अतिप्रत्यास्थ भौतिक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:
{{continuum mechanics|cTopic=[[ठोस यांत्रिकी]]}}
{{continuum mechanics|cTopic=[[ठोस यांत्रिकी]]}}


'''हाइपरलास्टिक''' या '''नव-प्रत्यास्थ भौतिकी'''<ref name=Ogden>R.W. Ogden, 1984, ''Non-Linear Elastic Deformations'', {{ISBN|0-486-69648-0}}, Dover.</ref> आदर्श रूप से [[लोचदार (ठोस यांत्रिकी)]] भौतिकी के लिए एक प्रकार का [[संवैधानिक समीकरण]] है जिसके लिए तनाव-तनाव संबंध [[तनाव ऊर्जा घनत्व समारोह]] से प्राप्त होता है। हाइपरलास्टिक भौतिकी [[कॉची लोचदार सामग्री|कॉची लोचदार भौतिकी]] का एक विशेष मामला है।
'''हाइपरलास्टिक''' या '''अतिप्रत्यास्थ भौतिकी'''<ref name=Ogden>R.W. Ogden, 1984, ''Non-Linear Elastic Deformations'', {{ISBN|0-486-69648-0}}, Dover.</ref> आदर्श रूप से [[लोचदार (ठोस यांत्रिकी)|प्रत्यास्थ (ठोस यांत्रिकी)]] भौतिकी के लिए एक प्रकार का [[संवैधानिक समीकरण]] है जिसके लिए तनाव-तनाव संबंध [[तनाव ऊर्जा घनत्व समारोह]] से प्राप्त होता है। हाइपरलास्टिक भौतिकी [[कॉची लोचदार सामग्री|कॉची प्रत्यास्थ भौतिकी]] का एक विशेष मामला है।


कई सामग्रियों के लिए, [[रैखिक लोच]] मॉडल देखे गए भौतिक व्यवहार का सटीक वर्णन नहीं करते हैं। इस तरह की भौतिकी का सबसे आम उदाहरण रबर है, जिसके तनाव-[[तनाव (भौतिकी)|तनाव (भौतिकी]]) संबंध को गैर-रैखिक रूप से लोचदार, [[ समदैशिक |समदैशिक]] और असम्पीडित के रूप में परिभाषित किया जा सकता है। हाइपरलास्टिक ऐसी सामग्रियों के तनाव-तनाव व्यवहार को मॉडलिंग करने का एक साधन प्रदान करता है।<ref>{{cite journal | last1 = Muhr | first1 = A. H. | year = 2005 | title = Modeling the stress–strain behavior of rubber | journal = Rubber Chemistry and Technology | volume = 78 | issue = 3| pages = 391–425 | doi = 10.5254/1.3547890 }}</ref> अपूर्ण, [[vulcanized|वल्केनाइज्ड]] [[इलास्टोमर|इलास्टोमर्स]] का व्यवहार अक्सर हाइपरलास्टिक आदर्श के अनुरूप होता है। भरे हुए इलास्टोमर्स और [[जैविक ऊतक]]<ref>{{cite journal | pmc= 4278556 | pmid=25319496 | doi=10.1002/cnm.2691 | volume=30 | title=द्रव-संरचना अंतःक्रिया के साथ एक परिमित तनाव अरैखिक मानव माइट्रल वाल्व मॉडल| journal=Int J Numer Method Biomed Eng | pages=1597–613 | last1 = Gao | first1 = H | last2 = Ma | first2 = X | last3 = Qi | first3 = N | last4 = Berry | first4 = C | last5 = Griffith | first5 = BE | last6 = Luo | first6 = X| year=2014 | issue=12 }}</ref><ref>{{cite journal | pmc= 5332559 | pmid=28228537 | doi=10.1098/rsif.2016.0596 | volume=14 | title=Morphoelasticity in the development of brown alga ''Ectocarpus siliculosus'': from cell rounding to branching | journal=J R Soc Interface | last1 = Jia | first1 = F | last2 = Ben Amar | first2 = M | last3 = Billoud | first3 = B | last4 = Charrier | first4 = B | year=2017 | issue=127 | page=20160596}}</ref> भी अक्सर हाइपरलास्टिक आदर्शीकरण के माध्यम से तैयार किए जाते हैं।
कई सामग्रियों के लिए, [[रैखिक लोच]] मॉडल देखे गए भौतिक व्यवहार का सटीक वर्णन नहीं करते हैं। इस तरह की भौतिकी का सबसे आम उदाहरण रबर है, जिसके तनाव-[[तनाव (भौतिकी)|तनाव (भौतिकी]]) संबंध को गैर-रैखिक रूप से प्रत्यास्थ, [[ समदैशिक |समदैशिक]] और असम्पीडित के रूप में परिभाषित किया जा सकता है। हाइपरलास्टिक ऐसी सामग्रियों के तनाव-तनाव व्यवहार को मॉडलिंग करने का एक साधन प्रदान करता है।<ref>{{cite journal | last1 = Muhr | first1 = A. H. | year = 2005 | title = Modeling the stress–strain behavior of rubber | journal = Rubber Chemistry and Technology | volume = 78 | issue = 3| pages = 391–425 | doi = 10.5254/1.3547890 }}</ref> अपूर्ण, [[vulcanized|वल्केनाइज्ड]] [[इलास्टोमर|इलास्टोमर्स]] का व्यवहार प्रायः हाइपरलास्टिक आदर्श के अनुरूप होता है। भरे हुए इलास्टोमर्स और [[जैविक ऊतक]]<ref>{{cite journal | pmc= 4278556 | pmid=25319496 | doi=10.1002/cnm.2691 | volume=30 | title=द्रव-संरचना अंतःक्रिया के साथ एक परिमित तनाव अरैखिक मानव माइट्रल वाल्व मॉडल| journal=Int J Numer Method Biomed Eng | pages=1597–613 | last1 = Gao | first1 = H | last2 = Ma | first2 = X | last3 = Qi | first3 = N | last4 = Berry | first4 = C | last5 = Griffith | first5 = BE | last6 = Luo | first6 = X| year=2014 | issue=12 }}</ref><ref>{{cite journal | pmc= 5332559 | pmid=28228537 | doi=10.1098/rsif.2016.0596 | volume=14 | title=Morphoelasticity in the development of brown alga ''Ectocarpus siliculosus'': from cell rounding to branching | journal=J R Soc Interface | last1 = Jia | first1 = F | last2 = Ben Amar | first2 = M | last3 = Billoud | first3 = B | last4 = Charrier | first4 = B | year=2017 | issue=127 | page=20160596}}</ref> भी प्रायः हाइपरलास्टिक आदर्शीकरण के माध्यम से तैयार किए जाते हैं।


