कॉल ग्राफ: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
[[File:A Call Graph generated by pycallgraph.png|thumb|पायथन में एक साधारण कंप्यूटर प्रोग्राम के लिए उत्पन्न कॉल ग्राफ़।]]कॉल ग्राफ़ (जिसे कॉल मल्टीग्राफ़ के रूप में भी जाना जाता है<ref>{{cite journal |last1=Callahan |first1=D. |last2=Carle |first2=A. |last3=Hall |first3=M.W. |last4=Kennedy |first4=K. |title=Constructing the procedure call multigraph |journal=IEEE Transactions on Software Engineering |date=April 1990 |volume=16 |issue=4 |pages=483–487 |doi=10.1109/32.54302}}</ref><ref name="KhedkerSanyal2009">{{cite book|author1=Uday Khedker|author2=Amitabha Sanyal|author3=Bageshri Sathe|title=Data Flow Analysis: Theory and Practice|year=2009|publisher=CRC Press|isbn=978-0-8493-3251-7|page=234}}</ref>) एक [[नियंत्रण-प्रवाह ग्राफ]] है,<ref name="Jalote1997">{{cite book|author=Pankaj Jalote|title=An Integrated Approach to Software Engineering|year=1997|publisher=Springer Science & Business Media|isbn=978-0-387-94899-7|page=[https://archive.org/details/integratedapproa0000jalo/page/372 372]|url-access=registration|url=https://archive.org/details/integratedapproa0000jalo/page/372}}</ref> जो एक [[कंप्यूटर प्रोग्राम]] में [[Index.php?title=सबरूटीन्स|सबरूटीन्स]] के बीच कॉलिंग संबंधों का प्रतिनिधित्व करता है। प्रत्येक नोड एक प्रक्रिया का प्रतिनिधित्व करता है और प्रत्येक किनारे (एफ, जी) इंगित करता है कि प्रक्रिया एफ कॉल प्रक्रिया जी। इस प्रकार, ग्राफ में एक [[चक्र (ग्राफ सिद्धांत)]] पुनरावर्ती प्रक्रिया कॉल को इंगित करता है।
[[File:A Call Graph generated by pycallgraph.png|thumb|पायथन में एक साधारण कंप्यूटर प्रोग्राम के लिए उत्पन्न कॉल ग्राफ़।]]कॉल ग्राफ़ (जिसे कॉल मल्टीग्राफ़ के रूप में भी जाना जाता है<ref>{{cite journal |last1=Callahan |first1=D. |last2=Carle |first2=A. |last3=Hall |first3=M.W. |last4=Kennedy |first4=K. |title=Constructing the procedure call multigraph |journal=IEEE Transactions on Software Engineering |date=April 1990 |volume=16 |issue=4 |pages=483–487 |doi=10.1109/32.54302}}</ref><ref name="KhedkerSanyal2009">{{cite book|author1=Uday Khedker|author2=Amitabha Sanyal|author3=Bageshri Sathe|title=Data Flow Analysis: Theory and Practice|year=2009|publisher=CRC Press|isbn=978-0-8493-3251-7|page=234}}</ref>)यह एक [[नियंत्रण-प्रवाह ग्राफ]] है,<ref name="Jalote1997">{{cite book|author=Pankaj Jalote|title=An Integrated Approach to Software Engineering|year=1997|publisher=Springer Science & Business Media|isbn=978-0-387-94899-7|page=[https://archive.org/details/integratedapproa0000jalo/page/372 372]|url-access=registration|url=https://archive.org/details/integratedapproa0000jalo/page/372}}</ref> जो एक [[कंप्यूटर प्रोग्राम]] में [[Index.php?title=सबरूटीन्स|सबरूटीन्स]] के बीच कॉलिंग संबंधों का प्रतिनिधित्व करता है। प्रत्येक नोड एक प्रक्रिया का प्रतिनिधित्व करता है और प्रत्येक आधार पर (एफ, जी) इंगित कर एफ कॉल प्रक्रिया को इस प्रकार, ग्राफ में एक [[चक्र (ग्राफ सिद्धांत)]] पुनरावर्ती प्रक्रिया कॉल को इंगित करता है।


