कुंडलित कुंडल (कोइलेड कॉइल): Difference between revisions

From Vigyanwiki
No edit summary
 
(15 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{other uses|कुंडलित कुंडल (बहुविकल्पी)}}
{{other uses|कुंडलित कुंडल (बहुविकल्पी)}}
[[Image:GCN4 coiled coil dimer 1zik rainbow.png|thumb|200px|right|चित्र 1: कुंडलित कुंडल का उत्कृष्ट उदाहरण GCN4 [[ल्यूसीन जिपर]] (PDB परिग्रहण कोड 1zik) है, जो एक समानांतर, बाएं हाथ का [[होमोडीमर]] है। हालाँकि, कई अन्य प्रकार के कुंडलित तार मौजूद हैं।]]कुंडलित कुंडल [[प्रोटीन]] में एक संरचनात्मक रूपांकन है जिसमें 2-7<ref name="Liu2006">
[[Image:GCN4 coiled coil dimer 1zik rainbow.png|thumb|200px|right|चित्र 1: कुंडलित कुंडल का उत्कृष्ट उदाहरण GCN4 [[ल्यूसीन जिपर]] (PDB परिग्रहण कोड 1zik) है, जो एक समानांतर, बाएं हाथ का [[होमोडीमर]] है। यद्यपि, कई अन्य प्रकार के कुंडलित तार उपलब्ध हैं।]]कुंडलित कुंडल प्रोटीन में एक संरचनात्मक रूपांकन है जिसमें 2-7 [1] अल्फा-हेलिक्स रस्सी की भाँति एक साथ कुंडलित होते हैं। डिमर और ट्रिमर सबसे साधारण प्रकार हैं, कई प्रकार कुंडलित कुंडल प्रोटीन के महत्वपूर्ण जैविक कार्यों में सम्मिलित होते हैं, जीन अभिव्यक्ति नियमन प्रतिलेखन कारक का उल्लेखनीय उदाहरण हैं जैसे कि ओंकोप्रोटीन सी-फॉस और सी-जून, साथ ही साथ मांसपेशी प्रोटीन ट्रोपोमायोस।
{{cite journal | vauthors = Liu J, Zheng Q, Deng Y, Cheng CS, Kallenbach NR, Lu M | title = A seven-helix coiled coil | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 103 | issue = 42 | pages = 15457–62 | date = Oct 2006 | pmid = 17030805 | pmc = 1622844 | doi = 10.1073/pnas.0604871103 | bibcode = 2006PNAS..10315457L | doi-access = free }}</ref> [[अल्फा हेलिक्स]] रस्सी के रेशों की तरह एक साथ कुंडलित होते हैं। [[प्रोटीन डिमर]] और [[प्रोटीन ट्रिमर]] सबसे सरल प्रकार हैं। कई कुंडलित कुंडल-प्रकार के प्रोटीन महत्वपूर्ण जैविक कार्यों में सम्मिलित होते हैं, जैसे कि जीन अभिव्यक्ति का नियमन - जैसे, [[प्रतिलेखन कारक]]। उल्लेखनीय उदाहरण हैं [[ओंकोप्रोटीन]] [[सी Fos|सी]] फॉस और [[ग-जून|सी -जून]], साथ ही साथ मांसपेशी प्रोटीन [[ट्रोपोमायोसिन]]।


== डिस्कवरी ==
== आविष्कार ==


-[[केरातिन]] के लिए कुंडलित कुंडलियों की संभावना प्रारंभ में कुछ विवादास्पद थी। [[लिनस पॉलिंग]] और [[फ्रांसिस क्रिक]] स्वतंत्र रूप से इस निष्कर्ष पर पहुंचे कि यह लगभग उसी समय संभव था। 1952 की गर्मियों में, पॉलिंग ने [[इंगलैंड]] में उस प्रयोगशाला का दौरा किया जहाँ क्रिक ने काम किया था। पॉलिंग और क्रिक मिले और विभिन्न विषयों पर बात की; एक बिंदु पर, क्रिक ने पूछा कि क्या पॉलिंग ने कुंडलित कॉइल्स पर विचार किया है (क्रिक शब्द के साथ आया था), जिस पर पॉलिंग ने कहा कि उनके पास है। संयुक्त राज्य अमेरिका लौटने पर, पॉलिंग ने इस विषय पर शोध फिर से प्रारंभ  किया। उन्होंने निष्कर्ष निकाला कि कुंडलित कुंडल मौजूद हैं, और अक्टूबर में जर्नल [[प्रकृति (पत्रिका)|प्रकृति पत्रिका]] को एक लंबी पांडुलिपि प्रस्तुत की। पॉलिंग के बेटे पीटर पॉलिंग ने उसी प्रयोगशाला में क्रिक के रूप में काम किया, और उसे रिपोर्ट का उल्लेख किया। क्रिक का मानना ​​था कि पॉलिंग ने उनके विचार को चुरा लिया है, और पॉलिंग की पांडुलिपि आने के कुछ दिनों बाद प्रकृति को एक छोटा नोट प्रस्तुत किया। अन्ततः कुछ विवादों और लगातार पत्राचार के बाद, क्रिक की प्रयोगशाला ने घोषणा की कि दोनों शोधकर्ताओं द्वारा स्वतंत्र रूप से विचार किया गया था, और कोई बौद्धिक चोरी नहीं हुई थी।<ref>{{cite web|last=Hager|first=Thomas|title=Narrative 43, Coils Upon Coils|url=http://scarc.library.oregonstate.edu/coll/pauling/proteins/narrative/page43.html|work=Linus Pauling and the Structure of Proteins|publisher=Oregon State University Special Collections and Archives Research Center|access-date=May 15, 2013}}</ref> अपने नोट में ,क्रिक ने कुंडलित कुंडली और साथ ही साथ उनकी संरचना का निर्धारण करने के लिए गणितीय तरीकों का प्रस्ताव दिया।<ref name="crick52">
अल्फा-[[केरातिन|केराटिन]] के लिए कुंडलित कुंडलियों की संभावना प्रारंभ में विवादास्पद थी। [[लिनस पॉलिंग]] और [[फ्रांसिस क्रिक]] स्वतंत्र रूप से इस निष्कर्ष पर पहुंचे कि यह लगभग उसी समय संभव था। 1952 की गर्मियों में, पॉलिंग ने [[इंगलैंड]] में उस प्रयोगशाला की यात्रा की जहाँ क्रिक ने कार्य किया था।  
{{cite journal | vauthors = Crick FH | title = Is alpha-keratin a coiled coil? | journal = Nature | volume = 170 | issue = 4334 | pages = 882–3 | date = Nov 1952 | pmid = 13013241 | doi = 10.1038/170882b0 | bibcode = 1952Natur.170..882C | s2cid = 4147931 }}</ref> उल्लेखनीय रूप से, यह लिनुस पॉलिंग और सहकर्मियों द्वारा 1951 में अल्फा हेलिक्स की संरचना का सुझाव दिए जाने के तुरंत बाद था।<ref name="pauling51">
{{cite journal | vauthors = Pauling L, Corey RB, Branson HR | title = The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 37 | issue = 4 | pages = 205–11 | date = Apr 1951 | pmid = 14816373 | pmc = 1063337 | doi = 10.1073/pnas.37.4.205 | bibcode = 1951PNAS...37..205P | doi-access = free }}</ref>[4] इन अध्ययनों को केरातिन अनुक्रम के ज्ञान के अभाव में प्रकाशित किया गया था


