सिम्मेडियन: Difference between revisions

From Vigyanwiki
Line 19: Line 19:


== सिम्मीडियन का निर्माण ==
== सिम्मीडियन का निर्माण ==
[[Image:Symmedian_Construction.png|thumb|{{mvar|{{overline|AD}}}} वर्टेक्स से सिम्मीडियन है {{mvar|A}} का {{math|△''ABC''}}.|alt=|उह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह]]होने देना {{math|△''ABC''}} एक त्रिकोण बनो। एक बिंदु बनाएँ {{mvar|D}} से [[स्पर्शरेखा]]ओं को प्रतिच्छेद करके {{mvar|B}} और {{mvar|C}} [[परिवृत्त]] के लिए। तब {{mvar|AD}} का सिम्मेडियन है {{math|△''ABC''}}.<ref>{{cite book |last1=Yufei |first1=Zhao |title=ज्यामिति में तीन नींबू|date=2010 |page=5 |url=http://yufeizhao.com/olympiad/three_geometry_lemmas.pdf}}</ref>
[[Image:Symmedian_Construction.png|thumb|{{mvar|{{overline|AD}}}} वर्टेक्स से सिम्मीडियन है {{mvar|A}} का {{math|△''ABC''}}.|alt=|उह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह]]मान लीजिए ''△ABC'' एक त्रिभुज है।  [[परिवृत्त]] पर ''B'' और ''C'' की [[स्पर्शरेखा]]ओं को प्रतिच्छेद करकेएक बिंदु ''D'' की रचना करें। तब ''AD'', ''△ABC'' की सममध्य रेखा है।<ref>{{cite book |last1=Yufei |first1=Zhao |title=ज्यामिति में तीन नींबू|date=2010 |page=5 |url=http://yufeizhao.com/olympiad/three_geometry_lemmas.pdf}}</ref>
पहला प्रमाण। का प्रतिबिंब होने दो {{mvar|AD}} के कोण द्विभाजक के पार {{math|∠''BAC''}} मिलना {{mvar|BC}} पर {{mvar|M'}}. तब:
पहला प्रमाण। मान लीजिए कि ''∠BAC'' के कोण समद्विभाजक पर ''AD'' का प्रतिबिंब ''BC'' को ''M''' पर मिलता है।
 
तब:


<math>\frac{|BM'|}{|M'C|} = \frac{|AM'|\frac{\sin\angle{BAM'}}{\sin\angle{ABM'}}}{|AM'|\frac{\sin\angle{CAM'}}{\sin\angle{ACM'}}}
<math>\frac{|BM'|}{|M'C|} = \frac{|AM'|\frac{\sin\angle{BAM'}}{\sin\angle{ABM'}}}{|AM'|\frac{\sin\angle{CAM'}}{\sin\angle{ACM'}}}

Revision as of 13:15, 5 March 2023

  Medians (concur at the centroid G)
  Angle bisectors (concur at the incenter I)
  Symmedians (concur at the symmedian point L)

ज्यामिति में, सिम्मेडियन प्रत्येक त्रिकोण से जुड़ी तीन विशेष सीधी रेखाएँ होती हैं। इनका निर्माण त्रिभुज की एक माध्यिका (ज्यामिति) (विपरीत भुजा के मध्य बिंदु के साथ एक वर्टेक्स (ज्यामिति) को जोड़ने वाली एक रेखा) को ले कर किया जाता है, और परावर्तन (गणित) को संबंधित कोण द्विभाजक पर रेखा को दर्शाता है (उसी शीर्ष के माध्यम से रेखा जो कोण को आधा में विभाजित करती है)। सममध्य रेखा और कोण द्विभाजक द्वारा निर्मित कोण का माप माध्यिका और कोण द्विभाजक के बीच के कोण के समान होता है, लेकिन यह कोण द्विभाजक के दूसरी तरफ होता है।

तीन सिम्मेडियन एक त्रिभुज केंद्र पर मिलते हैं जिसे लेमोइन बिंदु कहा जाता है। रॉस होन्सबर्गर ने अपने अस्तित्व को "आधुनिक ज्यामिति के मुकुट रत्नों में से एक" कहा है।[1]


एकरूपता

ज्यामिति में कई बार, यदि हम त्रिभुज के शीर्षों से होकर जाने वाली तीन विशेष रेखाएँ, या cevian, लेते हैं, तो उनके समकोण समद्विभाजकों के बारे में उनके प्रतिबिंब, जिन्हें आइसोगोनल रेखाएँ कहा जाता है, में भी रोचक गुण होंगे। उदाहरण के लिए, यदि त्रिभुज के तीन सेवियन एक बिंदु P पर प्रतिच्छेद करते हैं, तो उनकी समकोणीय रेखाएँ भी एक बिंदु पर प्रतिच्छेद करती हैं, जिसे P का समकोण संयुग्म कहा जाता है।