== बुनियादी अवधारणाएँ ==
== बुनियादी अवधारणाएँ ==


कॉल ग्राफ़ गतिशील या स्थिर हो सकते हैं।<ref>{{cite journal |last1=Ryder |first1=B.G. |title=Constructing the Call Graph of a Program |journal=IEEE Transactions on Software Engineering |date=May 1979 |volume=SE-5 |issue=3 |pages=216–226 |doi=10.1109/tse.1979.234183}}</ref> डायनेमिक कॉल ग्राफ़ प्रोग्राम के निष्पादन का एक रिकॉर्ड है, उदाहरण के लिए एक प्रोफाइलर द्वारा आउटपुट के रूप में। इस प्रकार, एक डायनेमिक कॉल ग्राफ़ सटीक हो सकता है, परंतु एकमात्र प्रोग्राम के एक रन का वर्णन करता है। एक स्थिर कॉल ग्राफ़ जिसका उद्देश्य प्रोग्राम के हर संभव रन का प्रतिनिधित्व करना है। सटीक स्थैतिक कॉल ग्राफ़ एक [[अनिर्णीत समस्या]] है, इसलिए स्थैतिक कॉल ग्राफ़ एल्गोरिदम सामान्यतः अतिरेक हैं। अर्थात्, होने वाले प्रत्येक कॉल संबंध को ग्राफ़ में दर्शाया जाता है, और संभवतः कुछ कॉल संबंध भी होते हैं जो प्रोग्राम के वास्तविक रन में कभी नहीं होंगे।
कॉल ग्राफ़ गतिशील या स्थिर हो सकते हैं।<ref>{{cite journal |last1=Ryder |first1=B.G. |title=Constructing the Call Graph of a Program |journal=IEEE Transactions on Software Engineering |date=May 1979 |volume=SE-5 |issue=3 |pages=216–226 |doi=10.1109/tse.1979.234183}}</ref> डायनेमिक कॉल ग्राफ़ प्रोग्राम के निष्पादन का एक रिकॉर्ड है, उदाहरण के लिए एक प्रोफाइलर द्वारा आउटपुट के रूप में। इस प्रकार, एक डायनेमिक कॉल ग्राफ़ सटीक हो सकता है, परंतु एकमात्र प्रोग्राम के एक रन का वर्णन करता है। एक स्थिर कॉल ग्राफ़ जिसका उद्देश्य प्रोग्राम के हर संभव रन का प्रतिनिधित्व करना है। सटीक स्थैतिक कॉल ग्राफ़ एक [[अनिर्णीत समस्या]] है, इसलिए स्थैतिक कॉल ग्राफ़ एल्गोरिदम सामान्यतः अतिरेक हैं। अर्थात्, होने वाले प्रत्येक कॉल संबंध को ग्राफ़ में दर्शाया जाता है, और संभवतः कुछ कॉल संबंध भी होते हैं जो प्रोग्राम के वास्तविक रन में कभी नहीं होते है।