1982 में हनुकोग्लू और फुच्स द्वारा पहले केराटिन अनुक्रम निर्धारित किए गए थे।अनुक्रम और द्वितीयक संरचना पूर्वानुमान विश्लेषण के आधार पर केराटिन के कुंडलित-कुंडली डोमेन की पहचान की गई।
पॉलिंग और क्रिक मिले और विभिन्न विषयों पर बात की; एक बिंदु पर, क्रिक ने पूछा कि क्या पॉलिंग ने "कॉइलड कॉइल्स" पर विचार किया था, जिस पर पॉलिंग ने कहा कि उन्होंने किया था। संयुक्त राज्य अमेरिका लौटने पर, पॉलिंग ने इस विषय पर पुनः शोध प्रारंभ किया,और उन्होंने निष्कर्ष निकाला कि कुंडलित कुंडल उपलब्ध हैं, और अक्टूबर में जर्नल नेचर को एक लंबी पांडुलिपि प्रस्तुत की। पॉलिंग के बेटे पीटर पॉलिंग ने उसी प्रयोगशाला में क्रिक के रूप में कार्य किया, और उस रिपोर्ट का उल्लेख किया। क्रिक का मानना ​​था कि पॉलिंग ने उनके विचार को चुरा लिया है, और पॉलिंग की पांडुलिपि आने के कुछ दिनों बादनेचर को एक छोटा लेख प्रस्तुत किया। अन्ततः कुछ विवादों और लगातार पत्राचार के उपरांत, क्रिक की प्रयोगशाला ने घोषणा की कि कुंडलित कुंडलियों के विषय मे दोनों शोधकर्ताओं द्वारा स्वतंत्र रूप से विचार किया गया था,कि कोई बौद्धिक चोरी नहीं हुई थी।<ref>{{cite web|last=Hager|first=Thomas|title=Narrative 43, Coils Upon Coils|url=http://scarc.library.oregonstate.edu/coll/pauling/proteins/narrative/page43.html|work=Linus Pauling and the Structure of Proteins|publisher=Oregon State University Special Collections and Archives Research Center|access-date=May 15, 2013}}</ref> अपने लेख में,क्रिक ने कुंडलित कुंडली और साथ ही साथ उनकी संरचना का निर्धारण करने के लिए गणितीय विधियों का प्रस्ताव दिया।<ref name="crick52">
{{cite journal | vauthors = Crick FH | title = Is alpha-keratin a coiled coil? | journal = Nature | volume = 170 | issue = 4334 | pages = 882–3 | date = Nov 1952 | pmid = 13013241 | doi = 10.1038/170882b0 | bibcode = 1952Natur.170..882C | s2cid = 4147931 }}</ref> उल्लेखनीय रूप से, यह लिनुस पॉलिंग और सहकर्मियों द्वारा 1951 में अल्फा कुंडली की संरचना का सुझाव दिए जाने के तुरंत बाद था।<ref name="pauling51">
{{cite journal | vauthors = Pauling L, Corey RB, Branson HR | title = The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 37 | issue = 4 | pages = 205–11 | date = Apr 1951 | pmid = 14816373 | pmc = 1063337 | doi = 10.1073/pnas.37.4.205 | bibcode = 1951PNAS...37..205P | doi-access = free }}</ref> इन अध्ययनों को केराटिन अनुक्रम के ज्ञान के अभाव में प्रकाशित किया गया था
 
1982 में हनुकोग्लू और फुच्स द्वारा पहले केराटिन अनुक्रम निर्धारित किए गए थे।अनुक्रम और द्वितीयक संरचना पूर्वानुमान विश्लेषण के आधार पर केराटिन के कुंडलित-कुंडली क्षेत्र की पहचान की गई।


== आणविक संरचना ==
== आणविक संरचना ==


कुंडलित कॉइल में सामान्यतः पर हाइड्रोफोबिक (एच) और आवेशित (सी) [[एमिनो एसिड]] अवशेषों का एक   पुनरावृत्ति   प्रतिरूप , hxxhcxc होता है, जिसे [[हेप्टाड दोहराना|हेप्टाड पुनरावृत्ति]] कहा जाता है।<ref name="mason2004">
कुंडलित कुंडली में सामान्यतः जलविरोधी (एच) और आवेशित (सी) [[एमिनो एसिड|एमिनो अम्ल]] अवशेषों का एक पुनरावृत्ति प्रतिरूप, ''hxxhcxc'' होता है, जिसे [[हेप्टाड दोहराना|हेप्टाड पुनरावृत्ति]] कहा जाता है।<ref name="mason2004">
{{cite journal | vauthors = Mason JM, Arndt KM | title = Coiled coil domains: stability, specificity, and biological implications | journal = ChemBioChem | volume = 5 | issue = 2 | pages = 170–6 | date = Feb 2004 | pmid = 14760737 | doi = 10.1002/cbic.200300781 | s2cid = 39252601 }}</ref>
{{cite journal | vauthors = Mason JM, Arndt KM | title = Coiled coil domains: stability, specificity, and biological implications | journal = ChemBioChem | volume = 5 | issue = 2 | pages = 170–6 | date = Feb 2004 | pmid = 14760737 | doi = 10.1002/cbic.200300781 | s2cid = 39252601 }}</ref>हेप्टाड प्रतिरूप में स्थितियों को सामान्यतः ''abcdefg'' नामित किया जाता है, जहां ए और डी जलविरोधी स्थितियां होती हैं,जो सामान्यतः समानपीतकी अंडाणु, या [[वेलिन]] द्वारा अधिग्रहित कर ली जाती हैं। इस [[हेप्टाड दोहराना|पुनरावृत्ति]] प्रतिरूप के साथ एक [[अल्फा हेलिक्स|अल्फा कुंडली]] [[माध्यमिक संरचना]] में एक अनुक्रम को मोड़ने से जलविरोधी अवशेषों को एक 'स्ट्राइप' के रूप में प्रस्तुत किया जाता है जो बाएं हाथ के रूप में कुंडली के चारों ओर धीरे से कुंडलित होता है, जिससे एक [[वह कमजोर है|उभय संवेदी]] संरचना बनती है। इस तरह के दो हेलिक्स के लिए [[कोशिका द्रव्य]] के जल से भरे वातावरण में स्वयं को व्यवस्थित करने का सबसे अनुकूल तरीका है, [[हाइड्रोफिलिक|जलानुरागी]] अमीनो अम्ल के मध्यवर्ती किए गए जलविरोधी प्रकारों को एक दूसरे के साथ कुंडलित करता है। इस प्रकार,यह जलविरोधी सतहों का अंतयोष्टि क्रिया है जो ओलिगोमेरीकरण के लिए [[thermodynamic|ऊष्मागतिक]] चालन को बल प्रदान करता है। सामान्यतः कुंडलित-कुंडली अन्तरापृष्ठ में संकुल असाधारण रूप से सँकरा तथा लगभग पूर्ण वान्डरवाल्स और डी अवशेषों के [[प्रतिस्थापी]] है | पृष्ठ -छल्लो के मध्य बल संपर्क के साथ इस प्रगाढ संकुल के संदर्भ मे मूल रूप से 1952 में फ्रांसिस क्रिक द्वारा भविष्यवाणी की गई थी<ref name="crick52" />और इसे [[छेद पैकिंग में घुंडी|छेद संकुल में घुंडी]] कहा जाता है। हेलिक्स समानांतर या विरोधी-समानांतर हो सकते हैं,और सामान्यतः बाएं हाथ के सुपर-कुंडली (चित्र 1) को अपनाते हैं। यद्यपि प्रतिकूल, कुछ दाएँ हाथ की कुण्डलित कुण्डलियाँ भी नेचर द्वारा प्रारूप किए गए प्रोटीनों में देखी गई हैं।
हेप्टाड प्रतिरूप में स्थितियों को सामान्यतः     एबीसीडीईएफ़जी लेबल किया जाता है, जहां ए और डी हाइड्रोफोबिक स्थितियां होती हैं, जो सामान्यतः आइसोल्यूसिन, या [[वेलिन]] द्वारा अधिग्रहण कर ली जाती हैं। इस दोहराए जाने वाले प्रतिरूप के साथ एक [[अल्फा हेलिक्स]] [[माध्यमिक संरचना]] में एक अनुक्रम को मोड़ने से हाइड्रोफोबिक अवशेषों को एक 'स्ट्राइप' के रूप में प्रस्तुत किया जाता है जो बाएं हाथ का रूप देना  हेलिक्स के चारों ओर धीरे से कुंडलित होता है, जिससे एक [[वह कमजोर है]] संरचना बनती है। इस तरह के दो ऊष्मागतिक के लिए [[कोशिका द्रव्य]] के पानी से भरे वातावरण में स्वयं को व्यवस्थित करने का सबसे अनुकूल तरीका [[हाइड्रोफिलिक]] अमीनो एसिड के बीच मध्यवर्ती किए गए हाइड्रोफोबिक  किस्मो को एक दूसरे के विरुद्ध लपेटना है। इस प्रकार,यह हाइड्रोफोबिक सतहों का अंतयोष्टि क्रिया है जो ओलिगोमेरीकरण के लिए [[thermodynamic|ऊष्मागतिक]] चालन बल प्रदान करता है। सामान्यतः कॉइल्ड-कॉइल इंटरफ़ेस में संकुल असाधारण रूप से तंग है, लगभग पूर्ण [[वैन डेर वाल्स बल]] और डी अवशेषों के [[प्रतिस्थापी]] | पृष्ठ -छल्लो के बीच बल संपर्क के साथ इस प्रगाढ संकुल की मूल रूप से 1952 में फ्रांसिस क्रिक द्वारा भविष्यवाणी की गई थी<ref name="crick52" />और इसे [[छेद पैकिंग में घुंडी|छेद संकुल में घुंडी]] कहा जाता है।