[[रोनाल्ड रिवलिन]] और [[मेल्विन मूनी]] ने नियो-हुकेन और मूनी-रिवलिन [[लोचदार (ठोस यांत्रिकी)|ठोस यांत्रिकी मॉडल]] के पहले हाइपरलास्टिक मॉडल को विकसित किया था इसके बाद से कई अन्य हाइपरलास्टिक मॉडल विकसित किए गए हैं। अन्य व्यापक रूप से उपयोग किए जाने वाले हाइपरलास्टिक भौतिकी मॉडल में ओग्डेन मॉडल और अरुडा-बॉयस मॉडल सम्मिलित हैं।
[[रोनाल्ड रिवलिन]] और [[मेल्विन मूनी]] ने नियो-हुकेन और मूनी-रिवलिन [[लोचदार (ठोस यांत्रिकी)|ठोस यांत्रिकी मॉडल]] के पहले हाइपरलास्टिक मॉडल को विकसित किया था इसके बाद से कई अन्य हाइपरलास्टिक मॉडल विकसित किए गए हैं। अन्य व्यापक रूप से उपयोग किए जाने वाले हाइपरलास्टिक भौतिकी मॉडल में ओग्डेन मॉडल और अरुडा-बॉयस मॉडल सम्मिलित हैं।
Line 12: Line 12:


=== सेंट वेनेंट-किरचॉफ मॉडल ===
=== सेंट वेनेंट-किरचॉफ मॉडल ===
सबसे साधारण हाइपरलास्टिक भौतिकी मॉडल सेंट वेनेंट-किरचॉफ मॉडल है जो ज्यामितीय रूप से गैर-रैखिक शासन के लिए ज्यामितीय रूप से रैखिक लोचदार भौतिकी मॉडल का विस्तार है। इस मॉडल का क्रमशः सामान्य और समदैशिक रूप है। <math display="block">\begin{align}
सबसे साधारण हाइपरलास्टिक भौतिकी मॉडल सेंट वेनेंट-किरचॉफ मॉडल है जो ज्यामितीय रूप से गैर-रैखिक मॉडल के लिए ज्यामितीय रूप से रैखिक प्रत्यास्थ भौतिकी मॉडल का विस्तार है। इस मॉडल का क्रमशः सामान्य और समदैशिक रूप है: <math display="block">\begin{align}
  \boldsymbol{S} &= \boldsymbol{C} : \boldsymbol{E} \\
  \boldsymbol{S} &= \boldsymbol{C} : \boldsymbol{E} \\
  \boldsymbol{S} &= \lambda~ \text{tr}(\boldsymbol{E})\boldsymbol{\mathit{I}} + 2\mu\boldsymbol{E} \text{.}
  \boldsymbol{S} &= \lambda~ \text{tr}(\boldsymbol{E})\boldsymbol{\mathit{I}} + 2\mu\boldsymbol{E} \text{.}
\end{align}</math>जहाँ <math>\mathbin{:}</math> टेंसर संकुचन है, <math>\boldsymbol{S}</math> दूसरा पिओला-किरचॉफ तनाव है, <math>\boldsymbol{C} : \R^{3 \times 3} \to \R^{3 \times 3}</math> चौथा क्रम कठोरता टेन्सर है और <math>\boldsymbol{E}</math> द्वारा दिया गया लैग्रैन्जियन ग्रीन स्ट्रेन है<math display="block">\mathbf E =\frac{1}{2}\left[ (\nabla_{\mathbf X}\mathbf u)^\textsf{T} + \nabla_{\mathbf X}\mathbf u + (\nabla_{\mathbf X}\mathbf u)^\textsf{T} \cdot\nabla_{\mathbf X}\mathbf u\right]\,\!</math><math>\lambda</math> और <math>\mu</math> स्थिरांक हैं और <math>\boldsymbol{\mathit{I}}</math> दूसरा क्रम इकाई टेन्सर है।
\end{align}</math>जहाँ <math>\mathbin{:}</math> टेंसर संकुचन <math>\boldsymbol{S}</math> है दूसरा पिओला-किरचॉफ तनाव <math>\boldsymbol{C} : \R^{3 \times 3} \to \R^{3 \times 3}</math> है :और चौथा क्रम कठोरता टेन्सर <math>\boldsymbol{E}</math> है, जिसे लग्रांगियन ग्रीन स्ट्रेन द्वारा दिया गया है:
सेंट वेनांट-किरचॉफ मॉडल के लिए तनाव-ऊर्जा घनत्व कार्य है<math display="block">W(\boldsymbol{E}) = \frac{\lambda}{2}[\text{tr}(\boldsymbol{E})]^2 + \mu \text{tr}\mathord\left(\boldsymbol{E}^2\right)</math>और दूसरा पिओला-किरचॉफ तनाव संबंध से प्राप्त किया जा सकता है<math display="block"> \boldsymbol{S} = \frac{\partial W}{\partial \boldsymbol{E}} ~. </math>
 
<math display="block">\mathbf E =\frac{1}{2}\left[ (\nabla_{\mathbf X}\mathbf u)^\textsf{T} + \nabla_{\mathbf X}\mathbf u + (\nabla_{\mathbf X}\mathbf u)^\textsf{T} \cdot\nabla_{\mathbf X}\mathbf u\right]\,\!</math>
 
 
<math>\lambda</math> और <math>\mu</math> स्थिरांक हैं और <math>\boldsymbol{\mathit{I}}</math> दूसरा क्रम इकाई टेन्सर है। जो सेंट वेनांट-किरचॉफ मॉडल के लिए तनाव-ऊर्जा घनत्व कार्य है<math display="block">W(\boldsymbol{E}) = \frac{\lambda}{2}[\text{tr}(\boldsymbol{E})]^2 + \mu \text{tr}\mathord\left(\boldsymbol{E}^2\right)</math>और दूसरा पिओला-किरचॉफ तनाव संबंध से प्राप्त किया जा सकता है:<math display="block"> \boldsymbol{S} = \frac{\partial W}{\partial \boldsymbol{E}} ~. </math>


=== हाइपरलास्टिक भौतिकी मॉडल का वर्गीकरण ===
=== हाइपरलास्टिक भौतिकी मॉडल का वर्गीकरण ===
Line 36: Line 40:
#* वैन डेर वाल्स (हाइपरेलेटिक मॉडल)
#* वैन डेर वाल्स (हाइपरेलेटिक मॉडल)


सामान्यतः एक हाइपरलास्टिक मॉडल को [[ड्रकर स्थिरता]] मानदंड को पूर्ण करना चाहिए। और कुछ हाइपरलास्टिक मॉडल वालेनिस-लैंडल परिकल्पना को संतुष्ट करते हैं जो बताता है कि तनाव ऊर्जा कार्य को प्रमुख हिस्सों के अलग-अलग कार्यों के योग में अलग किया जा सकता है। <math>(\lambda_1, \lambda_2, \lambda_3)</math>:
सामान्यतः एक हाइपरलास्टिक मॉडल को [[ड्रकर स्थिरता]] मानदंड को पूर्ण करने की आवश्यकता होती है। क्योकि कुछ हाइपरलास्टिक मॉडल वैलेनिस-लैंडल परिकल्पना को सिद्ध करते हैं जो प्रदर्शित करते है कि तनाव ऊर्जा कार्य को प्रमुख भागों <math>(\lambda_1, \lambda_2, \lambda_3)</math> के अलग-अलग कार्यों के योग में विभाजित किया जा सकता है।
<math display="block">
<math display="block">
  W = f(\lambda_1) + f(\lambda_2) + f(\lambda_3) \,.
  W = f(\lambda_1) + f(\lambda_2) + f(\lambda_3) \,.
  </math>
  </math>
== तनाव-तनाव संबंध ==
== किरचॉफ तनाव और लग्रांगियन विरूपण मे संबंध ==