सटीकता की अलग-अलग डिग्री का प्रतिनिधित्व करने के लिए कॉल ग्राफ़ को परिभाषित किया जा सकता है। अधिक सटीक कॉल ग्राफ़ अधिक सटीक रूप से वास्तविक प्रोग्राम के व्यवहार का अनुमान लगाता है, गणना करने में अधिक समय लेने और स्टोर करने के लिए अधिक मेमोरी की योग्यता पर। सबसे सटीक कॉल ग्राफ़ पूरी तरह से संदर्भ-संवेदनशील है, जिसका अर्थ है कि प्रत्येक प्रक्रिया के लिए, ग्राफ़ में प्रत्येक [[कॉल स्टैक]] के लिए एक अलग नोड होता है जिसके साथ प्रक्रिया को सक्रिय किया जा सकता है। एक पूरी तरह से संदर्भ-संवेदनशील कॉल ग्राफ़ को कॉलिंग संदर्भ ट्री कहा जाता है। इसकी गतिशील रूप से सुगमता से गणना की जा सकती है, चूंकि इसमें बड़ी मात्रा में मेमोरी लग सकती है। [[कॉलिंग कॉन्टेक्स्ट ट्री]] की सामान्यतः स्टेटिक रूप से गणना नहीं की जाती है, चूंकि एक बड़े प्रोग्राम के लिए इसमें बहुत अधिक समय लगेगा। कम से कम सटीक कॉल ग्राफ़ संदर्भ-असंवेदनशील है, जिसका अर्थ है कि प्रत्येक प्रक्रिया के लिए एकमात्र नोड है।
सटीकता की अलग-अलग डिग्री का प्रतिनिधित्व करने के लिए कॉल ग्राफ़ को परिभाषित किया जा सकता है। अधिक सटीक कॉल ग्राफ़ अधिक सटीक रूप से वास्तविक प्रोग्राम के व्यवहार का अनुमान लगाता है, गणना करने में अधिक समय लेने और स्टोर करने के लिए अधिक मेमोरी की योग्यता पर। सबसे सटीक कॉल ग्राफ़ पूरी तरह से संदर्भ-संवेदनशील है, जिसका अर्थ है कि प्रत्येक प्रक्रिया के लिए, ग्राफ़ में प्रत्येक [[कॉल स्टैक]] के लिए एक अलग नोड होता है जिसके साथ प्रक्रिया को सक्रिय किया जा सकता है। एक पूरी तरह से संदर्भ-संवेदनशील कॉल ग्राफ़ को कॉलिंग संदर्भ ट्री कहा जाता है। इसकी गतिशील रूप से सुगमता से गणना की जा सकती है, चूंकि इसमें बड़ी मात्रा में मेमोरी लग सकती है। [[कॉलिंग कॉन्टेक्स्ट ट्री]] की सामान्यतः स्टेटिक रूप से गणना नहीं की जाती है, चूंकि एक बड़े प्रोग्राम के लिए इसमें बहुत अधिक समय लगेगा। कम से कम सटीक कॉल ग्राफ़ संदर्भ-असंवेदनशील है, जिसका अर्थ है कि प्रत्येक प्रक्रिया के लिए एकमात्र नोड है।
Line 48: Line 48:
* [https://github.com/koknat/कॉलग्राफ कॉलग्राफ] : ऑक, बैश, बेसिक, डार्ट, फोरट्रान, गो, लुआ, जावास्क्रिप्ट, जूलिया, कोटलिन, मैटलैब, पर्ल, पास्कल, पीएचपी के लिए ओपन-सोर्स कॉल ग्राफ जेनरेटर , अजगर, आर, राकू, रूबी, रस्ट, स्काला, स्विफ्ट, टीसीएल और टाइपस्क्रिप्ट।
* [https://github.com/koknat/कॉलग्राफ कॉलग्राफ] : ऑक, बैश, बेसिक, डार्ट, फोरट्रान, गो, लुआ, जावास्क्रिप्ट, जूलिया, कोटलिन, मैटलैब, पर्ल, पास्कल, पीएचपी के लिए ओपन-सोर्स कॉल ग्राफ जेनरेटर , अजगर, आर, राकू, रूबी, रस्ट, स्काला, स्विफ्ट, टीसीएल और टाइपस्क्रिप्ट।


;नेट
;नेट
* [[Index.php?title=एन डिपेन्ड|एन डिपेन्ड]] : . नेट कोड के लिए एक स्थिर विश्लेषण टूल है। यह उपकरण बड़ी संख्या में कोड मेट्रिक्स का समर्थन करता है, निर्देशित ग्राफ़ और निर्भरता मैट्रिक्स का उपयोग करके निर्भरता के कल्पना की अनुमति देता है।
* [[Index.php?title=एन डिपेन्ड|एन डिपेन्ड]] : . नेट कोड के लिए एक स्थिर विश्लेषण टूल है। यह उपकरण बड़ी संख्या में कोड मेट्रिक्स का समर्थन करता है, निर्देशित ग्राफ़ और निर्भरता मैट्रिक्स का उपयोग करके निर्भरता के कल्पना की अनुमति देता है।


Line 65: Line 65:
=== प्रप्राइइटेरी कॉल ग्राफ जनरेटर ===
=== प्रप्राइइटेरी कॉल ग्राफ जनरेटर ===