अल्फा-हेलिक्स | ए -हेलीकेस समानांतर या विरोधी-समानांतर हो सकते हैं, और सामान्यतः  बाएं हाथ के सुपर-कॉइल को अपनाते हैं।  कुछ दाएं हाथ के कुंडलित कुंडल भी प्रकृति में और प्रारूप किए गए प्रोटीनों में देखे गए हैं।<ref name="harbury1998">{{cite journal | vauthors = Harbury PB, Plecs JJ, Tidor B, Alber T, Kim PS | title = High-resolution protein design with backbone freedom | journal = Science | volume = 282 | issue = 5393 | pages = 1462–7 | date = Nov 1998 | pmid = 9822371 | doi = 10.1126/science.282.5393.1462 }}</ref>




Line 24: Line 23:
=== एचआईवी संक्रमण में भूमिका ===
=== एचआईवी संक्रमण में भूमिका ===


[[Image:gp41 coiled coil hexamer 1aik sideview.png|thumb|200px|right|gp41 हेक्सामेर का पार्श्व दृश्य जो लक्ष्य कोशिका में एचआईवी के प्रवेश की पहल करता है।]]CD4 पॉजिटिव कोशिकाओं में वायरल का प्रवेश तब शुरू होता है जब ग्लाइकोप्रोटीन 120 (gp120) की तीन सबयूनिट्स CD4 रिसेप्टर और एक कोरसेप्टर से बंध जाती हैं। ग्लाइकोप्रोटीन gp120 वैन डेर वाल्स इंटरैक्शन के माध्यम से gp41 के ट्रिमर से निकटता से जुड़ा हुआ है। CD4 रिसेप्टर और कोरसेप्टर के लिए gp120 के बंधन में होने पर, संरचना में कई परिवर्तनकारी परिवर्तन gp120 के पृथक्करण और gp41 के संपर्क में आते हैं और उसी समय gp41 एन-टर्मिनल फ्यूजन पेप्टाइड अनुक्रम के एंकरिंग के लिए होस्ट सेल। एक स्प्रिंग-लोडेड मैकेनिज्म वायरल और सेल मेम्ब्रेन को पर्याप्त निकटता में लाने के लिए जिम्मेदार होता है जिससे वे फ्यूज हो जाएंगे। स्प्रिंग-लोडेड मैकेनिज्म की उत्पत्ति उजागर gp41 के भीतर होती है, जिसमें प्रोटीन के एन टर्मिनस पर फ्यूजन पेप्टाइड के बाद लगातार दो हेप्टाड रिपीट (HR1 और HR2) होते हैं। एचआर1 एक समानांतर, ट्रिमेरिक कुंडलित कुंडली बनाता है जिस पर एचआर2 क्षेत्र कुंडली बनाता है, ट्रिमर-ऑफ-हेयरपिन या छह-हेलिक्स बंडल संरचना बनाता है, जिससे झिल्ली को एक दूसरे के करीब लाकर झिल्ली संलयन की सुविधा मिलती है। वायरस तब कोशिका में प्रवेश करता है और इसकी प्रतिकृति प्रारंभ   करता है। हाल ही में, एचआर2 से व्युत्पन्न अवरोधक जैसे कि [[enfuvirtide]] (डीपी178, टी-20) जीपी41 पर एचआर1 क्षेत्र से बंधते हैं, विकसित किए गए हैं। हालांकि, एचआर1 से प्राप्त पेप्टाइड्स में इन पेप्टाइड्स के समाधान में एकत्रित होने की प्रवृत्ति के कारण बहुत कम वायरल अवरोधक प्रभावकारिता है। GCN4 ल्यूसीन ज़िपर वाले इन HR1-व्युत्पन्न पेप्टाइड्स के काइमेरा को विकसित किया गया है और यह एंफुवार्टाइड से अधिक सक्रिय दिखाया गया है, लेकिन ये अभी तक क्लिनिक में प्रवेश नहीं कर पाए हैं।
[[Image:gp41 coiled coil hexamer 1aik sideview.png|thumb|200px|right|gp41 हेक्सामेर का पार्श्व दृश्य जो लक्ष्य कोशिका में एचआईवी के प्रवेश की पहल करता है।]]CD4 धनात्मक कोशिकाओं में विषाणुओ का प्रवेश तब प्रारंभ होता है जब [[gp120|ग्लाइकोप्रोटीन120]] की तीन उपईकाइयाँ CD4 ग्राही और एक सह-ग्राही से बंध जाती हैं। ग्लाइकोप्रोटीन 120 वैन डेर वाल्स अंतःक्रिया के माध्यम से [[gp41]] के त्रितयी से निकटता से जुड़ा हुआ है। CD4 ग्राही और सह-ग्राही के लिए gp120 के बंधन में होने पर, संरचना में कई परिवर्तनकारी परिवर्तन gp120 के पृथक्करण और उसी समय gp41 एन-सीमावर्ती युग्मन पेप्टाइड अनुक्रम के निबंधन के लिए पोषी कोशिकाओ के संपर्क मे आते हैं। एक [[भरा हुआ वसंत|स्प्रिंग भारित]] यंत्र विन्यास विषाणु और कोशिका झिल्ली को पर्याप्त निकटता में लाने के लिए उत्तरदायी होता है जिससे वे संयोजित हो जाते हैं। स्प्रिंग-भारित तंत्र की उत्पत्ति gp41 के भीतर होती है, जिसमें प्रोटीन के n सीमा पर संयोजित पेप्टाइड के बाद लगातार दो हेप्टाड प्रतिरूप HR1 और HR2 होते हैं। HR1 एक समानांतर, त्रितयी कुंडलित कुंडली बनाता है जिस पर HR2 क्षेत्र कुंडली बनाता है और त्रितयी-ऑफ-हेयरपिन संरचना बनाता है, जिससे झिल्ली को एक दूसरे के निकट लाकर झिल्ली संलयन की सुविधा मिलती है। विषाणु तब कोशिका में प्रवेश करता है और इसकी प्रतिकृति प्रारंभ करता है। हाल ही में, एचआर2 से व्युत्पन्न अवरोधक जैसे कि डीपी 178, टी-20, gp41 पर HR1 क्षेत्र से बंधते हैं तथा विकसित किए गए हैं। यद्यपि, HR1 से प्राप्त पेप्टाइड्स में इन पेप्टाइड्स के समाधान में एकत्रित होने की प्रवृत्ति के कारण अत्यधिक कम विषाणु अवरोधक प्रभावकारिता है। GCN4 ल्यूसीन ज़िपर के साथ HR1-व्युत्पन्न पेप्टाइड्स विकसित किए गए हैं और फ़्यूज़ोन की तुलना में अधिक सक्रिय हैं, लेकिन ये अभी तक चिकित्सालय में प्रवेश नहीं कर पाए हैं।


