पारगमन: Difference between revisions
(Created page with "{{Redirect|Permeate|the milk product|Milk permeate}} {{Short description|Penetration of a liquid, gas, or vapor through a solid}} भौतिकी और अभिया...") |
|
(No difference)
|
Revision as of 18:56, 17 February 2023
भौतिकी और अभियांत्रिकी में, परमीशन (जिसे इम्बुइंग भी कहा जाता है) एक ठोस के माध्यम से एक विक्ट: पर्मीएट#इंग्लिश (एक द्रव जैसे तरल, गैस या वाष्प) का प्रवेश है। यह सीधे पारमीट की सांद्रता प्रवणता, सामग्री की आंतरिक पारगम्यता और सामग्री के द्रव्यमान प्रसार से संबंधित है।[1] पारगम्यता को फ़िक के प्रसार के नियमों जैसे समीकरणों द्वारा प्रतिरूपित किया जाता है, और इसे minpermemeter जैसे उपकरणों का उपयोग करके मापा जा सकता है।
विवरण
पारगमन की प्रक्रिया में एक झिल्ली या इंटरफ़ेस के माध्यम से अणुओं का प्रसार शामिल होता है, जिसे परमीन कहा जाता है। प्रसार प्रसार के माध्यम से काम करता है; परमिट इंटरफ़ेस के पार उच्च सांद्रता से निम्न सांद्रता की ओर बढ़ेगा। एक अर्धपारगम्य झिल्ली की उपस्थिति के साथ एक सामग्री अर्धपारगम्य हो सकती है। केवल कुछ गुणों वाले अणु या आयन ही ऐसी झिल्ली में विसरित हो सकेंगे। जीव विज्ञान में यह एक बहुत ही महत्वपूर्ण तंत्र है जहां रक्त वाहिका के अंदर के तरल पदार्थ को विनियमित और नियंत्रित करने की आवश्यकता होती है। धातु, चीनी मिट्टी की चीज़ें और पॉलिमर सहित अधिकांश सामग्रियों के माध्यम से पारगमन हो सकता है। हालांकि, धातुओं की पारगम्यता उनके क्रिस्टल संरचना और सरंध्रता के कारण सिरेमिक और पॉलिमर की तुलना में बहुत कम है।
पारगम्यता एक ऐसी चीज है जिस पर उनकी उच्च पारगम्यता के कारण कई बहुलक अनुप्रयोगों में सावधानी से विचार किया जाना चाहिए। पारगम्यता बातचीत के तापमान के साथ-साथ बहुलक और पारगम्य घटक दोनों की विशेषताओं पर निर्भर करती है। सोखने की प्रक्रिया के माध्यम से, परमानेंट के अणुओं को या तो अवशोषित किया जा सकता है या इंटरफ़ेस पर उजाड़ दिया जा सकता है। किसी सामग्री के पारगम्यता को कई तरीकों से मापा जा सकता है जो किसी विशिष्ट सामग्री के माध्यम से किसी पदार्थ की पारगम्यता को मापते हैं।
विसरण के कारण पारगम्यता को mol/(m・s・Pa) की SI इकाइयों में मापा जाता है, हालांकि बैरर भी आमतौर पर उपयोग किए जाते हैं। डार्सी में मापा झरझरा ठोस पदार्थों में द्रव प्रवाह के कारण प्रसार के कारण पारगम्यता को पारगम्यता (पृथ्वी विज्ञान) के साथ भ्रमित नहीं होना है।[2][3]
संबंधित शर्तें
- Permeant: पदार्थ या प्रजाति, आयन, ठोस के माध्यम से रिसने वाले अणु।
- अर्धपारगम्यता: किसी पदार्थ का केवल कुछ पदार्थों के लिए पारगम्य होना और दूसरों के लिए नहीं।
- पारगम्यता मापन: किसी विशिष्ट पदार्थ के लिए किसी पदार्थ की पारगम्यता की मात्रा निर्धारित करने की विधि।
इतिहास
अब्बे जीन एंटोनी नोलेट (भौतिक विज्ञानी, 1700-1770)
जीन-एंटोनी नोलेट ने सुअर के मूत्राशय के साथ शराब के कंटेनरों को सील करने की कोशिश की और उन्हें पानी के नीचे जमा कर दिया। थोड़ी देर बाद मूत्राशय बाहर की ओर उभरा हुआ हो गया। उन्होंने मूत्राशय में छेद करने के बाद निकलने वाले उच्च दबाव पर ध्यान दिया। जिज्ञासु, उसने दूसरे तरीके से प्रयोग किया: उसने कंटेनर को पानी से भर दिया और उसे शराब में जमा कर दिया। परिणाम मूत्राशय के अंदर एक उभड़ा हुआ था। इस प्रयोग के बारे में उनके नोट्स पारगम्यता का पहला वैज्ञानिक उल्लेख है (बाद में इसे अर्धपारगम्यता कहा जाएगा)।