=== संकुचित हाइपरलास्टिक भौतिकी ===
=== संकुचित हाइपरलास्टिक भौतिकी ===


==== पहला पिओला-किरचॉफ तनाव ====
==== पहला पिओला-किरचॉफ तनाव ====
अगर <math>W(\boldsymbol{F})</math> स्ट्रेन एनर्जी डेंसिटी फंक्शन है, पिओला-किरचॉफ स्ट्रेस टेंसर | 1 पिओला-किरचॉफ स्ट्रेस टेंसर की गणना एक हाइपरलास्टिक भौतिकी के रूप में की जा सकती है
यदि <math>W(\boldsymbol{F})</math> तनाव ऊर्जा घनत्व फलन है, तो पहले पिओला-किरचॉफ तनाव टेन्सर की गणना हाइपरलास्टिक भौतिकी के रूप में की जा सकती है:
 
<math display="block">
<math display="block">
  \boldsymbol{P} = \frac{\partial W}{\partial \boldsymbol{F}} \qquad \text{or} \qquad P_{iK} = \frac{\partial W}{\partial F_{iK}}.
  \boldsymbol{P} = \frac{\partial W}{\partial \boldsymbol{F}} \qquad \text{or} \qquad P_{iK} = \frac{\partial W}{\partial F_{iK}}
</math>
</math>
कहाँ <math>\boldsymbol{F}</math> [[विरूपण ढाल]] है। परिमित विकृति सिद्धांत के संदर्भ में # परिमित विकृति टेंसर (<math>\boldsymbol{E}</math>)
 
<math display="block">
जहाँ <math>\boldsymbol{F}</math> [[विरूपण ढाल|विरूपण]] प्रवणता है। लग्रांगियन तनाव <math>\boldsymbol{E}</math> के संदर्भ में<math display="block">
  \boldsymbol{P} = \boldsymbol{F}\cdot\frac{\partial W}{\partial \boldsymbol{E}} \qquad \text{or} \qquad P_{iK} = F_{iL}~\frac{\partial W}{\partial E_{LK}} ~.
  \boldsymbol{P} = \boldsymbol{F}\cdot\frac{\partial W}{\partial \boldsymbol{E}} \qquad \text{or} \qquad P_{iK} = F_{iL}~\frac{\partial W}{\partial E_{LK}} ~
  </math>
  </math>
परिमित तनाव सिद्धांत के संदर्भ में | सही कॉची-ग्रीन विरूपण टेंसर (<math>\boldsymbol{C}</math>)
 
परिमित कॉची-ग्रीन विरूपण टेन्सर <math>\boldsymbol{C}</math> के संदर्भ में
<math display="block"> \boldsymbol{P} = 2~\boldsymbol{F}\cdot\frac{\partial W}{\partial \boldsymbol{C}} \qquad \text{or} \qquad P_{iK} = 2~F_{iL}~\frac{\partial W}{\partial C_{LK}} ~. </math>
<math display="block"> \boldsymbol{P} = 2~\boldsymbol{F}\cdot\frac{\partial W}{\partial \boldsymbol{C}} \qquad \text{or} \qquad P_{iK} = 2~F_{iL}~\frac{\partial W}{\partial C_{LK}} ~. </math>
==== दूसरा पियोला-किरचॉफ तनाव ====
==== दूसरा पियोला-किरचॉफ तनाव ====
अगर <math>\boldsymbol{S}</math> पिओला-किरचॉफ तनाव टेंसर है|दूसरा पिओला-किरचॉफ तनाव टेंसर तब
यदि <math>\boldsymbol{S}</math> दूसरा पिओला-किरचॉफ तनाव टेंसर है तो<math display="block">
<math display="block">
  \boldsymbol{S} = \boldsymbol{F}^{-1}\cdot\frac{\partial W}{\partial \boldsymbol{F}} \qquad \text{or} \qquad S_{IJ} = F^{-1}_{Ik}\frac{\partial W}{\partial F_{kJ}} ~.
  \boldsymbol{S} = \boldsymbol{F}^{-1}\cdot\frac{\partial W}{\partial \boldsymbol{F}} \qquad \text{or} \qquad S_{IJ} = F^{-1}_{Ik}\frac{\partial W}{\partial F_{kJ}} ~.
  </math>
  </math>
परिमित तनाव सिद्धांत के संदर्भ में # परिमित तनाव टेंसर
 