; [[एलडीआरए टेस्टबेड]]: कॉल ग्राफ़ सहित असंख्य रिपोर्ट के साथ होस्ट और एम्बेडेड सॉफ़्टवेयर दोनों के लिए स्थिर और गतिशील विश्लेषण इंजन।
; [[एलडीआरए टेस्टबेड]]: कॉल ग्राफ़ सहित असंख्य रिपोर्ट के साथ होस्ट और एम्बेडेड सॉफ़्टवेयर दोनों के लिए स्थिर और गतिशील विश्लेषण इंजन होता है।
; [[परियोजना विश्लेषक]]: विजुअल बेसिक कोड के लिए स्टेटिक कोड एनालाइजर और कॉल ग्राफ जनरेटर
; [[परियोजना विश्लेषक]]: विजुअल बेसिक कोड के लिए स्टेटिक कोड एनालाइजर और कॉल ग्राफ जनरेटर है।
; [[दृश्य विशेषज्ञ]]: ओरेकल डेटाबेस PL/SQL, [[Index.php?title=माइक्रोसॉफ्ट एसक्यूएल सर्वर|माइक्रोसॉफ्ट एसक्यूएल सर्वर]] [[Index.php?title=ट्रैनसैक्ट-एसक्यूएल|ट्रैनसैक्ट-एसक्यूएल]], C शार्प (प्रोग्रामिंग लैंग्वेज)|C# और [[Index.php?title=पॉवर बिल्डर|पॉवर बिल्डर]] कोड के लिए [[स्थैतिक कार्यक्रम विश्लेषण]] और कॉल ग्राफ़ जनरेटर
; [[दृश्य विशेषज्ञ]]: ओरेकल डेटाबेस PL/SQL, [[Index.php?title=माइक्रोसॉफ्ट एसक्यूएल सर्वर|माइक्रोसॉफ्ट एसक्यूएल सर्वर]] [[Index.php?title=ट्रैनसैक्ट-एसक्यूएल|ट्रैनसैक्ट-एसक्यूएल]], C शार्प (प्रोग्रामिंग लैंग्वेज)|C# और [[Index.php?title=पॉवर बिल्डर|पॉवर बिल्डर]] कोड के लिए [[स्थैतिक कार्यक्रम विश्लेषण]] और कॉल ग्राफ़ जनरेटर है।
; [[Index.php?title=वी ट्यून|वी ट्यून]]: कॉल ग्राफ़ और निष्पादन आँकड़े दिखाने के लिए इंस्ट्रूमेंटिंग प्रोफाइलर
; [[Index.php?title=वी ट्यून|वी ट्यून]]: कॉल ग्राफ़ और निष्पादन आँकड़े दिखाने के लिए इंस्ट्रूमेंटिंग प्रोफाइलर होता है।
; [[डीएमएस सॉफ्टवेयर रीइंजीनियरिंग टूलकिट]]: सी, जावा और कोबोल के लिए स्थिर पूरे कार्यक्रम वैश्विक कॉल ग्राफ निष्कर्षण के साथ अनुकूलन कार्यक्रम विश्लेषण उपकरण
; [[डीएमएस सॉफ्टवेयर रीइंजीनियरिंग टूलकिट]]: सी, जावा और कोबोल के लिए स्थिर पूरे कार्यक्रम वैश्विक कॉल ग्राफ निष्कर्षण के साथ अनुकूलन कार्यक्रम विश्लेषण उपकरण है।


=== अन्य, संबंधित उपकरण ===
=== अन्य, संबंधित उपकरण ===

Revision as of 13:46, 1 March 2023

पायथन में एक साधारण कंप्यूटर प्रोग्राम के लिए उत्पन्न कॉल ग्राफ़।

कॉल ग्राफ़ (जिसे कॉल मल्टीग्राफ़ के रूप में भी जाना जाता है[1][2])यह एक नियंत्रण-प्रवाह ग्राफ है,[3] जो एक कंप्यूटर प्रोग्राम में सबरूटीन्स के बीच कॉलिंग संबंधों का प्रतिनिधित्व करता है। प्रत्येक नोड एक प्रक्रिया का प्रतिनिधित्व करता है और प्रत्येक आधार पर (एफ, जी) इंगित कर एफ कॉल प्रक्रिया को इस प्रकार, ग्राफ में एक चक्र (ग्राफ सिद्धांत) पुनरावर्ती प्रक्रिया कॉल को इंगित करता है।