=== ओलिगोमेराइजेशन टैग के रूप में ===
=== ऑलिगोमेरिकरण प्रचिह्न के रूप में ===
उनके विशिष्ट अंतःक्रिया के कारण कुंडलित कॉइल को एक विशिष्ट ओलिगोमेराइजेशन स्थिति को स्थिर या लागू करने के लिए टैग के रूप में उपयोग किया जा सकता है।<ref name="Deiss_2014">{{cite journal | vauthors = Deiss S, Hernandez Alvarez B, Bär K, Ewers CP, Coles M, Albrecht R, Hartmann MD | title = आपकी व्यक्तिगत प्रोटीन संरचना: आंद्रेई एन लुपास जीसीएन 4 एडेप्टर से जुड़ा हुआ है| journal = Journal of Structural Biology | volume = 186 | issue = 3 | pages = 380–5 | date = June 2014 | pmid = 24486584 | doi = 10.1016/j.jsb.2014.01.013 | doi-access = free }}</रेफरी> [[बीबीसम]] के [[बीबीएस2]] और [[सही]] सबयूनिट्स के ऑलिगोमेराइजेशन को चलाने के लिए एक कॉइल्ड कॉइल इंटरेक्शन देखा गया है। रेफरी>{{cite journal |last1=Chou |first1=Hui-Ting |last2=Apelt |first2=Luise |last3=Farrell |first3=Daniel P. |last4=White |first4=Susan Roehl |last5=Woodsmith |first5=Jonathan |last6=Svetlov |first6=Vladimir |last7=Goldstein |first7=Jaclyn S. |last8=Nager |first8=Andrew R. |last9=Li |first9=Zixuan |last10=Muller |first10=Jean |last11=Dollfus |first11=Helene |last12=Nudler |first12=Evgeny |last13=Stelzl |first13=Ulrich |last14=DiMaio |first14=Frank |last15=Nachury |first15=Maxance V. |last16=Walz |first16=Thomas |title=इंटीग्रेटेड स्ट्रक्चरल एप्रोच द्वारा प्राप्त नेटिव बीबीसम की मॉलिक्यूलर आर्किटेक्चर|journal=Structure |date=3 September 2019 |volume=27 |issue=9 |pages=1384–1394 |doi=10.1016/j.str.2019.06.006 |pmid=31303482 |pmc=6726506 }}</रेफरी> रेफरी>{{cite journal |last1=Ludlam |first1=WG |last2=Aoba |first2=T |last3=Cuéllar |first3=J |last4=Bueno-Carrasco |first4=MT |last5=Makaju |first5=A |last6=Moody |first6=JD |last7=Franklin |first7=S |last8=Valpuesta |first8=JM |last9=Willardson |first9=BM |title=बार्डेट-बाइडल सिंड्रोम प्रोटीन 2-7-9 उपसमुच्चय की आणविक संरचना।|journal=The Journal of Biological Chemistry |volume=294 |issue=44 |pages=16385–16399 |date=17 September 2019 |doi=10.1074/jbc.RA119.010150 |pmid=31530639|pmc=6827290 |doi-access=free }}</रेफरी>
उनके विशिष्ट अंतःक्रिया के कारण कुंडलित कुंडली को एक विशिष्ट ऑलिगोमेरिकरण स्थिति को स्थिर या लागू करने के लिए प्रचिह्न के रूप में उपयोग किया जा सकता है।<ref name="Deiss_2014">{{cite journal | vauthors = Deiss S, Hernandez Alvarez B, Bär K, Ewers CP, Coles M, Albrecht R, Hartmann MD | title = आपकी व्यक्तिगत प्रोटीन संरचना: आंद्रेई एन लुपास जीसीएन 4 एडेप्टर से जुड़ा हुआ है| journal = Journal of Structural Biology | volume = 186 | issue = 3 | pages = 380–5 | date = June 2014 | pmid = 24486584 | doi = 10.1016/j.jsb.2014.01.013 | doi-access = free }}</ref> [[बीबीसम]] के [[बीबीएस2]] और [[सही]] सबयूनिट्स के ऑलिगोमेराइजेशन को चलाने के लिए एक कॉइल्ड कॉइल इंटरेक्शन देखा गया है। <ref>{{cite journal |last1=Chou |first1=Hui-Ting |last2=Apelt |first2=Luise |last3=Farrell |first3=Daniel P. |last4=White |first4=Susan Roehl |last5=Woodsmith |first5=Jonathan |last6=Svetlov |first6=Vladimir |last7=Goldstein |first7=Jaclyn S. |last8=Nager |first8=Andrew R. |last9=Li |first9=Zixuan |last10=Muller |first10=Jean |last11=Dollfus |first11=Helene |last12=Nudler |first12=Evgeny |last13=Stelzl |first13=Ulrich |last14=DiMaio |first14=Frank |last15=Nachury |first15=Maxance V. |last16=Walz |first16=Thomas |title=इंटीग्रेटेड स्ट्रक्चरल एप्रोच द्वारा प्राप्त नेटिव बीबीसम की मॉलिक्यूलर आर्किटेक्चर|journal=Structure |date=3 September 2019 |volume=27 |issue=9 |pages=1384–1394 |doi=10.1016/j.str.2019.06.006 |pmid=31303482 |pmc=6726506 }}</ref> <ref>{{cite journal |last1=Ludlam |first1=WG |last2=Aoba |first2=T |last3=Cuéllar |first3=J |last4=Bueno-Carrasco |first4=MT |last5=Makaju |first5=A |last6=Moody |first6=JD |last7=Franklin |first7=S |last8=Valpuesta |first8=JM |last9=Willardson |first9=BM |title=बार्डेट-बाइडल सिंड्रोम प्रोटीन 2-7-9 उपसमुच्चय की आणविक संरचना।|journal=The Journal of Biological Chemistry |volume=294 |issue=44 |pages=16385–16399 |date=17 September 2019 |doi=10.1074/jbc.RA119.010150 |pmid=31530639|pmc=6827290 |doi-access=free }}</ref>