सिम्मीडियन इस तथ्य को स्पष्ट करते हैं।

  • आरेख में, माध्यिकाएँ (काले रंग में) केंद्रक G पर प्रतिच्छेद करती हैं।
  • क्योंकि सिम्मेडियन (लाल रंग में) माध्यिका के समकोणीय होते हैं, सिम्मेडियन भी एक बिंदु, L पर प्रतिच्छेद करते हैं।

इस बिंदु को त्रिभुज का सममध्य बिंदु कहा जाता है, या वैकल्पिक रूप से लेमोइन बिंदु या ग्रीबे बिंदु कहा जाता है।

बिंदीदार रेखाएँ कोण द्विभाजक हैं; सममेडियन और माध्यिकाएं कोण द्विभाजक के बारे में सममित हैं (इसलिए नाम "सिम्मेडियन"।)

सिम्मीडियन का निर्माण

उह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह्ह

मान लीजिए △ABC एक त्रिभुज है। परिवृत्त पर B और C की स्पर्शरेखाओं को प्रतिच्छेद करकेएक बिंदु D की रचना करें। तब AD, △ABC की सममध्य रेखा है।[2]

पहला प्रमाण। मान लीजिए कि ∠BAC के कोण समद्विभाजक पर AD का प्रतिबिंब BC को M' पर मिलता है।

तब:

दूसरा प्रमाण। परिभाषित करना D' के आइसोगोनल संयुग्म के रूप में D. यह देखना आसान है कि का प्रतिबिंब CD द्विभाजक के बारे में रेखा है C इसके समानांतर AB. के लिए भी यही सच है BD, इसलिए, ABD'C एक समांतर चतुर्भुज है। AD' स्पष्ट रूप से माध्यिका है, क्योंकि समांतर चतुर्भुज के विकर्ण एक दूसरे को समद्विभाजित करते हैं, और AD द्विभाजक के बारे में इसका प्रतिबिंब है।

तीसरा प्रमाण। होने देना ω केंद्र के साथ वृत्त हो D के माध्यम से गुजरते हुए B और C, और जाने O का परिकेंद्र हो ABC. पंक्तियाँ बोलो AB, AC प्रतिच्छेद करें ω पर P, Q, क्रमश। तब से ABC = ∠AQP, त्रिभुज ABC और AQP समान है। तब से

हमने देखा कि PQ का व्यास है ω और इसलिए गुजरता है D. होने देना M का मध्यबिंदु हो BC. तब से D का मध्यबिंदु है PQ, समानता का अर्थ है कि BAM = ∠QAD, जिससे परिणाम इस प्रकार है।

चौथा प्रमाण। होने देना S चाप का मध्य बिंदु हो BC. |BS| = |SC|, इसलिए AS का कोण द्विभाजक है BAC. होने देना M का मध्यबिंदु हो BC, और यह उसका अनुसरण करता है D प्रतिलोम ज्यामिति#वृत्त का व्युत्क्रम है M परिवृत्त के संबंध में। इससे, हम जानते हैं कि परिवृत्त फ़ोकस (ज्यामिति) वाला अपोलोनियन वृत्त है M, D. इसलिए AS कोण का द्विभाजक है DAM, और हमने अपना वांछित परिणाम प्राप्त कर लिया है।

टेट्राहेड्रा

एक सिम्मेडियन बिंदु की अवधारणा (अनियमित) टेट्राहेड्रा तक फैली हुई है। एक टेट्राहेड्रॉन दिया ABCD दो विमान P, Q द्वारा AB आइसोगोनल संयुग्म हैं यदि वे विमानों के साथ समान कोण बनाते हैं ABC और ABD. होने देना M भुजा का मध्य बिंदु हो CD. पक्ष युक्त विमान AB जो समतल के समकोणीय है ABM को चतुष्फलक का सममध्य तल कहा जाता है। सिम्मीडियन विमानों को एक बिंदु पर प्रतिच्छेद करते हुए दिखाया जा सकता है, सिम्मीडियन बिंदु। यह वह बिंदु भी है जो चतुष्फलक के फलकों से वर्ग दूरी को कम करता है।[3]


संदर्भ

  1. Honsberger, Ross (1995), "Chapter 7: The Symmedian Point", Episodes in Nineteenth and Twentieth Century Euclidean Geometry, Washington, D.C.: Mathematical Association of America.
  2. Yufei, Zhao (2010). ज्यामिति में तीन नींबू (PDF). p. 5.
  3. Sadek, Jawad; Bani-Yaghoub, Majid; Rhee, Noah (2016), "Isogonal Conjugates in a Tetrahedron" (PDF), Forum Geometricorum, 16: 43–50.


बाहरी संबंध