 
लग्रांगियन तनाव के संदर्भ में
<math display="block">
<math display="block">
  \boldsymbol{S} = \frac{\partial W}{\partial \boldsymbol{E}} \qquad \text{or} \qquad
  \boldsymbol{S} = \frac{\partial W}{\partial \boldsymbol{E}} \qquad \text{or} \qquad
  S_{IJ} = \frac{\partial W}{\partial E_{IJ}} ~.
  S_{IJ} = \frac{\partial W}{\partial E_{IJ}} ~.
  </math>
  </math>
परिमित तनाव सिद्धांत के संदर्भ में | सही कॉची-ग्रीन विरूपण टेंसर
परिमित कॉची-ग्रीन विरूपण टेंसर के संदर्भ में
<math display="block">
<math display="block">
  \boldsymbol{S} = 2~\frac{\partial W}{\partial \boldsymbol{C}} \qquad \text{or} \qquad
  \boldsymbol{S} = 2~\frac{\partial W}{\partial \boldsymbol{C}} \qquad \text{or} \qquad
  S_{IJ} = 2~\frac{\partial W}{\partial C_{IJ}} ~.
  S_{IJ} = 2~\frac{\partial W}{\partial C_{IJ}} ~.
  </math>
  </math>
उपरोक्त संबंध को भौतिक विन्यास में डॉयल-एरिक्सन सूत्र के रूप में भी जाना जाता है।
उपरोक्त संबंध को भौतिक विरूपण में "डॉयल-एरिक्सन सूत्र" के रूप में भी जाना जाता है।


==== कौशी तनाव ====
==== कॉची तनाव ====
इसी प्रकार, तनाव (भौतिकी) द्वारा दिया जाता है
इसी प्रकार, यह तनाव (भौतिकी) द्वारा दिया जाता है:
<math display="block">
<math display="block">
  \boldsymbol{\sigma} = \frac{1}{J}~ \frac{\partial W}{\partial \boldsymbol{F}}\cdot\boldsymbol{F}^\textsf{T} ~;~~ J := \det\boldsymbol{F} \qquad \text{or} \qquad
  \boldsymbol{\sigma} = \frac{1}{J}~ \frac{\partial W}{\partial \boldsymbol{F}}\cdot\boldsymbol{F}^\textsf{T} ~;~~ J := \det\boldsymbol{F} \qquad \text{or} \qquad
  \sigma_{ij} = \frac{1}{J}~ \frac{\partial W}{\partial F_{iK}}~F_{jK} ~.
  \sigma_{ij} = \frac{1}{J}~ \frac{\partial W}{\partial F_{iK}}~F_{jK} ~.
  </math>
  </math>
परिमित तनाव सिद्धांत के संदर्भ में # परिमित तनाव टेंसर
लग्रांगियन ग्रीन तनाव के संदर्भ में
<math display="block">
<math display="block">
  \boldsymbol{\sigma} = \frac{1}{J}~\boldsymbol{F}\cdot\frac{\partial W}{\partial \boldsymbol{E}}\cdot\boldsymbol{F}^\textsf{T} \qquad \text{or} \qquad
  \boldsymbol{\sigma} = \frac{1}{J}~\boldsymbol{F}\cdot\frac{\partial W}{\partial \boldsymbol{E}}\cdot\boldsymbol{F}^\textsf{T} \qquad \text{or} \qquad
  \sigma_{ij} = \frac{1}{J}~F_{iK}~\frac{\partial W}{\partial E_{KL}}~F_{jL} ~.
  \sigma_{ij} = \frac{1}{J}~F_{iK}~\frac{\partial W}{\partial E_{KL}}~F_{jL} ~.
  </math>
  </math>
परिमित तनाव सिद्धांत के संदर्भ में | सही कॉची-ग्रीन विरूपण टेंसर
परिमित सही कॉची-ग्रीन विरूपण टेंसर के संदर्भ में
<math display="block">
<math display="block">
  \boldsymbol{\sigma} = \frac{2}{J}~\boldsymbol{F}\cdot\frac{\partial W}{\partial \boldsymbol{C}}\cdot\boldsymbol{F}^\textsf{T} \qquad \text{or} \qquad
  \boldsymbol{\sigma} = \frac{2}{J}~\boldsymbol{F}\cdot\frac{\partial W}{\partial \boldsymbol{C}}\cdot\boldsymbol{F}^\textsf{T} \qquad \text{or} \qquad
  \sigma_{ij} = \frac{2}{J}~F_{iK}~\frac{\partial W}{\partial C_{KL}}~F_{jL} ~.
  \sigma_{ij} = \frac{2}{J}~F_{iK}~\frac{\partial W}{\partial C_{KL}}~F_{jL} ~.
  </math>
  </math>
उपरोक्त भाव अनिसोट्रोपिक मीडिया के लिए भी मान्य हैं (जिस स्थिति में, संभावित कार्य को प्रारंभिक फाइबर ओरिएंटेशन जैसे संदर्भ दिशात्मक मात्राओं पर निहित रूप से निर्भर करने के लिए समझा जाता है)। आइसोट्रॉपी के विशेष मामले में, कॉची तनाव को बाएं कॉची-ग्रीन विरूपण टेंसर के रूप में निम्नानुसार व्यक्त किया जा सकता है:<ref name=Basar>Y. Basar, 2000, Nonlinear continuum mechanics of solids, Springer, p. 157.</ref>
उपरोक्त भाव विषमदैशिक मीडिया के लिए भी मान्य हैं जिस स्थिति में, संभावित कार्य को प्रारंभिक फाइबर अभिविन्यास जैसे संदर्भ दिशात्मक राशियों पर निहित रूप से निर्भर करने के लिए समझा जाता है। समदैशिक की विशेष स्थिति में, कॉची तनाव को बाएं कॉची-ग्रीन विरूपण टेंसर के संदर्भ में निम्नानुसार व्यक्त किया जा सकता है:<ref name="Basar">Y. Basar, 2000, Nonlinear continuum mechanics of solids, Springer, p. 157.</ref>
<math display="block">
<math display="block">
  \boldsymbol{\sigma} = \frac{2}{J}\frac{\partial W}{\partial \boldsymbol{B}}\cdot~\boldsymbol{B} \qquad \text{or} \qquad
  \boldsymbol{\sigma} = \frac{2}{J}\frac{\partial W}{\partial \boldsymbol{B}}\cdot~\boldsymbol{B} \qquad \text{or} \qquad
  \sigma_{ij} = \frac{2}{J}~B_{ik}~\frac{\partial W}{\partial B_{kj}} ~.
  \sigma_{ij} = \frac{2}{J}~B_{ik}~\frac{\partial W}{\partial B_{kj}} ~.
  </math>
  </math>
=== असंपीड्य हाइपरलास्टिक भौतिकी ===
=== असंपीड्य हाइपरलास्टिक भौतिकी ===
एक असंपीड्य भौतिकी के लिए <math>J := \det\boldsymbol{F} = 1</math>. असंपीड्यता बाधा इसलिए है <math>J-1= 0</math>. हाइपरलास्टिक भौतिकी की असंपीड्यता सुनिश्चित करने के लिए, तनाव-ऊर्जा फ़ंक्शन को फॉर्म में लिखा जा सकता है:
'''एक असंपीड्य भौतिकी के लिए <math>J := \det\boldsymbol{F} = 1</math>. असंपीड्यता बाधा''' इसलिए है <math>J-1= 0</math>. हाइपरलास्टिक भौतिकी की असंपीड्यता सुनिश्चित करने के लिए, तनाव-ऊर्जा फ़ंक्शन को फॉर्म में लिखा जा सकता है:
<math display="block">W = W(\boldsymbol{F}) - p~(J-1)</math>
<math display="block">W = W(\boldsymbol{F}) - p~(J-1)</math>
जहां हाइड्रोस्टेटिक दबाव <math>p</math> असंपीड्यता बाधा को लागू करने के लिए [[लैग्रेंज गुणक]] के रूप में कार्य करता है। पहला पिओला-किरचॉफ तनाव अब बन गया है
जहां हाइड्रोस्टेटिक दबाव <math>p</math> असंपीड्यता बाधा को लागू करने के लिए [[लैग्रेंज गुणक]] के रूप में कार्य करता है। पहला पिओला-किरचॉफ तनाव अब बन गया है
Line 406: Line 409:


== रैखिक लोच के साथ संगति ==
== रैखिक लोच के साथ संगति ==
रैखिक लोच के साथ संगति का उपयोग अक्सर हाइपरलास्टिक भौतिकी मॉडल के कुछ मापदंडों को निर्धारित करने के लिए किया जाता है। इन स्थिरता स्थितियों को हुक के कानून की तुलना छोटे उपभेदों पर रैखिककृत हाइपरलास्टिकिटी के साथ करके पाया जा सकता है।
रैखिक लोच के साथ संगति का उपयोग प्रायः हाइपरलास्टिक भौतिकी मॉडल के कुछ मापदंडों को निर्धारित करने के लिए किया जाता है। इन स्थिरता स्थितियों को हुक के कानून की तुलना छोटे उपभेदों पर रैखिककृत हाइपरलास्टिकिटी के साथ करके पाया जा सकता है।


=== आइसोट्रोपिक हाइपरलास्टिक मॉडल === के लिए संगति की स्थिति
=== आइसोट्रोपिक हाइपरलास्टिक मॉडल === के लिए संगति की स्थिति
Line 448: Line 451:


== यह भी देखें ==
== यह भी देखें ==
* कॉची लोचदार भौतिकी
* कॉची प्रत्यास्थ भौतिकी
*[[सातत्यक यांत्रिकी]]
*[[सातत्यक यांत्रिकी]]
* [[विरूपण (यांत्रिकी)]]
* [[विरूपण (यांत्रिकी)]]

