सिम्मेडियन: Difference between revisions
Line 3: | Line 3: | ||
{{legend-line|solid grey|[[Median (geometry)|Median]]s (concur at the [[centroid]] {{mvar|G}})}} | {{legend-line|solid grey|[[Median (geometry)|Median]]s (concur at the [[centroid]] {{mvar|G}})}} | ||
{{legend-line|dashed grey|Angle bisectors (concur at the [[incenter]] {{mvar|I}})}} | {{legend-line|dashed grey|Angle bisectors (concur at the [[incenter]] {{mvar|I}})}} | ||
{{legend-line|solid red|Symmedians (concur at the [[symmedian point]] {{mvar|L}})}}]][[ज्यामिति]] में, सिम्मेडियन प्रत्येक [[त्रिकोण]] से जुड़ी तीन विशेष सीधी रेखाएँ होती हैं। इनका निर्माण त्रिभुज की एक माध्यिका (ज्यामिति) (विपरीत भुजा के [[मध्य]] बिंदु के साथ एक [[वर्टेक्स (ज्यामिति)]] को जोड़ने वाली एक रेखा) को ले कर किया जाता है, और परावर्तन (गणित) को संबंधित [[कोण द्विभाजक]] पर रेखा को दर्शाता है (उसी शीर्ष के माध्यम से रेखा जो कोण को आधा में विभाजित करती है)। सममध्य रेखा और कोण द्विभाजक द्वारा निर्मित कोण का माप माध्यिका और कोण द्विभाजक के बीच के कोण के समान होता है, लेकिन यह कोण द्विभाजक के दूसरी तरफ होता है। | {{legend-line|solid red|Symmedians (concur at the [[symmedian point]] {{mvar|L}})}}]][[ज्यामिति]]में,सिम्मेडियन (सममध्य) प्रत्येक [[त्रिकोण]] से जुड़ी तीन विशेष सीधी रेखाएँ होती हैं। इनका निर्माण त्रिभुज की एक माध्यिका (ज्यामिति) (विपरीत भुजा के [[मध्य]] बिंदु के साथ एक [[वर्टेक्स (ज्यामिति)]] को जोड़ने वाली एक रेखा) को ले कर किया जाता है, और परावर्तन (गणित) को संबंधित [[कोण द्विभाजक]] पर रेखा को दर्शाता है (उसी शीर्ष के माध्यम से रेखा जो कोण को आधा में विभाजित करती है)। सममध्य रेखा और कोण द्विभाजक द्वारा निर्मित कोण का माप माध्यिका और कोण द्विभाजक के बीच के कोण के समान होता है, लेकिन यह कोण द्विभाजक के दूसरी तरफ होता है। | ||
तीन सिम्मेडियन एक त्रिभुज केंद्र पर मिलते हैं जिसे [[लेमोइन बिंदु]] कहा जाता है। रॉस होन्सबर्गर ने अपने अस्तित्व को "आधुनिक ज्यामिति के मुकुट रत्नों में से एक" कहा है।<ref name="h">{{citation|first=Ross|last=Honsberger|authorlink=Ross Honsberger|contribution=Chapter 7: The Symmedian Point|title=Episodes in Nineteenth and Twentieth Century Euclidean Geometry|publisher=[[Mathematical Association of America]]|location=Washington, D.C.|year=1995}}.</ref> | तीन सिम्मेडियन एक त्रिभुज केंद्र पर मिलते हैं जिसे [[लेमोइन बिंदु]] कहा जाता है। रॉस होन्सबर्गर ने अपने अस्तित्व को "आधुनिक ज्यामिति के मुकुट रत्नों में से एक" कहा है।<ref name="h">{{citation|first=Ross|last=Honsberger|authorlink=Ross Honsberger|contribution=Chapter 7: The Symmedian Point|title=Episodes in Nineteenth and Twentieth Century Euclidean Geometry|publisher=[[Mathematical Association of America]]|location=Washington, D.C.|year=1995}}.</ref> | ||
Line 36: | Line 36: | ||
== टेट्राहेड्रा == | == टेट्राहेड्रा == | ||