बुनियादी अवधारणाएँ

कॉल ग्राफ़ गतिशील या स्थिर हो सकते हैं।[4] डायनेमिक कॉल ग्राफ़ प्रोग्राम के निष्पादन का एक रिकॉर्ड है, उदाहरण के लिए एक प्रोफाइलर द्वारा आउटपुट के रूप में। इस प्रकार, एक डायनेमिक कॉल ग्राफ़ सटीक हो सकता है, परंतु एकमात्र प्रोग्राम के एक रन का वर्णन करता है। एक स्थिर कॉल ग्राफ़ जिसका उद्देश्य प्रोग्राम के हर संभव रन का प्रतिनिधित्व करना है। सटीक स्थैतिक कॉल ग्राफ़ एक अनिर्णीत समस्या है, इसलिए स्थैतिक कॉल ग्राफ़ एल्गोरिदम सामान्यतः अतिरेक हैं। अर्थात्, होने वाले प्रत्येक कॉल संबंध को ग्राफ़ में दर्शाया जाता है, और संभवतः कुछ कॉल संबंध भी होते हैं जो प्रोग्राम के वास्तविक रन में कभी नहीं होते है।

सटीकता की अलग-अलग डिग्री का प्रतिनिधित्व करने के लिए कॉल ग्राफ़ को परिभाषित किया जा सकता है। अधिक सटीक कॉल ग्राफ़ अधिक सटीक रूप से वास्तविक प्रोग्राम के व्यवहार का अनुमान लगाता है, गणना करने में अधिक समय लेने और स्टोर करने के लिए अधिक मेमोरी की योग्यता पर। सबसे सटीक कॉल ग्राफ़ पूरी तरह से संदर्भ-संवेदनशील है, जिसका अर्थ है कि प्रत्येक प्रक्रिया के लिए, ग्राफ़ में प्रत्येक कॉल स्टैक के लिए एक अलग नोड होता है जिसके साथ प्रक्रिया को सक्रिय किया जा सकता है। एक पूरी तरह से संदर्भ-संवेदनशील कॉल ग्राफ़ को कॉलिंग संदर्भ ट्री कहा जाता है। इसकी गतिशील रूप से सुगमता से गणना की जा सकती है, चूंकि इसमें बड़ी मात्रा में मेमोरी लग सकती है। कॉलिंग कॉन्टेक्स्ट ट्री की सामान्यतः स्टेटिक रूप से गणना नहीं की जाती है, चूंकि एक बड़े प्रोग्राम के लिए इसमें बहुत अधिक समय लगेगा। कम से कम सटीक कॉल ग्राफ़ संदर्भ-असंवेदनशील है, जिसका अर्थ है कि प्रत्येक प्रक्रिया के लिए एकमात्र नोड है।

उन भाषाओं के साथ जिनमें गतिशील प्रेषण (अर्थात जावा या C ++) है,[5] प्रथम श्रेणी के कार्य (अर्थात पायथन या रैकेट), या फंक्शन पॉइंटर (अर्थात सी), की सुविधा देने वाली भाषाओं के साथ, एक स्थिर कॉल ग्राफ़ की गणना करने के लिए सटीक रूप से उपनाम विश्लेषण परिणामों की आवश्यकता होती है। इसके विपरीत, सटीक उपघटन की गणना करने के लिए कॉल ग्राफ़ की आवश्यकता होती है। कई स्थैतिक विश्लेषण प्रणालियाँ एक साथ दोनों की गणना करके स्पष्ट अनंत प्रतिगमन को हल करती हैं।

उपयोग

कॉल ग्राफ़ का उपयोग विभिन्न पद्यतियों से किया जा सकता है। कॉल ग्राफ़ का एक सरल अनुप्रयोग उन प्रक्रियाओं को ढूंढ रहा है जिन्हें कभी नहीं बुलाया जाता है। कॉल ग्राफ़ मनुष्यों के लिए प्रोग्राम की समझ के लिए प्रलेखन के रूप में कार्य कर सकते हैं।[6] प्रोग्राम निष्पादन या अंतः क्षेपण आक्षेपों की विसंगतियों का पता लगाने के लिए कॉल ग्राफ़ का भी उपयोग किया जा सकता है।[7]


सॉफ्टवेयर

फ्री सॉफ्टवेयर कॉल ग्राफ़ जेनरेटर

रन-टाइम कॉल ग्राफ़ (सूचीबद्ध अधिकांश उपकरण कॉल ग्राफ़ कार्यक्षमता वाले प्रोफाइलर हैं)

