतम बहुपद a(x) = x2 − 2 है। आधार क्षेत्र F महत्वपूर्ण है क्योंकि यह a(x) के गुणांकों की संभावनाओं को निर्धारित करता है। उदाहरण के लिए, यदि हम F = 'R' लेते हैं, तो α = √2 के लिए न्यूनतम बहुपद a(x) = x - √2 है।
क्यू (√d)
सामान्यता, वर्ग-मुक्त द्वारा दिए गए द्विघात विस्तार के लिए , किसी तत्व के न्यूनतम बहुपद की गणना करना गाल्वा सिद्धांत का उपयोग करके पाया जा सकता है। तब
विशेष रूप से, इसका तात्पर्य है और . यह निर्धारित करने के लिए उपयोग किया जा सकता है मापांक अंकगणित का उपयोग करके संबंधों की एक श्रृंखला के माध्यम से।
द्विवर्गीय क्षेत्र विस्तार
यदि α = √2 + √3, तो Q[x] में न्यूनतम बहुपद a(x) = x4 − 10x2 + 1 = (x - √2 − √3)(x + √2 − √3)(x - √2 + √3)(x + √2 + √3).
ध्यान दें यदि तब गाल्वा पर क्रिया स्थिर . अतः भागफल समूह का प्रयोग करके न्यूनतम बहुपद ज्ञात किया जा सकता है .
एकता के मूल
एकता के मूलों के Q[x] में न्यूनतम बहुपद चक्रीय बहुपद हैं।
स्विनर्टन-डायर बहुपद
प्रथम n अभाज्य संख्याओं के वर्गमूलों के योग के Q[x] में न्यूनतम बहुपद समान रूप से निर्माण होता है, और इसे स्विनर्टन-डायर बहुपद कहा जाता है।
यह भी देखें
संदर्भ
- Weisstein, Eric W. "Algebraic Number Minimal Polynomial". MathWorld.
- Minimal polynomial at PlanetMath.
- Pinter, Charles C. A Book of Abstract Algebra. Dover Books on Mathematics Series. Dover Publications, 2010, p. 270–273. ISBN 978-0-486-47417-5