== डिजाइन ==
== डिजाइन ==
अमीनो एसिड अनुक्रम (तथाकथित [[प्रोटीन संरचना भविष्यवाणी]]) दिए जाने पर प्रोटीन की तह संरचना पर निर्णय लेने की सामान्य समस्या हल नहीं हुई है। हालांकि, कुंडलित कॉइल अपेक्षाकृत कम संख्या में तह रूपांकनों में से एक है, जिसके लिए अनुक्रम और अंतिम तह संरचना के बीच संबंधों को तुलनात्मक रूप से अच्छी तरह से समझा जाता है।<ref name="Bromely2008">
अमीनो एसिड अनुक्रम (तथाकथित [[प्रोटीन संरचना भविष्यवाणी]]) दिए जाने पर प्रोटीन की तह संरचना पर निर्णय लेने की सामान्य समस्या हल नहीं हुई है। हालांकि, कुंडलित कॉइल अपेक्षाकृत कम संख्या में तह रूपांकनों में से एक है, जिसके लिए अनुक्रम और अंतिम तह संरचना के बीच संबंधों को तुलनात्मक रूप से अच्छी तरह से समझा जाता है।<ref name="Bromely2008">
{{cite journal | vauthors = Bromley EH, Channon K, Moutevelis E, Woolfson DN | title = Peptide and protein building blocks for synthetic biology: from programming biomolecules to self-organized biomolecular systems | journal = ACS Chemical Biology | volume = 3 | issue = 1 | pages = 38–50 | date = Jan 2008 | pmid = 18205291 | doi = 10.1021/cb700249v }}</ref><ref name="mahrenholz2011">
{{cite journal | vauthors = Bromley EH, Channon K, Moutevelis E, Woolfson DN | title = Peptide and protein building blocks for synthetic biology: from programming biomolecules to self-organized biomolecular systems | journal = ACS Chemical Biology | volume = 3 | issue = 1 | pages = 38–50 | date = Jan 2008 | pmid = 18205291 | doi = 10.1021/cb700249v }}</ref><ref name="mahrenholz2011">
{{cite journal | vauthors = Mahrenholz CC, Abfalter IG, Bodenhofer U, Volkmer R, Hochreiter S | title = Complex networks govern coiled-coil oligomerization--predicting and profiling by means of a machine learning approach | journal = Molecular & Cellular Proteomics | volume = 10 | issue = 5 | pages = M110.004994 | date = May 2011 | pmid = 21311038 | pmc = 3098589 | doi = 10.1074/mcp.M110.004994 }}</ref> हारबरी एट अल। एक आर्किटेपल कॉइल्ड कॉइल, GCN4 का उपयोग करके एक ऐतिहासिक अध्ययन किया, जिसमें पेप्टाइड अनुक्रम ओलिगोमेरिक स्थिति को प्रभावित करने वाले नियमों (यानी, अंतिम असेंबली में अल्फा-हेलिक्स | अल्फा-हेलीसेस की संख्या) को स्थापित किया गया था।<ref name="Harbury1993">
{{cite journal | vauthors = Mahrenholz CC, Abfalter IG, Bodenhofer U, Volkmer R, Hochreiter S | title = Complex networks govern coiled-coil oligomerization--predicting and profiling by means of a machine learning approach | journal = Molecular & Cellular Proteomics | volume = 10 | issue = 5 | pages = M110.004994 | date = May 2011 | pmid = 21311038 | pmc = 3098589 | doi = 10.1074/mcp.M110.004994 }}</ref> हारबरी एटअल ने आद्यप्ररूपीय कुंडलित कुंडली, GCN4 का उपयोग करके एक ऐतिहासिक अध्ययन किया, जिसमें पेप्टाइड अनुक्रम ओलिगोमेरिक स्थिति को प्रभावित करने वाले नियमों अर्थात,अंतिम समायोजन में अल्फा-कुंडली को स्थापित किया गया था।<ref name="Harbury1993">
{{cite journal | vauthors = Harbury PB, Zhang T, Kim PS, Alber T | s2cid = 45833675 | title = A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants | journal = Science | volume = 262 | issue = 5138 | pages = 1401–7 | date = Nov 1993 | pmid = 8248779 | doi = 10.1126/science.8248779 | bibcode = 1993Sci...262.1401H }}</ref><ref name="Harbury1994">
{{cite journal | vauthors = Harbury PB, Zhang T, Kim PS, Alber T | s2cid = 45833675 | title = A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants | journal = Science | volume = 262 | issue = 5138 | pages = 1401–7 | date = Nov 1993 | pmid = 8248779 | doi = 10.1126/science.8248779 | bibcode = 1993Sci...262.1401H }}</ref><ref name="Harbury1994">
{{cite journal | vauthors = Harbury PB, Kim PS, Alber T | title = Crystal structure of an isoleucine-zipper trimer | journal = Nature | volume = 371 | issue = 6492 | pages = 80–3 | date = Sep 1994 | pmid = 8072533 | doi = 10.1038/371080a0 | bibcode = 1994Natur.371...80H | s2cid = 4319206 }}</ref> GCN4 कुंडलित कुंडल एक 31-अमीनो-एसिड (जो सिर्फ चार से अधिक हेप्टाड्स के बराबर है) समानांतर, डिमेरिक (यानी, दो अल्फा-हेलिक्स|अल्फा-हेलीसेस से मिलकर) कुंडलित कुंडल है और इसमें बार-बार आइसोल्यूसिन (या I, एमिनो में) है एसिड # मानक अमीनो एसिड संक्षेपों और गुणों की तालिका | एकल-अक्षर कोड) और ल्यूसीन (एल) क्रमशः ए और डी पदों पर, और एक डिमेरिक कॉइल्ड कॉइल बनाता है। जब a और d स्थितियों में अमीनो एसिड I से a और L पर d से I में a और I पर d में बदल दिए गए, तो एक ट्रिमेरिक (तीन अल्फा-हेलिक्स|अल्फा-हेलीसिस) कुंडलित कॉइल का निर्माण हुआ। इसके अलावा, एल की स्थिति को ए और आई से डी पर स्विच करने के परिणामस्वरूप टेट्रामेरिक (चार अल्फा-हेलिक्स | अल्फा-हेलिस) कुंडलित कॉइल का निर्माण हुआ। ये कॉइल्ड कॉइल ऑलिगोमेरिक स्टेट्स के निर्धारण के लिए नियमों के एक सेट का प्रतिनिधित्व करते हैं और वैज्ञानिकों को ओलिगोमेराइजेशन व्यवहार को प्रभावी ढंग से डायल-इन करने की अनुमति देते हैं। कुंडलित कुंडल असेंबली का एक अन्य पहलू जो अपेक्षाकृत अच्छी तरह से समझा जाता है, कम से कम डिमेरिक कुंडलित कुंडलियों के मामले में, यह है कि एक स्थिति का विरोध करने पर एक ध्रुवीय अवशेष (विशेष रूप से [[asparagine]], N) रखने से कुंडलित कुंडल के समानांतर संयोजन को बल मिलता है। यह प्रभाव इन अवशेषों के बीच एक स्व-पूरक [[हाइड्रोजन बंध]]न के कारण होता है, जो असंतुष्ट हो जाएगा यदि एन को जोड़ा गया था, उदाहरण के लिए, विरोधी हेलिक्स पर एल।<ref name="Woolfson2005">
{{cite journal | vauthors = Harbury PB, Kim PS, Alber T | title = Crystal structure of an isoleucine-zipper trimer | journal = Nature | volume = 371 | issue = 6492 | pages = 80–3 | date = Sep 1994 | pmid = 8072533 | doi = 10.1038/371080a0 | bibcode = 1994Natur.371...80H | s2cid = 4319206 }}</ref> GCN4 कुंडलित कुंडल एक 31-अमीनो-अम्ल जो सिर्फ चार से अधिक हेप्टाड्स समानांतर, द्वितयी अर्थात, दो अल्फा-कुंडली से मिलकर निर्मित कुंडलित कुंडल है और इसमें बार-बार समानपीतकी अंडाणु मानक अमीनो अम्ल संक्षेपों और गुणों की तालिका क्रमशः ए और डी पदों पर,और एक द्वितयी कुंडलित कुंडली बनाता है। जब a और d स्थितियों में अमीनो अम्ल से a और L पर d से बदल दिए गए, तो एक त्रितयी कुंडलित कुंडली का निर्माण हुआ। इसके अतिरिक्त,एल की स्थिति को ए और आई से डी पर परिवर्तित करने के परिणामस्वरूप चार अल्फा कुंडलित कुंडली का निर्माण हुआ। ये कुंडलित कुंडली ऑलिगोमेरिक स्थिति के निर्धारण के लिए नियमों के एक समुच्चय का प्रतिनिधित्व करते हैं और वैज्ञानिकों को ऑलिगोमेरिकरण व्यवहार को प्रभावी ढंग से संदर्भित करने की अनुमति देते हैं। कुंडलित कुंडल समायोजन का एक अन्य पक्ष जो अपेक्षाकृत अच्छी तरह से समझा जाता है, कम से कम द्वितयी कुंडलित कुंडलियों के संदर्भों में यह है कि एक स्थिति का विरोध करने पर एक ध्रुवीय अवशेष रखने से कुंडलित कुंडल के समानांतर संयोजन को बल मिलता है। यह प्रभाव इन अवशेषों के बीच एक स्व-पूरक [[हाइड्रोजन बंध]]न के कारण होता है, जो यदि n को जोड़ा गया तों विकारी हो जाएगा, उदाहरण के लिए, विरोधी कुंडली पर L।<ref name="Woolfson2005">
{{cite journal
{{cite journal
  |last=Woolfson |first=DN
  |last=Woolfson |first=DN
Line 46: Line 45:
  |isbn=9780120342709
  |isbn=9780120342709
  }}</ref>
  }}</ref>
यह हाल ही में मयूर, [[कड़वा जीवन]] और सहकर्मियों द्वारा प्रदर्शित किया गया था कि कुंडलित कॉइल को एक टेम्पलेट के रूप में लैंथेनाइड (III) आयनों का उपयोग करके स्व-इकट्ठा किया जा सकता है, इस प्रकार उपन्यास इमेजिंग एजेंटों का उत्पादन होता है।<ref>{{cite journal|vauthors=Berwick MR, Lewis DJ, Jones AW, Parslow RA, Dafforn TR, Cooper HJ, Wilkie J, [[Zoe Pikramenou|Pikramenou Z]], Britton MM, Peacock AF|date=Jan 2014|title=De novo design of Ln(III) coiled coils for imaging applications|journal=Journal of the American Chemical Society|volume=136|issue=4|pages=1166–9|doi=10.1021/ja408741h|pmc=3950886|pmid=24405157}}</ref>
 
यह हाल ही में पिकोक्क, [[कड़वा जीवन|पिक्रमेनौ]] और सहकर्मियों द्वारा प्रदर्शित किया गया था कि कुंडलित कुंडल को एक आदर्श के रूप में लैन्थैनाइड (III) आयनों का उपयोग करके स्व-इकट्ठा किया जा सकता है, इस प्रकार नवीन आरेखों का उत्पादन किया जा सकता है।<ref>{{cite journal|vauthors=Berwick MR, Lewis DJ, Jones AW, Parslow RA, Dafforn TR, Cooper HJ, Wilkie J, [[Zoe Pikramenou|Pikramenou Z]], Britton MM, Peacock AF|date=Jan 2014|title=De novo design of Ln(III) coiled coils for imaging applications|journal=Journal of the American Chemical Society|volume=136|issue=4|pages=1166–9|doi=10.1021/ja408741h|pmc=3950886|pmid=24405157}}</ref>
 
 
 
 
 
 
 
 
 
 