  • जीप्रोफ : बीएसडी या जीएनयू बाइनरी यूटिलिटीज के भाग में लिप्त है।
  • कॉलग्रिंड : वेलग्रिंड का हिस्सा है।
  • केचेग्रिंड : कॉलग्रिंड द्वारा उत्पन्न डेटा के आधार पर कॉल ग्राफ़ बनाने और उनका विश्लेषण करने के लिए शक्तिशाली उपकरण होता है।
  • मैक ओएस एक्स एक्टिविटी मॉनिटर: ऐप्पल जीयूआई प्रोसेस मॉनिटर एक्टिविटी मॉनिटर में एक अंतर्निहित कॉल ग्राफ़ जनरेटर है जो प्रक्रियाओं का प्रतिरूप ले सकता है और कॉल ग्राफ़ वापस कर सकता है। यह फ़ंक्शन एकमात्र मैक ओएस एक्स लेपर्ड में उपलब्ध है।
  • ओपनपैट : इसमें सम्मलित है नियंत्रण प्रवाहउपकरण जो स्वचालित रूप से रनटाइम मापन से एक ग्राफ विज़ुअलाइज़ेशन कॉल-ग्राफ़ चित्र बनाता है।
  • पी प्रो, प्रोफ़ाइल डेटा के विज़ुअलाइज़ेशन और विश्लेषण के लिए ओपन सोर्स टूल, जिसका उपयोग ग्रफटूल के संयोजन में किया जाता है।
  • एएमडी से कोड विश्लेषक (जीपीएल के तहत जारी)
  • मेक-अपग्राफ मेक (सॉफ़्टवेयर)#आधुनिक संस्करणों के साथ किए गए बिल्ड के लिए एक निर्भरता ग्राफ़ जेनरेटर (मॉड्यूल स्तर पर) है।
  • Intel(R) सिंगल इवेंट एपीआई (मुफ्त, ओपन-सोर्स)

एप्लिकेशन चलाए बिना कॉल ग्राफ़ प्राप्त करने के लिए स्थिर होना

सी/सी ++
  • सोर्सट्रेल एक स्थिर कॉल ग्राफ बनाता है, जिसे उपयोगकर्ता द्वारा गतिशील रूप से खोजा जा सकता है। पायथन और जावा का भी समर्थन करता है।
  • डॉक्सिजन : स्टैटिक कॉल/इनहेरिटेंस आरेख उत्पन्न करने के लिए ग्राफ़विज़ का उपयोग करता है।
  • जीएनयू प्रवाह : एक C प्रोग्राम का डायरेक्ट और इनवर्टेड कॉल ग्राफ़ उत्पन्न करने में सक्षम है।
  • ईजिप्ट : एक छोटी सी पर्ल स्क्रिप्ट जो सी प्रोग्राम के स्टेटिक कॉल ग्राफ को उत्पन्न करने के लिए जीसीसी और ग्रप्ह्वइज़ का उपयोग करती है।
  • एनालिज़ो: स्रोत कोड मेट्रिक्स की गणना करता है, निर्भरता ग्राफ उत्पन्न करता है।
  • सीसी ट्री : नेटिव विम (पाठ संपादक) प्लगइन जो सीएस कोप डेटाबेस को पढ़कर स्टेटिक कॉल ग्राफ़ प्रदर्शित कर सकता है। सी कार्यक्रमों के लिए काम करता है।
  • कोडविज़ : एक स्थिर कॉल ग्राफ जनरेटर (कार्यक्रम नहीं चलाया जाता है)। जीएनयू कंपाइलर संग्रह के पैच के रूप में लागू किया गया; सी और सी ++ प्रोग्राम के लिए काम करता है।
  • कॉलट्री.श : बैश शेल फंक्शंस जो सीस्कोप, ग्राफविज़ और डॉट-रेंडरिंग टूल्स के प्रतिरूप को एक साथ जोड़ते हैं ऊपर, नीचे, और/या आपके द्वारा निर्दिष्ट सी कार्यों के बीच कॉलर और कैली संबंधों को प्रदर्शित करने के लिए।
  • टेसेट्री : कॉलट्री.श की तरह, यह सीस्कोप और ग्राफविज़ को जोड़ता है, परंतु यह बैश स्क्रिप्ट के अतिरिक्त निष्पादन योग्य है।
गो
  • गो-कॉलवीज़ : गो प्रोग्राम के लिए एक इंटरैक्टिव कॉल ग्राफ़ जनरेटर जिसका आउटपुट ग्राफ़विज़ के साथ अंकित किया जा सकता है।

