अर्धपारगम्य झिल्ली: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Membrane which will allow certain molecules or ions to pass through it by diffusion}} | {{Short description|Membrane which will allow certain molecules or ions to pass through it by diffusion}} | ||
[[Image:Semipermeable membrane (svg).svg|thumb|upright=1.25|[[हीमोडायलिसिस]] के | [[Image:Semipermeable membrane (svg).svg|thumb|upright=1.25|[[हीमोडायलिसिस]] के समय हानि अर्ध-पारगम्य झिल्ली का योजनाबद्ध, जहां रक्त लाल होता है, डायलिसिस द्रव नीला होता है, और झिल्ली पीली होती है।]]अर्ध-पारगम्य [[झिल्ली]] प्रकार की [[जैविक झिल्ली]] या [[रासायनिक संश्लेषण]], बहुलक झिल्ली है जो कुछ [[अणु]]ओं या आयनों को परासरण द्वारा निकलने देती है। पारित होने की दर दोनों तरफ के अणुओं या [[विलेय]] के [[दबाव]], [[एकाग्रता]] और [[तापमान]] पर निर्भर करती है, साथ ही प्रत्येक विलेय के लिए झिल्ली की पारगम्यता पर भी निर्भर करती है। झिल्ली और विलेय के आधार पर, पारगम्यता विलेय के आकार, [[घुलनशीलता]], गुण या रसायन पर निर्भर हो सकती है। इसकी पारगम्यता में चयनात्मक होने के लिए झिल्ली का निर्माण कैसे किया जाता है, यह दर और पारगम्यता का निर्धारण करेगा। कई प्राकृतिक और अवास्तविक सामग्री जो काफी मोटी होती हैं, वे भी अर्ध-पारगम्य होती हैं। इसका उदाहरण अंडे के अंदर की पतली परत है।<ref>{{cite web |title=Osmosis Eggs {{!}} Center for Nanoscale Science |url=https://www.mrsec.psu.edu/content/osmosis-eggs |website=www.mrsec.psu.edu |publisher=Center for Nanoscale Science, Penn State University |access-date=2 July 2021}}</ref> | ||
जैविक झिल्ली | जैविक झिल्ली श्रेष्ठ पारगम्य हैं,<ref name=Caplan17>{{cite book |last1=Caplan |first1=M.J. |editor1-last=Boron |editor1-first=W.F. |editor2-last=Boulpaep |editor2-first=E.L. |title=Medical physiology |date=2017 |publisher=Elsevier |location=Philadelphia, PA |isbn=9781455743773 |pages=8–46 |edition=Third |chapter=Functional organization of the cell}}</ref> झिल्ली में अंतर्निहित प्रोटीन द्वारा नियंत्रित सुगम प्रसार, निष्क्रिय परिवहन या सक्रिय परिवहन द्वारा नियंत्रित अणुओं के मार्ग के साथ। | ||
== जैविक झिल्ली == | == जैविक झिल्ली == | ||
जैविक अर्ध-पारगम्य झिल्ली का उदाहरण [[लिपिड बिलेयर]] है,<ref name=Caplan17/>जिस पर प्लाज़्मा झिल्ली आधारित होती है जो सभी कोशिकाओं (जीवविज्ञान) को घेरे रहती है। | जैविक अर्ध-पारगम्य झिल्ली का उदाहरण [[लिपिड बिलेयर]] है,<ref name=Caplan17/>जिस पर प्लाज़्मा झिल्ली आधारित होती है जो सभी कोशिकाओं (जीवविज्ञान) को घेरे रहती है। फॉस्फोलिपिड का समूह (एक फॉस्फेट सिर और दो [[वसा अम्ल]] पूंछ से मिलकर) डबल परत में व्यवस्थित होता है, [[फ़ॉस्फ़ोलिपिड बाइलेयर]] अर्ध-पारगम्य झिल्ली है जो इसकी पारगम्यता में बहुत विशिष्ट है। [[हाइड्रोफिलिक]] फॉस्फेट हेड्स बाहरी परत में होते हैं और कोशिका के बाहर और अंदर पानी की सामग्री के संपर्क में आते हैं। [[जल विरोधी]] पूंछ झिल्ली के अंदर छिपी हुई परत होती है। फॉस्फोलिपिड बाइलेयर छोटे, अपरिवर्तित विलेय के लिए सबसे अधिक पारगम्य है। प्रोटीन चैनल फॉस्फोलिपिड्स में या उसके माध्यम से अंतर्निहित होते हैं,<ref>{{Cite web|url=http://study.com/academy/lesson/semipermeable-membranes-role-in-cell-communication.html|title=Semipermeable Membranes' Role in Cell Communication - Video & Lesson Transcript |last=Friedl|first=Sarah|website=Study.com|language=en|access-date=2017-04-06}}</ref> और, सामूहिक रूप से, इस मॉडल को द्रव मोज़ेक मॉडल के रूप में जाना जाता है। [[एक्वापोरिन]] पानी के लिए पारगम्य प्रोटीन चैनल छिद्र हैं। | ||