Line 80: Line 90:
* [http://groups.csail.mit.edu/cb/paircoil2 Paircoil2] / [http://groups.csail.mit.edu/cb/paircoil Paircoil]
* [http://groups.csail.mit.edu/cb/paircoil2 Paircoil2] / [http://groups.csail.mit.edu/cb/paircoil Paircoil]
* [http://www.syntbio.net/bCIPA/ bCIPA] कुंडलित कुंडल जोड़े के लिए Tm मानों का अनुमान लगाता है
* [http://www.syntbio.net/bCIPA/ bCIPA] कुंडलित कुंडल जोड़े के लिए Tm मानों का अनुमान लगाता है
* [https://people.bath.ac.uk/jm2219/biology/bcipa-library.php bCIPA लाइब्रेरी स्क्रीन] एक परिभाषित लक्ष्य के खिलाफ अनुक्रमों की एक लाइब्रेरी को स्क्रीन करता है और सभी कुंडलित कॉइल जोड़े के लिए Tm मानों का अनुमान लगाता है।
* [https://people.bath.ac.uk/jm2219/biology/bcipa-library.php bCIPA लाइब्रेरी स्क्रीन] एक परिभाषित लक्ष्य के खिलाफ अनुक्रमों की एक लाइब्रेरी को स्क्रीन करता है और सभी कुंडलित कुंडली जोड़े के लिए Tm मानों का अनुमान लगाता है।
* [http://people.bath.ac.uk/jm2219/biology/bcipa-interactome.php bCIPA इंटरएक्टोम स्क्रीन] परिभाषित अनुक्रमों के चयन के बीच सभी इंटरैक्शन को स्क्रीन करता है और सभी कुंडलित कॉइल जोड़े के लिए Tm मानों का अनुमान लगाता है।
* [http://people.bath.ac.uk/jm2219/biology/bcipa-interactome.php bCIPA इंटरएक्टोम स्क्रीन] परिभाषित अनुक्रमों के चयन के बीच सभी इंटरैक्शन को स्क्रीन करता है और सभी कुंडलित कुंडली जोड़े के लिए Tm मानों का अनुमान लगाता है।
* [http://3d-alignment.eu/ STRAP] में AA-अनुक्रमों से कुंडलित-कुंडलियों की भविष्यवाणी करने के लिए एक एल्गोरिदम शामिल है।
* [http://3d-alignment.eu/ STRAP] में AA-अनुक्रमों से कुंडलित-कुंडलियों की भविष्यवाणी करने के लिए एक एल्गोरिदम शामिल है।
* [http://www.bioinf.jku.at/software/procoil/ ProOCoil] कॉइल्ड कॉइल प्रोटीन के ऑलिगोमेराइजेशन की भविष्यवाणी करता है और समग्र ओलिगोमेरिक प्रवृत्ति के लिए प्रत्येक व्यक्ति अमीनो एसिड के योगदान की कल्पना करता है।
* [http://www.bioinf.jku.at/software/procoil/ ProOCoil] कुंडलित कुंडली प्रोटीन के ऑलिगोमेराइजेशन की भविष्यवाणी करता है और समग्र ओलिगोमेरिक प्रवृत्ति के लिए प्रत्येक व्यक्ति अमीनो अम्ल के योगदान की कल्पना करता है।
* [http://www.grigoryanlab.org/drawcoil/ DrawCoil] किसी भी ओलिगोमेराइजेशन अवस्था और ओरिएंटेशन के कुंडलित कॉइल के लिए हेलिकल व्हील डायग्राम बनाता है।
* [http://www.grigoryanlab.org/drawcoil/ DrawCoil] किसी भी ऑलिगोमेरिकरण अवस्था और ओरिएंटेशन के कुंडलित कुंडली के लिए हेलिकल व्हील डायग्राम बनाता है।


==== डेटाबेस ====
==== डेटाबेस ====
* [http://supfam.org/SUPERFAMILY/spiricoil Spiricoil] सभी पूरी तरह से अनुक्रमित जीवों के लिए कुंडलित कुंडल उपस्थिति और ओलिगोमेरिक स्थिति की भविष्यवाणी करने के लिए प्रोटीन डोमेन एनोटेशन का उपयोग करता है
* [http://supfam.org/SUPERFAMILY/spiricoil Spiricoil] सभी पूरी तरह से अनुक्रमित जीवों के लिए कुंडलित कुंडल उपस्थिति और ओलिगोमेरिक स्थिति की भविष्यवाणी करने के लिए प्रोटीन डोमेन एलेखेशन का उपयोग करता है
* [http://coiledcoils.chm.bris.ac.uk/ccplus/search/ CC+] [[प्रोटीन डेटा बैंक]] में पाए जाने वाले कुंडलित कुंडलियों का संबंधपरक डेटाबेस है
* [http://coiledcoils.chm.bris.ac.uk/ccplus/search/ CC+] [[प्रोटीन डेटा बैंक]] में पाए जाने वाले कुंडलित कुंडलियों का संबंधपरक डेटाबेस है
* [http://supfam.org/SUPERFAMILY SUPERFAMILY] सभी पूरी तरह से अनुक्रमित जीवों के लिए प्रोटीन डोमेन एनोटेशन, प्रोटीन कॉइल्ड कॉइल क्लास के विशेषज्ञ रूप से क्यूरेट किए गए संरचनात्मक वर्गीकरण पर आधारित
* [http://supfam.org/SUPERFAMILY SUPERFAMILY] सभी पूरी तरह से अनुक्रमित जीवों के लिए प्रोटीन डोमेन एलेखेशन, प्रोटीन कुंडलित कुंडली क्लास के विशेषज्ञ रूप से क्यूरेट किए गए संरचनात्मक वर्गीकरण पर आधारित
 
{{Protein tandem repeats}}
{{Protein secondary structure}}
श्रेणी:प्रोटीन फोल्ड्स
 


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Collapse templates]]
[[Category:Created On 16/02/2023]]
[[Category:Created On 16/02/2023]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with reference errors]]
[[Category:Pages with script errors]]
[[Category:Protein tandem repeats]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Templates Vigyan Ready]]
[[Category:Webarchive template archiveis links]]

Latest revision as of 18:20, 3 March 2023

चित्र 1: कुंडलित कुंडल का उत्कृष्ट उदाहरण GCN4 ल्यूसीन जिपर (PDB परिग्रहण कोड 1zik) है, जो एक समानांतर, बाएं हाथ का होमोडीमर है। यद्यपि, कई अन्य प्रकार के कुंडलित तार उपलब्ध हैं।

कुंडलित कुंडल प्रोटीन में एक संरचनात्मक रूपांकन है जिसमें 2-7 [1] अल्फा-हेलिक्स रस्सी की भाँति एक साथ कुंडलित होते हैं। डिमर और ट्रिमर सबसे साधारण प्रकार हैं, कई प्रकार कुंडलित कुंडल प्रोटीन के महत्वपूर्ण जैविक कार्यों में सम्मिलित होते हैं, जीन अभिव्यक्ति नियमन प्रतिलेखन कारक का उल्लेखनीय उदाहरण हैं जैसे कि ओंकोप्रोटीन सी-फॉस और सी-जून, साथ ही साथ मांसपेशी प्रोटीन ट्रोपोमायोस।

आविष्कार

अल्फा-केराटिन के लिए कुंडलित कुंडलियों की संभावना प्रारंभ में विवादास्पद थी। लिनस पॉलिंग और फ्रांसिस क्रिक स्वतंत्र रूप से इस निष्कर्ष पर पहुंचे कि यह लगभग उसी समय संभव था। 1952 की गर्मियों में, पॉलिंग ने इंगलैंड में उस प्रयोगशाला की यात्रा की जहाँ क्रिक ने कार्य किया था।

पॉलिंग और क्रिक मिले और विभिन्न विषयों पर बात की; एक बिंदु पर, क्रिक ने पूछा कि क्या पॉलिंग ने "कॉइलड कॉइल्स" पर विचार किया था, जिस पर पॉलिंग ने कहा कि उन्होंने किया था। संयुक्त राज्य अमेरिका लौटने पर, पॉलिंग ने इस विषय पर पुनः शोध प्रारंभ किया,और उन्होंने निष्कर्ष निकाला कि कुंडलित कुंडल उपलब्ध हैं, और अक्टूबर में जर्नल नेचर को एक लंबी पांडुलिपि प्रस्तुत की। पॉलिंग के बेटे पीटर पॉलिंग ने उसी प्रयोगशाला में क्रिक के रूप में कार्य किया, और उस रिपोर्ट का उल्लेख किया। क्रिक का मानना ​​था कि पॉलिंग ने उनके विचार को चुरा लिया है, और पॉलिंग की पांडुलिपि आने के कुछ दिनों बादनेचर को एक छोटा लेख प्रस्तुत किया। अन्ततः कुछ विवादों और लगातार पत्राचार के उपरांत, क्रिक की प्रयोगशाला ने घोषणा की कि कुंडलित कुंडलियों के विषय मे दोनों शोधकर्ताओं द्वारा स्वतंत्र रूप से विचार किया गया था,कि कोई बौद्धिक चोरी नहीं हुई थी।[1] अपने लेख में,क्रिक ने कुंडलित कुंडली और साथ ही साथ उनकी संरचना का निर्धारण करने के लिए गणितीय विधियों का प्रस्ताव दिया।[2] उल्लेखनीय रूप से, यह लिनुस पॉलिंग और सहकर्मियों द्वारा 1951 में अल्फा कुंडली की संरचना का सुझाव दिए जाने के तुरंत बाद था।[3] इन अध्ययनों को केराटिन अनुक्रम के ज्ञान के अभाव में प्रकाशित किया गया था