Revision as of 09:00, 1 March 2023

विभिन्न हाइपरलास्टिक भौतिकी मॉडल के लिए तनाव घटता है।

हाइपरलास्टिक या अतिप्रत्यास्थ भौतिकी[1] आदर्श रूप से प्रत्यास्थ (ठोस यांत्रिकी) भौतिकी के लिए एक प्रकार का संवैधानिक समीकरण है जिसके लिए तनाव-तनाव संबंध तनाव ऊर्जा घनत्व समारोह से प्राप्त होता है। हाइपरलास्टिक भौतिकी कॉची प्रत्यास्थ भौतिकी का एक विशेष मामला है।

कई सामग्रियों के लिए, रैखिक लोच मॉडल देखे गए भौतिक व्यवहार का सटीक वर्णन नहीं करते हैं। इस तरह की भौतिकी का सबसे आम उदाहरण रबर है, जिसके तनाव-तनाव (भौतिकी) संबंध को गैर-रैखिक रूप से प्रत्यास्थ, समदैशिक और असम्पीडित के रूप में परिभाषित किया जा सकता है। हाइपरलास्टिक ऐसी सामग्रियों के तनाव-तनाव व्यवहार को मॉडलिंग करने का एक साधन प्रदान करता है।[2] अपूर्ण, वल्केनाइज्ड इलास्टोमर्स का व्यवहार प्रायः हाइपरलास्टिक आदर्श के अनुरूप होता है। भरे हुए इलास्टोमर्स और जैविक ऊतक[3][4] भी प्रायः हाइपरलास्टिक आदर्शीकरण के माध्यम से तैयार किए जाते हैं।

रोनाल्ड रिवलिन और मेल्विन मूनी ने नियो-हुकेन और मूनी-रिवलिन ठोस यांत्रिकी मॉडल के पहले हाइपरलास्टिक मॉडल को विकसित किया था इसके बाद से कई अन्य हाइपरलास्टिक मॉडल विकसित किए गए हैं। अन्य व्यापक रूप से उपयोग किए जाने वाले हाइपरलास्टिक भौतिकी मॉडल में ओग्डेन मॉडल और अरुडा-बॉयस मॉडल सम्मिलित हैं।

हाइपरलास्टिक भौतिकी मॉडल

सेंट वेनेंट-किरचॉफ मॉडल

सबसे साधारण हाइपरलास्टिक भौतिकी मॉडल सेंट वेनेंट-किरचॉफ मॉडल है जो ज्यामितीय रूप से गैर-रैखिक मॉडल के लिए ज्यामितीय रूप से रैखिक प्रत्यास्थ भौतिकी मॉडल का विस्तार है। इस मॉडल का क्रमशः सामान्य और समदैशिक रूप है:

जहाँ टेंसर संकुचन है दूसरा पिओला-किरचॉफ तनाव है :और चौथा क्रम कठोरता टेन्सर है, जिसे लग्रांगियन ग्रीन स्ट्रेन द्वारा दिया गया है:


और स्थिरांक हैं और दूसरा क्रम इकाई टेन्सर है। जो सेंट वेनांट-किरचॉफ मॉडल के लिए तनाव-ऊर्जा घनत्व कार्य है

और दूसरा पिओला-किरचॉफ तनाव संबंध से प्राप्त किया जा सकता है:

हाइपरलास्टिक भौतिकी मॉडल का वर्गीकरण

हाइपरलास्टिक भौतिकी मॉडल को इस प्रकार वर्गीकृत किया जा सकता है:

  1. हाइपरलास्टिक भौतिकी गतिविधि का घटनात्मक विवरण
    • फंग
    • मूनी-रिवलिन
    • ओग्डेन (हाइपरलास्टिक मॉडल)
    • बहुपद (हाइपरलास्टिक मॉडल)
    • सेंट वेनेंट-किरचॉफ
    • योह (हाइपरलेस्टिक मॉडल)
    • मार्लो (हाइपरलास्टिक मॉडल)
  2. भौतिकी की अंतर्निहित संरचना के विषय में तर्कों से प्राप्त यांत्रिकीय मॉडल
    • अरुडा-बॉयस मॉडल[5]
    • नियो-हुकेन मॉडल [1]
    • बुके-सिल्बरस्टीन मॉडल[6]
  3. यांत्रिकीय और परिघटनात्मक मॉडल के हाइब्रिड
    • जेंट (हाइपरलास्टिक मॉडल)
    • वैन डेर वाल्स (हाइपरेलेटिक मॉडल)

सामान्यतः एक हाइपरलास्टिक मॉडल को ड्रकर स्थिरता मानदंड को पूर्ण करने की आवश्यकता होती है। क्योकि कुछ हाइपरलास्टिक मॉडल वैलेनिस-लैंडल परिकल्पना को सिद्ध करते हैं जो प्रदर्शित करते है कि तनाव ऊर्जा कार्य को प्रमुख भागों के अलग-अलग कार्यों के योग में विभाजित किया जा सकता है।

