सबसे साधारण हाइपरलास्टिक भौतिकी मॉडल सेंट वेनेंट-किरचॉफ मॉडल है जो ज्यामितीय रूप से गैर-रैखिक मॉडल के लिए ज्यामितीय रूप से रैखिक प्रत्यास्थ भौतिकी मॉडल का विस्तार है। इस मॉडल का क्रमशः सामान्य और समदैशिक रूप है: <math display="block">\begin{align}
सबसे सामान्य हाइपरलास्टिक भौतिकी मॉडल सेंट वेनेंट-किरचॉफ मॉडल है जो ज्यामितीय रूप से गैर-रैखिक मॉडल के लिए ज्यामितीय रूप से रैखिक प्रत्यास्थ भौतिकी मॉडल का विस्तार है। इस मॉडल का क्रमशः सामान्य और समदैशिक रूप है: <math display="block">\begin{align}
'''एक असंपीड्य भौतिकी के लिए <math>J := \det\boldsymbol{F} = 1</math>. असंपीड्यता बाधा''' इसलिए है <math>J-1= 0</math>. हाइपरलास्टिक भौतिकी की असंपीड्यता सुनिश्चित करने के लिए, तनाव-ऊर्जा फ़ंक्शन को फॉर्म में लिखा जा सकता है:
एक असंपीड्य भौतिकी <math>J := \det\boldsymbol{F} = 1</math> के लिए असंपीड्यता अवरोध <math>J-1= 0</math> है। हाइपरलास्टिक भौतिकी की असंपीड्यता सुनिश्चित करने के लिए तनाव-ऊर्जा फलन को निम्न प्रकार में लिखा जा सकता है:<math display="block">W = W(\boldsymbol{F}) - p~(J-1)</math>जहां स्थैतिक दाब <math>p</math> असंपीड्यता अवरोध को प्रयुक्त करने के लिए [[लैग्रेंज गुणक]] के रूप में कार्य करता है। अब पिओला-किरचॉफ तनाव पहला तनाव बन गया है:
जहां हाइड्रोस्टेटिक दबाव <math>p</math> असंपीड्यता बाधा को लागू करने के लिए [[लैग्रेंज गुणक]] के रूप में कार्य करता है। पहला पिओला-किरचॉफ तनाव अब बन गया है
संपीड्य समदैशिक हाइपरलास्टिक भौतिकी के लिए कॉची तनाव को बाएं कॉची-ग्रीन विरूपण टेंसर या दाएं कॉची-ग्रीन विरूपण टेंसर के संपीड्यता के सिद्धांत के रूप में व्यक्त किया जा सकता है। यदि तनाव ऊर्जा घनत्व फलन है:<math display="block">W(\boldsymbol{F})=\hat{W}(I_1,I_2,I_3) = \bar{W}(\bar{I}_1,\bar{I}_2, J) = \tilde{W}(\lambda_1,\lambda_2, \lambda_3),</math> तब
=== संपीड़ित आइसोट्रोपिक हाइपरलास्टिक भौतिकी ===
आइसोट्रोपिक हाइपरलास्टिक सामग्रियों के लिए, कॉची तनाव को परिमित तनाव सिद्धांत के अपरिवर्तनीय के रूप में व्यक्त किया जा सकता है राइट कॉची-ग्रीन डिफॉर्मेशन टेंसर)। यदि तनाव ऊर्जा घनत्व समारोह है <math display="block">W(\boldsymbol{F})=\hat{W}(I_1,I_2,I_3) = \bar{W}(\bar{I}_1,\bar{I}_2, J) = \tilde{W}(\lambda_1,\lambda_2, \lambda_3),</math> तब
(इन प्रतीकों की परिभाषाओं के लिए परिमित तनाव सिद्धांत # द लेफ्ट कॉची-ग्रीन विरूपण टेंसर पर पृष्ठ देखें। लेफ्ट कॉची-ग्रीन विरूपण टेंसर)।
इन प्रतीकों की परिभाषाओं के लिए बाएँ कॉची-ग्रीन विरूपण टेन्सर सिद्धान्त को देखें।
{{math proof
{{math proof
Line 387:
Line 383:
=== असंपीड्य आइसोट्रोपिक हाइपरलास्टिक भौतिकी ===
=== असंपीड्य आइसोट्रोपिक हाइपरलास्टिक भौतिकी ===
असम्पीडित आइसोट्रोपिक हाइपरलास्टिक भौतिकी के लिए, तनाव ऊर्जा घनत्व कार्य है <math>W(\boldsymbol{F})=\hat{W}(I_1,I_2)</math>. कॉची तनाव तब द्वारा दिया जाता है
असंपीड्य समदैशिक हाइपरलास्टिक भौतिकी के लिए, तनाव ऊर्जा घनत्व कार्य <math>W(\boldsymbol{F})=\hat{W}(I_1,I_2)</math> है तब कॉची तनाव द्वारा दिया जाता है:
रैखिक प्रत्यास्थता के साथ संगतता का उपयोग प्रायः हाइपरलास्टिक भौतिकी मॉडल के कुछ मापदंडों को निर्धारित करने के लिए किया जाता है। इन संगतता स्थितियों को हुक के सिद्धान्त की तुलना छोटे तनाव पर रैखिककृत अतिप्रत्यास्थता के साथ प्रयोग करके प्राप्त किया जा सकता है।
=== संपीड्य प्रत्यास्थ भौतिकी मॉडल के लिए संगतता की स्थिति ===