1982 में हनुकोग्लू और फुच्स द्वारा पहले केराटिन अनुक्रम निर्धारित किए गए थे।अनुक्रम और द्वितीयक संरचना पूर्वानुमान विश्लेषण के आधार पर केराटिन के कुंडलित-कुंडली क्षेत्र की पहचान की गई।

आणविक संरचना

कुंडलित कुंडली में सामान्यतः जलविरोधी (एच) और आवेशित (सी) एमिनो अम्ल अवशेषों का एक पुनरावृत्ति प्रतिरूप, hxxhcxc होता है, जिसे हेप्टाड पुनरावृत्ति कहा जाता है।[4]हेप्टाड प्रतिरूप में स्थितियों को सामान्यतः abcdefg नामित किया जाता है, जहां ए और डी जलविरोधी स्थितियां होती हैं,जो सामान्यतः समानपीतकी अंडाणु, या वेलिन द्वारा अधिग्रहित कर ली जाती हैं। इस पुनरावृत्ति प्रतिरूप के साथ एक अल्फा कुंडली माध्यमिक संरचना में एक अनुक्रम को मोड़ने से जलविरोधी अवशेषों को एक 'स्ट्राइप' के रूप में प्रस्तुत किया जाता है जो बाएं हाथ के रूप में कुंडली के चारों ओर धीरे से कुंडलित होता है, जिससे एक उभय संवेदी संरचना बनती है। इस तरह के दो हेलिक्स के लिए कोशिका द्रव्य के जल से भरे वातावरण में स्वयं को व्यवस्थित करने का सबसे अनुकूल तरीका है, जलानुरागी अमीनो अम्ल के मध्यवर्ती किए गए जलविरोधी प्रकारों को एक दूसरे के साथ कुंडलित करता है। इस प्रकार,यह जलविरोधी सतहों का अंतयोष्टि क्रिया है जो ओलिगोमेरीकरण के लिए ऊष्मागतिक चालन को बल प्रदान करता है। सामान्यतः कुंडलित-कुंडली अन्तरापृष्ठ में संकुल असाधारण रूप से सँकरा तथा लगभग पूर्ण वान्डरवाल्स और डी अवशेषों के प्रतिस्थापी है | पृष्ठ -छल्लो के मध्य बल संपर्क के साथ इस प्रगाढ संकुल के संदर्भ मे मूल रूप से 1952 में फ्रांसिस क्रिक द्वारा भविष्यवाणी की गई थी[2]और इसे छेद संकुल में घुंडी कहा जाता है। हेलिक्स समानांतर या विरोधी-समानांतर हो सकते हैं,और सामान्यतः बाएं हाथ के सुपर-कुंडली (चित्र 1) को अपनाते हैं। यद्यपि प्रतिकूल, कुछ दाएँ हाथ की कुण्डलित कुण्डलियाँ भी नेचर द्वारा प्रारूप किए गए प्रोटीनों में देखी गई हैं।


जैविक भूमिकाएँ

एचआईवी संक्रमण में भूमिका

gp41 हेक्सामेर का पार्श्व दृश्य जो लक्ष्य कोशिका में एचआईवी के प्रवेश की पहल करता है।

CD4 धनात्मक कोशिकाओं में विषाणुओ का प्रवेश तब प्रारंभ होता है जब ग्लाइकोप्रोटीन120 की तीन उपईकाइयाँ CD4 ग्राही और एक सह-ग्राही से बंध जाती हैं। ग्लाइकोप्रोटीन 120 वैन डेर वाल्स अंतःक्रिया के माध्यम से gp41 के त्रितयी से निकटता से जुड़ा हुआ है। CD4 ग्राही और सह-ग्राही के लिए gp120 के बंधन में होने पर, संरचना में कई परिवर्तनकारी परिवर्तन gp120 के पृथक्करण और उसी समय gp41 एन-सीमावर्ती युग्मन पेप्टाइड अनुक्रम के निबंधन के लिए पोषी कोशिकाओ के संपर्क मे आते हैं। एक स्प्रिंग भारित यंत्र विन्यास विषाणु और कोशिका झिल्ली को पर्याप्त निकटता में लाने के लिए उत्तरदायी होता है जिससे वे संयोजित हो जाते हैं। स्प्रिंग-भारित तंत्र की उत्पत्ति gp41 के भीतर होती है, जिसमें प्रोटीन के n सीमा पर संयोजित पेप्टाइड के बाद लगातार दो हेप्टाड प्रतिरूप HR1 और HR2 होते हैं। HR1 एक समानांतर, त्रितयी कुंडलित कुंडली बनाता है जिस पर HR2 क्षेत्र कुंडली बनाता है और त्रितयी-ऑफ-हेयरपिन संरचना बनाता है, जिससे झिल्ली को एक दूसरे के निकट लाकर झिल्ली संलयन की सुविधा मिलती है। विषाणु तब कोशिका में प्रवेश करता है और इसकी प्रतिकृति प्रारंभ करता है। हाल ही में, एचआर2 से व्युत्पन्न अवरोधक जैसे कि डीपी 178, टी-20, gp41 पर HR1 क्षेत्र से बंधते हैं तथा विकसित किए गए हैं। यद्यपि, HR1 से प्राप्त पेप्टाइड्स में इन पेप्टाइड्स के समाधान में एकत्रित होने की प्रवृत्ति के कारण अत्यधिक कम विषाणु अवरोधक प्रभावकारिता है। GCN4 ल्यूसीन ज़िपर के साथ HR1-व्युत्पन्न पेप्टाइड्स विकसित किए गए हैं और फ़्यूज़ोन की तुलना में अधिक सक्रिय हैं, लेकिन ये अभी तक चिकित्सालय में प्रवेश नहीं कर पाए हैं।

ऑलिगोमेरिकरण प्रचिह्न के रूप में

उनके विशिष्ट अंतःक्रिया के कारण कुंडलित कुंडली को एक विशिष्ट ऑलिगोमेरिकरण स्थिति को स्थिर या लागू करने के लिए प्रचिह्न के रूप में उपयोग किया जा सकता है।[5] बीबीसम के बीबीएस2 और सही सबयूनिट्स के ऑलिगोमेराइजेशन को चलाने के लिए एक कॉइल्ड कॉइल इंटरेक्शन देखा गया है। [6] [7]

डिजाइन

अमीनो एसिड अनुक्रम (तथाकथित प्रोटीन संरचना भविष्यवाणी) दिए जाने पर प्रोटीन की तह संरचना पर निर्णय लेने की सामान्य समस्या हल नहीं हुई है। हालांकि, कुंडलित कॉइल अपेक्षाकृत कम संख्या में तह रूपांकनों में से एक है, जिसके लिए अनुक्रम और अंतिम तह संरचना के बीच संबंधों को तुलनात्मक रूप से अच्छी तरह से समझा जाता है।[8][9] हारबरी एटअल ने आद्यप्ररूपीय कुंडलित कुंडली, GCN4 का उपयोग करके एक ऐतिहासिक अध्ययन किया, जिसमें पेप्टाइड अनुक्रम ओलिगोमेरिक स्थिति को प्रभावित करने वाले नियमों अर्थात,अंतिम समायोजन में अल्फा-कुंडली को स्थापित किया गया था।[10][11] GCN4 कुंडलित कुंडल एक 31-अमीनो-अम्ल जो सिर्फ चार से अधिक हेप्टाड्स समानांतर, द्वितयी अर्थात, दो अल्फा-कुंडली से मिलकर निर्मित कुंडलित कुंडल है और इसमें बार-बार समानपीतकी अंडाणु मानक अमीनो अम्ल संक्षेपों और गुणों की तालिका क्रमशः ए और डी पदों पर,और एक द्वितयी कुंडलित कुंडली बनाता है। जब a और d स्थितियों में अमीनो अम्ल से a और L पर d से बदल दिए गए, तो एक त्रितयी कुंडलित कुंडली का निर्माण हुआ। इसके अतिरिक्त,एल की स्थिति को ए और आई से डी पर परिवर्तित करने के परिणामस्वरूप चार अल्फा कुंडलित कुंडली का निर्माण हुआ। ये कुंडलित कुंडली ऑलिगोमेरिक स्थिति के निर्धारण के लिए नियमों के एक समुच्चय का प्रतिनिधित्व करते हैं और वैज्ञानिकों को ऑलिगोमेरिकरण व्यवहार को प्रभावी ढंग से संदर्भित करने की अनुमति देते हैं। कुंडलित कुंडल समायोजन का एक अन्य पक्ष जो अपेक्षाकृत अच्छी तरह से समझा जाता है, कम से कम द्वितयी कुंडलित कुंडलियों के संदर्भों में यह है कि एक स्थिति का विरोध करने पर एक ध्रुवीय अवशेष रखने से कुंडलित कुंडल के समानांतर संयोजन को बल मिलता है। यह प्रभाव इन अवशेषों के बीच एक स्व-पूरक हाइड्रोजन बंधन के कारण होता है, जो यदि n को जोड़ा गया तों विकारी हो जाएगा, उदाहरण के लिए, विरोधी कुंडली पर L।[12]