किरचॉफ तनाव और लग्रांगियन विरूपण मे संबंध

संकुचित हाइपरलास्टिक भौतिकी

पहला पिओला-किरचॉफ तनाव

यदि तनाव ऊर्जा घनत्व फलन है, तो पहले पिओला-किरचॉफ तनाव टेन्सर की गणना हाइपरलास्टिक भौतिकी के रूप में की जा सकती है:

जहाँ विरूपण प्रवणता है। लग्रांगियन तनाव के संदर्भ में

परिमित कॉची-ग्रीन विरूपण टेन्सर के संदर्भ में

दूसरा पियोला-किरचॉफ तनाव

यदि दूसरा पिओला-किरचॉफ तनाव टेंसर है तो


लग्रांगियन तनाव के संदर्भ में

परिमित कॉची-ग्रीन विरूपण टेंसर के संदर्भ में
उपरोक्त संबंध को भौतिक विरूपण में "डॉयल-एरिक्सन सूत्र" के रूप में भी जाना जाता है।

कॉची तनाव

इसी प्रकार, यह तनाव (भौतिकी) द्वारा दिया जाता है:

लग्रांगियन ग्रीन तनाव के संदर्भ में
परिमित सही कॉची-ग्रीन विरूपण टेंसर के संदर्भ में
उपरोक्त भाव विषमदैशिक मीडिया के लिए भी मान्य हैं जिस स्थिति में, संभावित कार्य को प्रारंभिक फाइबर अभिविन्यास जैसे संदर्भ दिशात्मक राशियों पर निहित रूप से निर्भर करने के लिए समझा जाता है। समदैशिक की विशेष स्थिति में, कॉची तनाव को बाएं कॉची-ग्रीन विरूपण टेंसर के संदर्भ में निम्नानुसार व्यक्त किया जा सकता है:[7]

असंपीड्य हाइपरलास्टिक भौतिकी

एक असंपीड्य भौतिकी के लिए . असंपीड्यता बाधा इसलिए है . हाइपरलास्टिक भौतिकी की असंपीड्यता सुनिश्चित करने के लिए, तनाव-ऊर्जा फ़ंक्शन को फॉर्म में लिखा जा सकता है:

जहां हाइड्रोस्टेटिक दबाव असंपीड्यता बाधा को लागू करने के लिए लैग्रेंज गुणक के रूप में कार्य करता है। पहला पिओला-किरचॉफ तनाव अब बन गया है
यह तनाव टेन्सर बाद में तनाव (भौतिकी) में से किसी भी अन्य पारंपरिक तनाव टेन्सर में हो सकता है, जैसे कॉची तनाव टेन्सर जो द्वारा दिया गया है


कॉची तनाव के लिए भाव

संपीड़ित आइसोट्रोपिक हाइपरलास्टिक भौतिकी

आइसोट्रोपिक हाइपरलास्टिक सामग्रियों के लिए, कॉची तनाव को परिमित तनाव सिद्धांत के अपरिवर्तनीय के रूप में व्यक्त किया जा सकता है राइट कॉची-ग्रीन डिफॉर्मेशन टेंसर)। यदि तनाव ऊर्जा घनत्व समारोह है

तब
(इन प्रतीकों की परिभाषाओं के लिए परिमित तनाव सिद्धांत # द लेफ्ट कॉची-ग्रीन विरूपण टेंसर पर पृष्ठ देखें। लेफ्ट कॉची-ग्रीन विरूपण टेंसर)।

Proof 1

The second Piola–Kirchhoff stress tensor for a hyperelastic material is given by

where is the right Cauchy–Green deformation tensor and is the deformation gradient. The Cauchy stress is given by
where . Let be the three principal invariants of . Then
The derivatives of the invariants of the symmetric tensor are
Therefore, we can write
Plugging into the expression for the Cauchy stress gives
Using the left Cauchy–Green deformation tensor and noting that , we can write
For an incompressible material and hence .Then
Therefore, the Cauchy stress is given by
where is an undetermined pressure which acts as a Lagrange multiplier to enforce the incompressibility constraint.

If, in addition, , we have and hence

In that case the Cauchy stress can be expressed as

Proof 2

The isochoric deformation gradient is defined as , resulting in the isochoric deformation gradient having a determinant of 1, in other words it is volume stretch free. Using this one can subsequently define the isochoric left Cauchy–Green deformation tensor . The invariants of are

The set of invariants which are used to define the distortional behavior are the first two invariants of the isochoric left Cauchy–Green deformation tensor tensor, (which are identical to the ones for the right Cauchy Green stretch tensor), and add into the fray to describe the volumetric behaviour.

To express the Cauchy stress in terms of the invariants recall that

The chain rule of differentiation gives us