=== सेलुलर संचार === | === सेलुलर संचार === | ||
सूचना प्लाज्मा झिल्ली से भी गुजर सकती है जब सिग्नलिंग अणु कोशिका झिल्ली में सेल की सतह के रिसेप्टर्स से जुड़ते हैं। | सूचना प्लाज्मा झिल्ली से भी गुजर सकती है जब सिग्नलिंग अणु कोशिका झिल्ली में सेल की सतह के रिसेप्टर्स से जुड़ते हैं। संकेतन अणु ग्राही से जुड़ते हैं, जो इन प्रोटीनों की संरचना को बदल देता है।<ref name="Study overview">{{Cite web|url=http://study.com/academy/lesson/semipermeable-membrane-definition-lesson-quiz.html|title=Semipermeable Membrane: Definition & Overview - Video & Lesson Transcript |last=Wood|first=David|website=Study.com|language=en|access-date=2017-04-06}}</ref> प्रोटीन संरचना में परिवर्तन संकेतन झरना प्रारंभिक करता है;<ref name="Study overview" /> | ||
[[जी प्रोटीन-युग्मित रिसेप्टर|G प्रोटीन-युग्मित ग्राही]] [[जी प्रोटीन-युग्मित रिसेप्टर|G प्रोटीन-युग्मित ग्राही]] या संकेतन प्रदान करता है, ऐसी संकेतन प्रक्रियाओं का महत्वपूर्ण उपसमुच्चय है।<ref>{{cite journal |last1=Weis |first1=William I. |last2=Kobilka |first2=Brian K. |title=The Molecular Basis of G Protein–Coupled Receptor Activation |journal=Annual Review of Biochemistry |date=20 June 2018 |volume=87 |issue=1 |pages=897–919 |doi=10.1146/annurev-biochem-060614-033910 |pmid=29925258|pmc=6535337 }}</ref> | |||
'''<br />सूचना प्लाज्मा झिल्ली से भी गुजर सकती है जब सिग्नलिंग अणु कोशिका झिल्ली में सेल की सतह के रिसेप्टर्स से जुड़ते हैं। संकेतन अणु ग्राही से जुड़ते हैं, जो इन प्रोटीनों की''' | |||
== [[विपरीत परासरण]] == | == [[विपरीत परासरण]] == | ||
आसमाटिक दबाव के अंतर के कारण | आसमाटिक दबाव के अंतर के कारण श्रेष्ठ पारगम्य झिल्ली के माध्यम से पानी के [[थोक प्रवाह]] को परासरण कहा जाता है। यह केवल कुछ कणों को पानी सहित और नमक और अन्य दूषित पदार्थों सहित विलेय को पीछे छोड़ने की अनुमति देता है। विपरीत परासरण की प्रक्रिया में, घोल पर उच्च दबाव डालकर पानी को शुद्ध किया जाता है और इस तरह पानी को पतली-फिल्म मिश्रित झिल्ली (TFC या TFM) के माध्यम से धकेला जाता है। ये मुख्य रूप से [[जल शोधन]] या [[अलवणीकरण]] प्रणालियों में उपयोग के लिए निर्मित अर्धपारगम्य झिल्ली हैं। उनका बैटरी और ईंधन सेल जैसे रासायनिक अनुप्रयोगों में भी उपयोग होता है। संक्षेप में, TFC सामग्री आणविक चलनी है जो दो या दो से अधिक स्तरित सामग्री से फिल्म के रूप में निर्मित होती है। [[सिडनी लोएब]] और श्रीनिवास सौरीराजन ने पहली व्यावहारिक अवास्तविक अर्ध-पारगम्य झिल्ली का आविष्कार किया।<ref>{{cite patent |title=High flow porous membranes for separating water from saline solutions |pubdate=12 May 1964 |inventor-last=Sidney |inventor2-last=Srinivasa |inventor-first=Loeb |inventor2-first=Sourirajan |country=US|number=3133132}}</ref> विपरीत परासरण में उपयोग किए जाने वाले झिल्ली, सामान्य रूप से, [[पॉलियामाइड]] से बने होते हैं, मुख्य रूप से पानी के लिए इसकी पारगम्यता और नमक आयनों और अन्य छोटे अणुओं सहित विभिन्न भंग अशुद्धियों के सापेक्ष अभेद्यता के लिए चुने जाते हैं जिन्हें फ़िल्टर नहीं किया जा सकता है। अर्धपारगम्य झिल्ली का अन्य उदाहरण [[डायलिसिस ट्यूबिंग]] है। | ||