बहु भाषा

  • कॉलग्राफ : ऑक, बैश, बेसिक, डार्ट, फोरट्रान, गो, लुआ, जावास्क्रिप्ट, जूलिया, कोटलिन, मैटलैब, पर्ल, पास्कल, पीएचपी के लिए ओपन-सोर्स कॉल ग्राफ जेनरेटर , अजगर, आर, राकू, रूबी, रस्ट, स्काला, स्विफ्ट, टीसीएल और टाइपस्क्रिप्ट।
नेट
  • एन डिपेन्ड : . नेट कोड के लिए एक स्थिर विश्लेषण टूल है। यह उपकरण बड़ी संख्या में कोड मेट्रिक्स का समर्थन करता है, निर्देशित ग्राफ़ और निर्भरता मैट्रिक्स का उपयोग करके निर्भरता के कल्पना की अनुमति देता है।

पीएचपी, पर्ल और पायथन

  • डेवेल :: एनवाईटीप्रोफ : एक पर्ल प्रदर्शन विश्लेषक और कॉल चार्ट जनरेटर है।
  • पीएचपी कॉलग्राफ : पीएचपी प्रोग्राम के लिए एक कॉल ग्राफ़ जनरेटर जो ग्राफ़विज़ का उपयोग करता है। यह पीएचपी में लिखा गया है और इसके लिए कम से कम पीएचपी 5.2 की आवश्यकता है।
  • पी वाई कॉलग्राफ : पायथन प्रोग्राम के लिए एक कॉल ग्राफ़ जनरेटर जो ग्राफ़विज़ का उपयोग करता है।
  • प्यान : ग्राफ़विज़ का उपयोग करने वाले पायथन प्रोग्राम के लिए एक स्थिर कॉल ग्राफ़ जनरेटर करता है।
  • जीप्रो2डाट : पायथन में लिखा गया एक कॉल ग्राफ़ जनरेटर जो कई भाषाओं/रनटाइम्स के लिए प्रोफाइलिंग डेटा को ग्राफ़विज़ कॉलग्राफ़ में परिवर्तित करता है।
  • कोड2फ्लो: पायथन और जावास्क्रिप्ट प्रोग्राम के लिए एक कॉल ग्राफ़ जनरेटर जो ग्राफ़विज़ का उपयोग करता है।
  • आरसीवीज : ग्राफ़विज़ के साथ रनटाइम-जेनरेट किए गए कॉल ग्राफ़ को प्रस्तुत करने के लिए पायथन मॉड्यूल। प्रत्येक नोड एक फ़ंक्शन के आह्वान का प्रतिनिधित्व करता है जिसमें इसे पास किए गए पैरामीटर और वापसी मान होता है।
एक्स क्वेरी

प्रप्राइइटेरी कॉल ग्राफ जनरेटर

एलडीआरए टेस्टबेड
कॉल ग्राफ़ सहित असंख्य रिपोर्ट के साथ होस्ट और एम्बेडेड सॉफ़्टवेयर दोनों के लिए स्थिर और गतिशील विश्लेषण इंजन होता है।
परियोजना विश्लेषक
विजुअल बेसिक कोड के लिए स्टेटिक कोड एनालाइजर और कॉल ग्राफ जनरेटर है।
दृश्य विशेषज्ञ
ओरेकल डेटाबेस PL/SQL, माइक्रोसॉफ्ट एसक्यूएल सर्वर ट्रैनसैक्ट-एसक्यूएल, C शार्प (प्रोग्रामिंग लैंग्वेज)|C# और पॉवर बिल्डर कोड के लिए स्थैतिक कार्यक्रम विश्लेषण और कॉल ग्राफ़ जनरेटर है।
वी ट्यून
कॉल ग्राफ़ और निष्पादन आँकड़े दिखाने के लिए इंस्ट्रूमेंटिंग प्रोफाइलर होता है।
डीएमएस सॉफ्टवेयर रीइंजीनियरिंग टूलकिट
सी, जावा और कोबोल के लिए स्थिर पूरे कार्यक्रम वैश्विक कॉल ग्राफ निष्कर्षण के साथ अनुकूलन कार्यक्रम विश्लेषण उपकरण है।

अन्य, संबंधित उपकरण

ग्राफ़विज़
किसी भी ग्राफ़ (कॉल ग्राफ़ सहित) के पाठ प्रतिनिधित्व को चित्र में बदल देता है।
टी सॉर्ट
कमांड-लाइन यूटिलिटी जो एक टोपोलॉजिकल टी सॉर्ट करती है।