ज्यामिति में, एक चतुष्फलक (बहुवचन: टेट्राहेड्रा या टेट्राहेड्रोन), जिसे त्रिकोणीय पिरामिड के रूप में भी जाना जाता है, चार त्रिकोणीय चेहरों, छह सीधे किनारों और चार शीर्ष कोनों से बना एक बहुफलक है। चतुष्फलक सभी साधारण उत्तल बहुफलकों में सबसे सरल है। एक | ज्यामिति में, एक चतुष्फलक (बहुवचन: टेट्राहेड्रा या टेट्राहेड्रोन), जिसे त्रिकोणीय पिरामिड के रूप में भी जाना जाता है, चार त्रिकोणीय चेहरों, छह सीधे किनारों और चार शीर्ष कोनों से बना एक बहुफलक है। चतुष्फलक सभी साधारण उत्तल बहुफलकों में सबसे सरल है। एक सममध्य बिंदु की अवधारणा (अनियमित) टेट्राहेड्रा तक फैली हुई है। एक चतुष्फलक {{mvar|ABCD}} को देखते हुए दो समतल {{mvar|P, Q}} द्वारा {{mvar|AB}} से होकर समकोणीय संयुग्मी हैं यदि वे विमानों के साथ समान कोण बनाते हैं {{mvar|ABC}} और {{mvar|ABD}} के साथ समान कोण बनाते हैं। मान लीजिए कि {{mvar|M}} भुजा {{mvar|{{overline|CD}}}} का मध्यबिंदु है। वह तल जिसमें भुजा {{mvar|{{overline|AB}}}} जो समतल {{mvar|ABM}} के समकोणीय है, चतुष्फलक का सममध्य तल कहा जाता है। सिम्मीडियन विमानों को एक बिंदु पर प्रतिच्छेद करते हुए दिखाया जा सकता है, सिम्मीडियन बिंदु वह बिंदु भी है जो चतुष्फलक के फलकों से वर्ग दूरी को कम करता है।<ref name="SBR">{{citation|first1=Jawad|last1=Sadek|first2=Majid|last2=Bani-Yaghoub|first3=Noah|last3=Rhee|title=Isogonal Conjugates in a Tetrahedron|journal=Forum Geometricorum | ||
|volume=16|pages=43–50|year=2016|url=http://forumgeom.fau.edu/FG2016volume16/FG201606.pdf}}.</ref> | |volume=16|pages=43–50|year=2016|url=http://forumgeom.fau.edu/FG2016volume16/FG201606.pdf}}.</ref> | ||
Revision as of 14:54, 5 March 2023
ज्यामितिमें,सिम्मेडियन (सममध्य) प्रत्येक त्रिकोण से जुड़ी तीन विशेष सीधी रेखाएँ होती हैं। इनका निर्माण त्रिभुज की एक माध्यिका (ज्यामिति) (विपरीत भुजा के मध्य बिंदु के साथ एक वर्टेक्स (ज्यामिति) को जोड़ने वाली एक रेखा) को ले कर किया जाता है, और परावर्तन (गणित) को संबंधित कोण द्विभाजक पर रेखा को दर्शाता है (उसी शीर्ष के माध्यम से रेखा जो कोण को आधा में विभाजित करती है)। सममध्य रेखा और कोण द्विभाजक द्वारा निर्मित कोण का माप माध्यिका और कोण द्विभाजक के बीच के कोण के समान होता है, लेकिन यह कोण द्विभाजक के दूसरी तरफ होता है।
तीन सिम्मेडियन एक त्रिभुज केंद्र पर मिलते हैं जिसे लेमोइन बिंदु कहा जाता है। रॉस होन्सबर्गर ने अपने अस्तित्व को "आधुनिक ज्यामिति के मुकुट रत्नों में से एक" कहा है।[1]
एकरूपता
ज्यामिति में कई बार, यदि हम त्रिभुज के शीर्षों से होकर जाने वाली तीन विशेष रेखाएँ, या cevian, लेते हैं, तो उनके समकोण समद्विभाजकों के बारे में उनके प्रतिबिंब, जिन्हें आइसोगोनल रेखाएँ कहा जाता है, में भी रोचक गुण होंगे। उदाहरण के लिए, यदि त्रिभुज के तीन सेवियन एक बिंदु P पर प्रतिच्छेद करते हैं, तो उनकी समकोणीय रेखाएँ भी एक बिंदु पर प्रतिच्छेद करती हैं, जिसे P का समकोण संयुग्म कहा जाता है।
सिम्मीडियन इस तथ्य को स्पष्ट करते हैं।
- आरेख में, माध्यिकाएँ (काले रंग में) केंद्रक G पर प्रतिच्छेद करती हैं।
- क्योंकि सिम्मेडियन (लाल रंग में) माध्यिका के समकोणीय होते हैं, सिम्मेडियन भी एक बिंदु, L पर प्रतिच्छेद करते हैं।