यह हाल ही में पिकोक्क, पिक्रमेनौ और सहकर्मियों द्वारा प्रदर्शित किया गया था कि कुंडलित कुंडल को एक आदर्श के रूप में लैन्थैनाइड (III) आयनों का उपयोग करके स्व-इकट्ठा किया जा सकता है, इस प्रकार नवीन आरेखों का उत्पादन किया जा सकता है।[13]







संदर्भ

  1. Hager, Thomas. "Narrative 43, Coils Upon Coils". Linus Pauling and the Structure of Proteins. Oregon State University Special Collections and Archives Research Center. Retrieved May 15, 2013.
  2. 2.0 2.1 Crick FH (Nov 1952). "Is alpha-keratin a coiled coil?". Nature. 170 (4334): 882–3. Bibcode:1952Natur.170..882C. doi:10.1038/170882b0. PMID 13013241. S2CID 4147931.
  3. Pauling L, Corey RB, Branson HR (Apr 1951). "The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain". Proceedings of the National Academy of Sciences of the United States of America. 37 (4): 205–11. Bibcode:1951PNAS...37..205P. doi:10.1073/pnas.37.4.205. PMC 1063337. PMID 14816373.
  4. Mason JM, Arndt KM (Feb 2004). "Coiled coil domains: stability, specificity, and biological implications". ChemBioChem. 5 (2): 170–6. doi:10.1002/cbic.200300781. PMID 14760737. S2CID 39252601.
  5. Deiss S, Hernandez Alvarez B, Bär K, Ewers CP, Coles M, Albrecht R, Hartmann MD (June 2014). "आपकी व्यक्तिगत प्रोटीन संरचना: आंद्रेई एन लुपास जीसीएन 4 एडेप्टर से जुड़ा हुआ है". Journal of Structural Biology. 186 (3): 380–5. doi:10.1016/j.jsb.2014.01.013. PMID 24486584.
  6. Chou, Hui-Ting; Apelt, Luise; Farrell, Daniel P.; White, Susan Roehl; Woodsmith, Jonathan; Svetlov, Vladimir; Goldstein, Jaclyn S.; Nager, Andrew R.; Li, Zixuan; Muller, Jean; Dollfus, Helene; Nudler, Evgeny; Stelzl, Ulrich; DiMaio, Frank; Nachury, Maxance V.; Walz, Thomas (3 September 2019). "इंटीग्रेटेड स्ट्रक्चरल एप्रोच द्वारा प्राप्त नेटिव बीबीसम की मॉलिक्यूलर आर्किटेक्चर". Structure. 27 (9): 1384–1394. doi:10.1016/j.str.2019.06.006. PMC 6726506. PMID 31303482.
  7. Ludlam, WG; Aoba, T; Cuéllar, J; Bueno-Carrasco, MT; Makaju, A; Moody, JD; Franklin, S; Valpuesta, JM; Willardson, BM (17 September 2019). "बार्डेट-बाइडल सिंड्रोम प्रोटीन 2-7-9 उपसमुच्चय की आणविक संरचना।". The Journal of Biological Chemistry. 294 (44): 16385–16399. doi:10.1074/jbc.RA119.010150. PMC 6827290. PMID 31530639.
  8. Bromley EH, Channon K, Moutevelis E, Woolfson DN (Jan 2008). "Peptide and protein building blocks for synthetic biology: from programming biomolecules to self-organized biomolecular systems". ACS Chemical Biology. 3 (1): 38–50. doi:10.1021/cb700249v. PMID 18205291.
  9. Mahrenholz CC, Abfalter IG, Bodenhofer U, Volkmer R, Hochreiter S (May 2011). "Complex networks govern coiled-coil oligomerization--predicting and profiling by means of a machine learning approach". Molecular & Cellular Proteomics. 10 (5): M110.004994. doi:10.1074/mcp.M110.004994. PMC 3098589. PMID 21311038.
  10. Harbury PB, Zhang T, Kim PS, Alber T (Nov 1993). "A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants". Science. 262 (5138): 1401–7. Bibcode:1993Sci...262.1401H. doi:10.1126/science.8248779. PMID 8248779. S2CID 45833675.
  11. Harbury PB, Kim PS, Alber T (Sep 1994). "Crystal structure of an isoleucine-zipper trimer". Nature. 371 (6492): 80–3. Bibcode:1994Natur.371...80H. doi:10.1038/371080a0. PMID 8072533. S2CID 4319206.
  12. Woolfson, DN (2005). "The design of coiled-coil structures and assemblies". Adv. Protein. Chem. Advances in Protein Chemistry. 70 (4): 79–112. doi:10.1016/S0065-3233(05)70004-8. ISBN 9780120342709. PMID 15837514.
  13. Berwick MR, Lewis DJ, Jones AW, Parslow RA, Dafforn TR, Cooper HJ, Wilkie J, Pikramenou Z, Britton MM, Peacock AF (Jan 2014). "De novo design of Ln(III) coiled coils for imaging applications". Journal of the American Chemical Society. 136 (4): 1166–9. doi:10.1021/ja408741h. PMC 3950886. PMID 24405157.


अग्रिम पठन


बाहरी संबंध



कुंडलित-कुंडली संबंधित सॉफ्टवेयर

भविष्यवाणी, पहचान, और दृश्यता

  • Spiricoil predict Coiled Coil and Oligormeric state from a protein sequences at archive.today (archived 2012-12-23)
  • NCOILS at archive.today (archived 2002-01-11)
  • Paircoil2 / Paircoil
  • bCIPA कुंडलित कुंडल जोड़े के लिए Tm मानों का अनुमान लगाता है
  • bCIPA लाइब्रेरी स्क्रीन एक परिभाषित लक्ष्य के खिलाफ अनुक्रमों की एक लाइब्रेरी को स्क्रीन करता है और सभी कुंडलित कुंडली जोड़े के लिए Tm मानों का अनुमान लगाता है।
  • bCIPA इंटरएक्टोम स्क्रीन परिभाषित अनुक्रमों के चयन के बीच सभी इंटरैक्शन को स्क्रीन करता है और सभी कुंडलित कुंडली जोड़े के लिए Tm मानों का अनुमान लगाता है।
  • STRAP में AA-अनुक्रमों से कुंडलित-कुंडलियों की भविष्यवाणी करने के लिए एक एल्गोरिदम शामिल है।
  • ProOCoil कुंडलित कुंडली प्रोटीन के ऑलिगोमेराइजेशन की भविष्यवाणी करता है और समग्र ओलिगोमेरिक प्रवृत्ति के लिए प्रत्येक व्यक्ति अमीनो अम्ल के योगदान की कल्पना करता है।
  • DrawCoil किसी भी ऑलिगोमेरिकरण अवस्था और ओरिएंटेशन के कुंडलित कुंडली के लिए हेलिकल व्हील डायग्राम बनाता है।

डेटाबेस

  • Spiricoil सभी पूरी तरह से अनुक्रमित जीवों के लिए कुंडलित कुंडल उपस्थिति और ओलिगोमेरिक स्थिति की भविष्यवाणी करने के लिए प्रोटीन डोमेन एलेखेशन का उपयोग करता है
  • CC+ प्रोटीन डेटा बैंक में पाए जाने वाले कुंडलित कुंडलियों का संबंधपरक डेटाबेस है
  • SUPERFAMILY सभी पूरी तरह से अनुक्रमित जीवों के लिए प्रोटीन डोमेन एलेखेशन, प्रोटीन कुंडलित कुंडली क्लास के विशेषज्ञ रूप से क्यूरेट किए गए संरचनात्मक वर्गीकरण पर आधारित