थॉमस ग्राहम (रसायनशास्त्री, 1805-1869)
थॉमस ग्राहम (रसायनशास्त्री) ने आणविक भार पर गैस प्रसार की निर्भरता को प्रयोगात्मक रूप से सिद्ध किया, जिसे अब ग्राहम के नियम के रूप में जाना जाता है।
रिचर्ड झाड़ू लगाना (1910-1996)
बैरर ने आधुनिक बैरर मापन तकनीक विकसित की, और पारगम्य दरों को मापने के लिए पहले वैज्ञानिक तरीकों का इस्तेमाल किया।
अनुप्रयोग
- पैकेजिंग: पैकेज की पारगम्यता (सामग्री, मुहरें, क्लोजर इत्यादि) को पैकेज सामग्री की संवेदनशीलता और निर्दिष्ट शेल्फ जीवन से मिलान करने की आवश्यकता है। कुछ पैकेजों में लगभग हर्मेटिक सील होनी चाहिए जबकि अन्य (और कभी-कभी) चुनिंदा पारगम्य हो सकती हैं। इसलिए सटीक पारगम्य दरों के बारे में ज्ञान आवश्यक है।
* टायर: टायरों में हवा का दबाव जितना हो सके धीरे-धीरे कम करना चाहिए। एक अच्छा टायर वह है जो कम से कम गैस को निकलने देता है। टायरों के साथ समय के साथ पारगमन होगा, इसलिए उस सामग्री की पारगम्यता को जानना सबसे अच्छा है जो सबसे कुशल टायर बनाने के लिए वांछित गैस के साथ टायर बनाएगी।
- इन्सुलेट सामग्री: कंडक्टर को जंग से बचाने के लिए पनडुब्बी केबलों के साथ-साथ इन्सुलेट सामग्री का जल वाष्प पारगम्यता महत्वपूर्ण है।
- ईंधन सेल: ऑटोमोबाइल बिजली उत्पादन के लिए वातावरण में पाए जाने वाले हाइड्रोजन ईंधन और ऑक्सीजन को परिवर्तित करने के लिए पॉलिमर इलेक्ट्रोलाइट मेम्ब्रेन (पीईएम) ईंधन कोशिकाओं से लैस हैं। हालाँकि, ये सेल केवल लगभग 1.16 वोल्ट बिजली का उत्पादन करते हैं। एक वाहन को शक्ति प्रदान करने के लिए, ढेर में कई सेलों को व्यवस्थित किया जाता है। स्टैक का पावर आउटपुट व्यक्तिगत ईंधन सेल की संख्या और आकार दोनों पर निर्भर करता है।
- थर्माप्लास्टिक और थर्मोसेटिंग पाइपिंग: पाइप की बाहरी सतह पर पाइप की दीवार के माध्यम से पानी का पता लगाने योग्य पारगमन होने पर उच्च दबाव में पानी के परिवहन के लिए पाइप को विफल माना जा सकता है।
- चिकित्सा उपयोग: दवा वितरण में चिकित्सा क्षेत्र में भी पारगम्यता देखी जा सकती है। पॉलिमर सामग्री से बने ड्रग पैच में एक रासायनिक जलाशय होता है जो इसकी घुलनशीलता से अधिक लोड होता है, और फिर संपर्क के माध्यम से शरीर में स्थानांतरित हो जाता है। रसायन को शरीर में खुद को मुक्त करने के लिए, एकाग्रता ढाल के अनुसार, बहुलक झिल्ली के माध्यम से पारगम्य और फैलाना चाहिए। जलाशय की अधिक घुलनशीलता के कारण, दवा का परिवहन फट और अंतराल तंत्र का अनुसरण करता है। जब पैच त्वचा के साथ संपर्क बनाता है तो दवा की एक उच्च अंतरण दर होती है, लेकिन जैसे-जैसे समय बढ़ता है, एक एकाग्रता प्रवणता स्थापित होती है, जिसका अर्थ है कि दवा की डिलीवरी एक स्थिर दर पर स्थिर हो जाती है। यह दवा वितरण में महत्वपूर्ण है और Ocusert System जैसे मामलों में इसका उपयोग किया जाता है। लेकिन इसके विपरीत चिकित्सा क्षेत्र में भी मामला देखने को मिल सकता है। चूंकि ampoules में इंजेक्शन के लिए अत्यधिक संवेदनशील फार्मास्यूटिकल्स हो सकते हैं, यह महत्वपूर्ण है कि प्रयुक्त सामग्री किसी भी प्रकार के पदार्थों को फार्मास्युटिकल उत्पाद में प्रवेश करने या उससे वाष्पित होने से रोकती है। इसके लिए, ampoules अक्सर कांच से और कम बार सिंथेटिक सामग्री से बनाए जाते हैं।