इस बिंदु को त्रिभुज का सममध्य बिंदु कहा जाता है, या वैकल्पिक रूप से लेमोइन बिंदु या ग्रीबे बिंदु कहा जाता है।
बिंदीदार रेखाएँ कोण द्विभाजक हैं; सममेडियन और माध्यिकाएं कोण द्विभाजक के बारे में सममित हैं (इसलिए नाम "सिम्मेडियन"।)
सिम्मीडियन का निर्माण
मान लीजिए △ABC एक त्रिभुज है। परिवृत्त पर B और C की स्पर्शरेखाओं को प्रतिच्छेद करकेएक बिंदु D की रचना करें। तब AD, △ABC की सममध्य रेखा है।[2]
पहला प्रमाण। मान लीजिए कि ∠BAC के कोण समद्विभाजक पर AD का प्रतिबिंब BC को M' पर मिलता है।
तब:
दूसरा प्रमाण। D' को D के समद्विबाहु संयुग्म के रूप में परिभाषित करें। यह देखना आसान है कि समद्विभाजक के बारे में CD का प्रतिबिंब AB के समानांतर C से होकर जाने वाली रेखा है। यही बात BD के लिए भी सही है, और इसलिए, ABD'C एक समांतर चतुर्भुज है। AD' स्पष्ट रूप से माध्यिका है, क्योंकि एक समांतर चतुर्भुज के विकर्ण एक दूसरे को समद्विभाजित करते हैं, और AD द्विभाजक के बारे में उसका प्रतिबिंब है।
तीसरा प्रमाण। मान लीजिए ω केंद्र के साथ वृत्त हो D के माध्यम से गुजरते हुए B और C, और जाने O का परिकेंद्र हो △ABC. पंक्तियाँ बोलो AB, AC प्रतिच्छेद करें ω पर P, Q, क्रमश। तब से ∠ABC = ∠AQP, त्रिभुज △ABC और △AQP समान है। इसलिए
- हम देखते हैं PQ, ω का व्यास है और इसलिए D से होकर गुजरता है। मान लीजिए कि M, BC का मध्यबिंदु है। चूँकि D, PQ का मध्यबिंदु है, समानता का तात्पर्य है कि ∠BAM = ∠QAD, जिससे परिणाम प्राप्त होता है।
चौथा प्रमाण। मान लीजिए S चाप BC का मध्य बिंदु है। |BS| = |SC|, इसलिए AS , ∠BAC का कोण द्विभाजक है । मान लीजिए कि M , BC का मध्यबिंदु है, और यह इस प्रकार है कि परिवृत्त के संबंध में D , M का व्युत्क्रम है। इससे, हम जानते हैं कि परिवृत्त एक अपोलोनियन वृत्त है जिसका नाभियाँ M, D है। अतः AS कोण ∠DAM का समद्विभाजक है,और हमने अपना वांछित परिणाम प्राप्त कर लिया है।
टेट्राहेड्रा
ज्यामिति में, एक चतुष्फलक (बहुवचन: टेट्राहेड्रा या टेट्राहेड्रोन), जिसे त्रिकोणीय पिरामिड के रूप में भी जाना जाता है, चार त्रिकोणीय चेहरों, छह सीधे किनारों और चार शीर्ष कोनों से बना एक बहुफलक है। चतुष्फलक सभी साधारण उत्तल बहुफलकों में सबसे सरल है। एक सममध्य बिंदु की अवधारणा (अनियमित) टेट्राहेड्रा तक फैली हुई है। एक चतुष्फलक ABCD को देखते हुए दो समतल P, Q द्वारा AB से होकर समकोणीय संयुग्मी हैं यदि वे विमानों के साथ समान कोण बनाते हैं ABC और ABD के साथ समान कोण बनाते हैं। मान लीजिए कि M भुजा CD का मध्यबिंदु है। वह तल जिसमें भुजा AB जो समतल ABM के समकोणीय है, चतुष्फलक का सममध्य तल कहा जाता है। सिम्मीडियन विमानों को एक बिंदु पर प्रतिच्छेद करते हुए दिखाया जा सकता है, सिम्मीडियन बिंदु वह बिंदु भी है जो चतुष्फलक के फलकों से वर्ग दूरी को कम करता है।[3]
संदर्भ
- ↑ Honsberger, Ross (1995), "Chapter 7: The Symmedian Point", Episodes in Nineteenth and Twentieth Century Euclidean Geometry, Washington, D.C.: Mathematical Association of America.
- ↑ Yufei, Zhao (2010). ज्यामिति में तीन नींबू (PDF). p. 5.
- ↑ Sadek, Jawad; Bani-Yaghoub, Majid; Rhee, Noah (2016), "Isogonal Conjugates in a Tetrahedron" (PDF), Forum Geometricorum, 16: 43–50.