== अन्य प्रकार == | == अन्य प्रकार == |
Revision as of 21:38, 25 February 2023
अर्ध-पारगम्य झिल्ली प्रकार की जैविक झिल्ली या रासायनिक संश्लेषण, बहुलक झिल्ली है जो कुछ अणुओं या आयनों को परासरण द्वारा निकलने देती है। पारित होने की दर दोनों तरफ के अणुओं या विलेय के दबाव, एकाग्रता और तापमान पर निर्भर करती है, साथ ही प्रत्येक विलेय के लिए झिल्ली की पारगम्यता पर भी निर्भर करती है। झिल्ली और विलेय के आधार पर, पारगम्यता विलेय के आकार, घुलनशीलता, गुण या रसायन पर निर्भर हो सकती है। इसकी पारगम्यता में चयनात्मक होने के लिए झिल्ली का निर्माण कैसे किया जाता है, यह दर और पारगम्यता का निर्धारण करेगा। कई प्राकृतिक और अवास्तविक सामग्री जो काफी मोटी होती हैं, वे भी अर्ध-पारगम्य होती हैं। इसका उदाहरण अंडे के अंदर की पतली परत है।[1]
जैविक झिल्ली श्रेष्ठ पारगम्य हैं,[2] झिल्ली में अंतर्निहित प्रोटीन द्वारा नियंत्रित सुगम प्रसार, निष्क्रिय परिवहन या सक्रिय परिवहन द्वारा नियंत्रित अणुओं के मार्ग के साथ।
जैविक झिल्ली
जैविक अर्ध-पारगम्य झिल्ली का उदाहरण लिपिड बिलेयर है,[2]जिस पर प्लाज़्मा झिल्ली आधारित होती है जो सभी कोशिकाओं (जीवविज्ञान) को घेरे रहती है। फॉस्फोलिपिड का समूह (एक फॉस्फेट सिर और दो वसा अम्ल पूंछ से मिलकर) डबल परत में व्यवस्थित होता है, फ़ॉस्फ़ोलिपिड बाइलेयर अर्ध-पारगम्य झिल्ली है जो इसकी पारगम्यता में बहुत विशिष्ट है। हाइड्रोफिलिक फॉस्फेट हेड्स बाहरी परत में होते हैं और कोशिका के बाहर और अंदर पानी की सामग्री के संपर्क में आते हैं। जल विरोधी पूंछ झिल्ली के अंदर छिपी हुई परत होती है। फॉस्फोलिपिड बाइलेयर छोटे, अपरिवर्तित विलेय के लिए सबसे अधिक पारगम्य है। प्रोटीन चैनल फॉस्फोलिपिड्स में या उसके माध्यम से अंतर्निहित होते हैं,[3] और, सामूहिक रूप से, इस मॉडल को द्रव मोज़ेक मॉडल के रूप में जाना जाता है। एक्वापोरिन पानी के लिए पारगम्य प्रोटीन चैनल छिद्र हैं।
सेलुलर संचार
सूचना प्लाज्मा झिल्ली से भी गुजर सकती है जब सिग्नलिंग अणु कोशिका झिल्ली में सेल की सतह के रिसेप्टर्स से जुड़ते हैं। संकेतन अणु ग्राही से जुड़ते हैं, जो इन प्रोटीनों की संरचना को बदल देता है।[4] प्रोटीन संरचना में परिवर्तन संकेतन झरना प्रारंभिक करता है;[4]
G प्रोटीन-युग्मित ग्राही G प्रोटीन-युग्मित ग्राही या संकेतन प्रदान करता है, ऐसी संकेतन प्रक्रियाओं का महत्वपूर्ण उपसमुच्चय है।[5]
सूचना प्लाज्मा झिल्ली से भी गुजर सकती है जब सिग्नलिंग अणु कोशिका झिल्ली में सेल की सतह के रिसेप्टर्स से जुड़ते हैं। संकेतन अणु ग्राही से जुड़ते हैं, जो इन प्रोटीनों की
विपरीत परासरण