- तकनीकी उपयोग: हलोजन लैंप के उत्पादन में, हलोजन गैसों को बहुत बारीकी से समझाया जाना चाहिए। Aluminosilicate # Aluminosilicate काँच गैस एनकैप्सुलेशन के लिए एकदम सही अवरोधक हो सकता है। इस प्रकार, इलेक्ट्रोड के लिए संक्रमण महत्वपूर्ण है। लेकिन कांच के शरीर और धातु के थर्मल विस्तार के मिलान के कारण संक्रमण काम कर रहा है।
पारगमन माप
[[image:Permeation sweep gas.gif|thumb|स्वीप गैस के साथ पारगमन माप
फ़िल्मेंों और झिल्लियों के पारगम्यता को किसी भी गैस या तरल से मापा जा सकता है। एक विधि एक केंद्रीय मॉड्यूल का उपयोग करती है जिसे परीक्षण फिल्म द्वारा अलग किया जाता है: परीक्षण गैस को सेल के एक तरफ खिलाया जाता है और पारगम्य गैस को स्वीप गैस द्वारा डिटेक्टर तक ले जाया जाता है। दाईं ओर का आरेख फिल्मों के लिए एक परीक्षण सेल दिखाता है, जो आमतौर पर स्टेनलेस स्टील जैसी धातुओं से बना होता है। फोटो लिबिग कंडेनसर के समान कांच से बने पाइपों के लिए एक परीक्षण सेल दिखाता है। परीक्षण माध्यम (तरल या गैस) भीतरी सफेद पाइप में स्थित है और पाइप और कांच की दीवार के बीच की जगह में परमिट एकत्र किया जाता है। इसे एक स्वीप गैस (ऊपरी और निचले जोड़ से जुड़ा हुआ) द्वारा एक विश्लेषण उपकरण में ले जाया जाता है।
पारगम्यता को आंतरायिक संपर्क के माध्यम से भी मापा जा सकता है। इस पद्धति में परीक्षण रसायन का एक नमूना लेना और उस सामग्री की सतह पर रखना शामिल है जिसकी पारगम्यता परीक्षण रसायन की विशिष्ट मात्रा को जोड़ने या निकालने के दौरान देखी जा रही है। ज्ञात समय के बाद, इसकी संरचना में मौजूद परीक्षण रसायन की एकाग्रता का पता लगाने के लिए सामग्री का विश्लेषण किया जाता है। सामग्री पर रसायन की मात्रा और परीक्षण सामग्री के विश्लेषण के साथ-साथ परीक्षण रसायन के संचयी पारगमन को निर्धारित किया जा सकता है।
निम्न तालिका सिलिकॉन झिल्ली के माध्यम से कुछ गैसों की परिकलित पारगम्यता गुणांक का उदाहरण देती है।
Gas Name | Chemical Formula | Silicone Permeability Coefficient (Barrer)* |
---|---|---|
Oxygen | O2 | 600 |
Hydrogen | H2 | 650 |
Carbon Dioxide | CO2 | 3250 |
Methanol | CH3OH | 13900 |
Water | H2O | 36000 |
*बैरर = 10-10 सेमी3 (एसटीपी) · सेमी/सेमी2 · एस · सेमी-एचजी
जब तक अन्यथा उल्लेख नहीं किया जाता है, पारगम्यता को मापा जाता है और 25 डिग्री सेल्सियस (आरटीपी) पर रिपोर्ट किया जाता है और नहीं (एसटीपी) डब्ल्यू एल रॉब से। पतली सिलिकॉन झिल्ली - उनके पारगमन गुण और कुछ अनुप्रयोग। न्यूयार्क विज्ञान अकादमी इतिवृत्त, खंड। 146, (जनवरी 1968) इश्यू 1 मटेरियल इन, पीपी। 119–137 [4]
फ़िक के प्रथम नियम का प्रयोग करके सन्निकटन
ठोस के माध्यम से परमीएट के द्रव्यमान के प्रवाह या प्रवाह को फिक के प्रसार के नियमों#Fick.27s प्रथम नियम|फिक के प्रथम नियम द्वारा प्रतिरूपित किया जा सकता है।
इस समीकरण को एक बहुत ही सरल सूत्र में संशोधित किया जा सकता है जिसका उपयोग बुनियादी समस्याओं में एक झिल्ली के माध्यम से अनुमानित पारगम्यता के लिए किया जा सकता है।
कहाँ
- प्रसार प्रवाह है
- प्रसार गुणांक या द्रव्यमान प्रसार है
- परमीट की सांद्रता है
- झिल्ली की मोटाई है
हम परिचय दे सकते हैं इस समीकरण में, जो सोर्प्शन संतुलन पैरामीटर का प्रतिनिधित्व करता है, जो दबाव के बीच आनुपातिकता का स्थिरांक है () और . इस संबंध को इस प्रकार दर्शाया जा सकता है .