सैम्पल ग्राफ

स्वयं का विश्लेषण करने वाले gprof से उत्पन्न एक सैम्पल कॉल ग्राफ़:

index    called     name                              |index    called     name
      72384/72384       sym_id_parse [54]             |       1508/1508        cg_dfn [15]
[3]   72384             match [3]                     |[13]   1508             pre_visit [13]
----------------------                                |----------------------
          4/9052        cg_tally [32]                 |       1508/1508        cg_assemble [38]
       3016/9052        hist_print [49]               |[14]   1508             propagate_time [14]
       6032/9052        propagate_flags [52]          |----------------------
[4]    9052             sym_lookup [4]                |          2             cg_dfn [15]
----------------------                                |       1507/1507        cg_assemble [38]
       5766/5766        core_create_function_syms [41]|[15]   1507+2           cg_dfn [15]
[5]    5766             core_sym_class [5]            |       1509/1509        is_numbered [9]
----------------------                                |       1508/1508        is_busy [11]
         24/1537        parse_spec [19]               |       1508/1508        pre_visit [13]
       1513/1537        core_create_function_syms [41]|       1508/1508        post_visit [12]
[6]    1537             sym_init [6]                  |          2             cg_dfn [15]
----------------------                                |----------------------
       1511/1511        core_create_function_syms [41]|       1505/1505        hist_print [49]
[7]    1511             get_src_info [7]              |[16]   1505             print_line [16]
----------------------                                |          2/9           print_name_only [25]
          2/1510        arc_add [31]                  |----------------------
       1508/1510        cg_assemble [38]              |       1430/1430        core_create_function_syms [41]
[8]    1510             arc_lookup [8]                |[17]   1430             source_file_lookup_path [17]
----------------------                                |----------------------
       1509/1509        cg_dfn [15]                   |         24/24          sym_id_parse [54]
[9]    1509             is_numbered [9]               |[18]     24             parse_id [18]
----------------------                                |         24/24          parse_spec [19]
       1508/1508        propagate_flags [52]          |----------------------
[10]   1508             inherit_flags [10]            |         24/24          parse_id [18]
----------------------                                |[19]     24             parse_spec [19]
       1508/1508        cg_dfn [15]                   |         24/1537        sym_init [6]
[11]   1508             is_busy [11]                  |----------------------
----------------------                                |         24/24          main [1210]
       1508/1508        cg_dfn [15]                   |[20]     24             sym_id_add [20]
[12]   1508             post_visit [12]               |

यह भी देखें

संदर्भ

  1. Callahan, D.; Carle, A.; Hall, M.W.; Kennedy, K. (April 1990). "Constructing the procedure call multigraph". IEEE Transactions on Software Engineering. 16 (4): 483–487. doi:10.1109/32.54302.
  2. Uday Khedker; Amitabha Sanyal; Bageshri Sathe (2009). Data Flow Analysis: Theory and Practice. CRC Press. p. 234. ISBN 978-0-8493-3251-7.
  3. Pankaj Jalote (1997). An Integrated Approach to Software Engineering. Springer Science & Business Media. p. 372. ISBN 978-0-387-94899-7.
  4. Ryder, B.G. (May 1979). "Constructing the Call Graph of a Program". IEEE Transactions on Software Engineering. SE-5 (3): 216–226. doi:10.1109/tse.1979.234183.
  5. Grove, David; DeFouw, Greg; Dean, Jeffrey; Chambers, Craig; Grove, David; DeFouw, Greg; Dean, Jeffrey; Chambers, Craig (9 October 1997). "Call graph construction in object-oriented languages". ACM SIGPLAN Notices. ACM. 32 (10): 108, 108–124, 124. doi:10.1145/263700.264352.
  6. Eisenbarth, T.; Koschke, R.; Simon, D. (2001). "Aiding program comprehension by static and dynamic feature analysis". Proceedings IEEE International Conference on Software Maintenance. ICSM 2001: 602–611. doi:10.1109/icsm.2001.972777. ISBN 0-7695-1189-9.
  7. Gao, Debin; Reiter, Michael K.; Song, Dawn (25 October 2004). "Gray-box extraction of execution graphs for anomaly detection". Proceedings of the 11th ACM conference on Computer and communications security - CCS '04. ACM. pp. 318–329. doi:10.1145/1030083.1030126. ISBN 1581139616.