आसमाटिक दबाव के अंतर के कारण श्रेष्ठ पारगम्य झिल्ली के माध्यम से पानी के थोक प्रवाह को परासरण कहा जाता है। यह केवल कुछ कणों को पानी सहित और नमक और अन्य दूषित पदार्थों सहित विलेय को पीछे छोड़ने की अनुमति देता है। विपरीत परासरण की प्रक्रिया में, घोल पर उच्च दबाव डालकर पानी को शुद्ध किया जाता है और इस तरह पानी को पतली-फिल्म मिश्रित झिल्ली (TFC या TFM) के माध्यम से धकेला जाता है। ये मुख्य रूप से जल शोधन या अलवणीकरण प्रणालियों में उपयोग के लिए निर्मित अर्धपारगम्य झिल्ली हैं। उनका बैटरी और ईंधन सेल जैसे रासायनिक अनुप्रयोगों में भी उपयोग होता है। संक्षेप में, TFC सामग्री आणविक चलनी है जो दो या दो से अधिक स्तरित सामग्री से फिल्म के रूप में निर्मित होती है। सिडनी लोएब और श्रीनिवास सौरीराजन ने पहली व्यावहारिक अवास्तविक अर्ध-पारगम्य झिल्ली का आविष्कार किया।[6] विपरीत परासरण में उपयोग किए जाने वाले झिल्ली, सामान्य रूप से, पॉलियामाइड से बने होते हैं, मुख्य रूप से पानी के लिए इसकी पारगम्यता और नमक आयनों और अन्य छोटे अणुओं सहित विभिन्न भंग अशुद्धियों के सापेक्ष अभेद्यता के लिए चुने जाते हैं जिन्हें फ़िल्टर नहीं किया जा सकता है। अर्धपारगम्य झिल्ली का अन्य उदाहरण डायलिसिस ट्यूबिंग है।
अन्य प्रकार
अन्य प्रकार की अर्ध-पारगम्य झिल्लियाँ हैं कटियन-विनिमय झिल्ली (CEMs), आयन-विनिमय झिल्ली (AEMs), क्षार आयन विनिमय झिल्ली (AAEMs) और प्रोटॉन-विनिमय झिल्ली (PEMs)।
संदर्भ
- ↑ "Osmosis Eggs | Center for Nanoscale Science". www.mrsec.psu.edu. Center for Nanoscale Science, Penn State University. Retrieved 2 July 2021.
- ↑ 2.0 2.1 Caplan, M.J. (2017). "Functional organization of the cell". In Boron, W.F.; Boulpaep, E.L. (eds.). Medical physiology (Third ed.). Philadelphia, PA: Elsevier. pp. 8–46. ISBN 9781455743773.
- ↑ Friedl, Sarah. "Semipermeable Membranes' Role in Cell Communication - Video & Lesson Transcript". Study.com (in English). Retrieved 2017-04-06.
- ↑ 4.0 4.1 Wood, David. "Semipermeable Membrane: Definition & Overview - Video & Lesson Transcript". Study.com (in English). Retrieved 2017-04-06.
- ↑ Weis, William I.; Kobilka, Brian K. (20 June 2018). "The Molecular Basis of G Protein–Coupled Receptor Activation". Annual Review of Biochemistry. 87 (1): 897–919. doi:10.1146/annurev-biochem-060614-033910. PMC 6535337. PMID 29925258.
- ↑ US 3133132, Sidney, Loeb & Srinivasa, Sourirajan, "High flow porous membranes for separating water from saline solutions", published 12 May 1964
अग्रिम पठन
- Koros, W. J.; Ma, Y. H.; Shimidzu, T. (1 January 1996). "Terminology for membranes and membrane processes (IUPAC Recommendations 1996)". Pure and Applied Chemistry. 68 (7): 1479–1489. doi:10.1351/pac199668071479. S2CID 97076769. See this document for definitions of penetrant (permeant), synthetic (artificial) membrane, and anion-exchange membrane.
- Rozendal, R. A.; Sleutels, T. H. J. A.; Hamelers, H. V. M.; Buisman, C. J. N. (June 2008). "Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater". Water Science and Technology. 57 (11): 1757–1762. doi:10.2166/wst.2008.043. PMID 18547927.[non-primary source needed]
- "High Flow Porous Membranes for Separating Water from Saline Solutions US 3133132 A". 12 May 1964. Retrieved 22 April 2014.[non-primary source needed]
बाहरी संबंध
- The European Membrane House, a non-profit international association created to continue the work of the network and parternships developed in NanoMemPro, an earlier EU-funded European network of membrane researchers.
- Short, non-scholarly WiseGeek article, "What is a Semipermeable Membrane.