समीकरण के अंतिम रूप को प्राप्त करने के लिए प्रसार गुणांक को सोरशन संतुलन पैरामीटर के साथ जोड़ा जा सकता है, जहां झिल्ली की पारगम्यता है। रिश्ता रहा है
धातु में गैस की घुलनशीलता
व्यावहारिक अनुप्रयोगों में जब धातुओं में प्रवेश करने वाली गैसों को देखा जाता है, तो गैस के दबाव को एकाग्रता से जोड़ने का एक तरीका होता है। गैसीय चरण में कई गैसें डायटोमिक अणुओं के रूप में मौजूद होती हैं, लेकिन धातुओं में प्रवेश करते समय वे अपने विलक्षण आयनिक रूप में मौजूद होती हैं। साइवर्ट्स का नियम कहता है कि धातु में डायटोमिक अणु के रूप में गैस की घुलनशीलता गैस के आंशिक दबाव के वर्गमूल के समानुपाती होती है।
इस मामले में प्रवाह को समीकरण द्वारा अनुमानित किया जा सकता है
हम परिचय दे सकते हैं इस समीकरण में, जो सीवर्ट्स के कानून का प्रतिनिधित्व करता है। रिश्ते से .
प्रसार गुणांक को समीकरण का अंतिम रूप प्राप्त करने के लिए प्रतिक्रिया संतुलन स्थिरांक के साथ जोड़ा जा सकता है, जहां झिल्ली की पारगम्यता है। रिश्ता रहा है
यह भी देखें
- Moisture vapor transmission rate
- Oxygen transmission rate
- Carbon dioxide transmission rate
- Hermetic seal
- Whey, also known as Milk permeate
- Permeability (earth sciences)
संदर्भ
- ↑ Fu, Jinlong; Thomas, Hywel R.; Li, Chenfeng (January 2021). "Tortuosity of porous media: Image analysis and physical simulation" (PDF). Earth-Science Reviews. 212: 103439. Bibcode:2021ESRv..21203439F. doi:10.1016/j.earscirev.2020.103439. S2CID 229386129.
- ↑ Carley, James F. Whittington's dictionary of plastics. CRC Press, 1993.
- ↑ Carley, James F. (8 October 1993). Whittington's Dictionary of Plastics, Third Edition. CRC Press. ISBN 9781566760904. Retrieved 20 September 2017 – via Google Books.
- ↑ Robb, W. L. (1968). "Thin Silicone Membranes-Their Permeation Properties and Some Applications". Annals of the New York Academy of Sciences. 146 (1): 119–137. Bibcode:1968NYASA.146..119R. doi:10.1111/j.1749-6632.1968.tb20277.x. PMID 5238627. S2CID 28605088.
अग्रिम पठन
- Yam, K. L., Encyclopedia of Packaging Technology, John Wiley & Sons, 2009, ISBN 978-0-470-08704-6
- Massey, L K, Permeability Properties of Plastics and Elastomers, 2003, Andrew Publishing, ISBN 978-1-884207-97-6
- ASTM F1249 Standard Test Method for Water Vapor Transmission Rate Through Plastic Film and Sheeting Using a Modulated Infrared Sensor
- ASTM E398 Standard Test Method for Water Vapor Transmission Rate of Sheet Materials Using Dynamic Relative Humidity Measurement
- ASTM F2298 Standard Test Methods for Water Vapor Diffusion Resistance and Air Flow Resistance of Clothing Materials Using the Dynamic Moisture Permeation Cell
- F2622 Standard Test Method for Oxygen Gas Transmission Rate Through Plastic Film and Sheeting Using Various Sensors
- G1383: Standard Test Method for Permeation of Liquids and Gases through Protective Clothing Materials under Conditions of Intermittent Contact.
- "Thin silicone membranes – Their permeation properties and some applications", Annals of the New York Academy of Sciences, vol. 146, issue 1 Materials in, pp. 119–137 W. L. Robb
- Pharmaceutical Systems for Drug Delivery, David Jones; Chien YW. 2nd ed. New York: Marcel Dekker, Inc; 1993. Novel drug delivery systems.
- O.V. Malykh, A.Yu. Golub, V.V. Teplyakov, "Polymeric membrane materials: New aspects of empirical approaches to prediction of gas permeability parameters in relation to permanent gases, linear lower hydrocarbons and some toxic gases", Advances in Colloid and Interface Science, Volume 165, Issues 1–2, 11 May 2011, Pages 89–99 doi:10.1016/j.cis.2010.10.004.
- Prediction of Mass Permeation in Polymers (and their Composites) based on Free Volume Theory and Sanchez-Lacombe Equation of State, CheFEM software.