संपीड्य प्रत्यास्थ भौतिकी मॉडल के लिए संपीड्य रैखिक प्रत्यास्थता के अनुरूप होने के लिए, किरचॉफ तनाव और लग्रांगियन विरूपण के संबंध में अतिसूक्ष्म तनाव सिद्धांत सीमा में निम्न रूप होना चाहिए:<math display="block"> \boldsymbol{\sigma} = \lambda~\mathrm{tr}(\boldsymbol{\varepsilon})~\boldsymbol{\mathit{1}} + 2\mu\boldsymbol{\varepsilon} </math>जहाँ <math>\lambda, \mu</math> "लमे" स्थिरांक हैं। उपरोक्त संबंध के अनुरूप तनाव ऊर्जा घनत्व कार्य है:<ref name="Ogden" /><math display="block"> W = \tfrac{1}{2}\lambda~[\mathrm{tr}(\boldsymbol{\varepsilon})]^2 + \mu~\mathrm{tr}\mathord\left(\boldsymbol{\varepsilon}^2\right). </math>एक असंपीड्य भौतिकी के लिए <math>\mathrm{tr}(\boldsymbol{\varepsilon}) = 0</math> और <math display="block"> W = \mu~\mathrm{tr}\mathord\left(\boldsymbol{\varepsilon}^2\right). </math> है
== रैखिक लोच के साथ संगति ==
रैखिक लोच के साथ संगति का उपयोग प्रायः हाइपरलास्टिक भौतिकी मॉडल के कुछ मापदंडों को निर्धारित करने के लिए किया जाता है। इन स्थिरता स्थितियों को हुक के कानून की तुलना छोटे उपभेदों पर रैखिककृत हाइपरलास्टिकिटी के साथ करके पाया जा सकता है।
=== आइसोट्रोपिक हाइपरलास्टिक मॉडल === के लिए संगति की स्थिति
किसी भी नाव ऊर्जा घनत्व फलन <math>W(\lambda_1,\lambda_2,\lambda_3)</math> के लिए छोटे लग्रांगियन तनाव विरूपण के लिए उपरोक्त रूपों को कम करने के लिए निम्नलिखित शर्तों को पूर्ण करना आवश्यक होता है।<ref name="Ogden" />
आइसोट्रोपिक हाइपरलास्टिक भौतिकी के लिए आइसोट्रोपिक रैखिक लोच के अनुरूप होने के लिए, तनाव-तनाव संबंध में इनफिनिटिमल तनाव सिद्धांत सीमा में निम्न रूप होना चाहिए:
कहाँ <math>\lambda, \mu</math> लमे स्थिरांक हैं। उपरोक्त संबंध से मेल खाने वाला तनाव ऊर्जा घनत्व कार्य है<ref name=Ogden/>
<math display="block"> W = \tfrac{1}{2}\lambda~[\mathrm{tr}(\boldsymbol{\varepsilon})]^2 + \mu~\mathrm{tr}\mathord\left(\boldsymbol{\varepsilon}^2\right) </math>
एक असंपीड्य भौतिकी के लिए <math>\mathrm{tr}(\boldsymbol{\varepsilon}) = 0</math> और हमारे पास है
<math display="block"> W = \mu~\mathrm{tr}\mathord\left(\boldsymbol{\varepsilon}^2\right) </math>
किसी भी तनाव ऊर्जा घनत्व समारोह के लिए <math>W(\lambda_1,\lambda_2,\lambda_3)</math> छोटे उपभेदों के लिए उपरोक्त रूपों को कम करने के लिए निम्नलिखित शर्तों को पूरा करना होगा<ref name=Ogden/>
इन स्थितियों का उपयोग किसी दिए गए हाइपरलास्टिक मॉडल और कतरनी और थोक मोडुली के पैरामीटर के बीच संबंधों को खोजने के लिए किया जा सकता है।
इन स्थितियों का उपयोग किसी दिए गए अतिप्रत्यास्थ मॉडल, कर्तनी मॉडल और स्थूल मोडुली के पैरामीटर के बीच संबंधों को खोजने के लिए किया जा सकता है।
=== असंपीड्य {{math|''I''<sub>1</sub>}} पर आधारित संगतता की स्थिति ===
कई इलास्टोमर्स को तनाव ऊर्जा घनत्व फलन द्वारा पर्याप्त रूप से तैयार किया जाता है जो केवल <math>I_1</math> पर निर्भर करता है। ऐसी भौतिकी के लिए हमारे पास <math> W = W(I_1) </math> है। <math>I_1 = 3, \lambda_i = \lambda_j = 1</math> के लिए असम्पीडित भौतिकी के लिए स्थिरता की स्थिति तब निम्न समीकरण के रूप में व्यक्त की जा सकती है:<math display="block"> \left.W(I_1)\right|_{I_1=3} = 0 \quad \text{and} \quad \left.\frac{\partial W}{\partial I_1}\right|_{I_1=3} = \frac{\mu}{2} \,. </math>
=== असम्पीडित के लिए संगति की स्थिति {{math|''I''<sub>1</sub>}} आधारित रबर भौतिकी ===
ऊपर दी गई दूसरी संगतता की स्थिति को ध्यान में रखते हुए प्राप्त किया जा सकता है कि
कई इलास्टोमर्स को तनाव ऊर्जा घनत्व फ़ंक्शन द्वारा पर्याप्त रूप से तैयार किया जाता है जो कि केवल पर निर्भर करता है <math>I_1</math>. ऐसी भौतिकी के लिए हमारे पास है <math> W = W(I_1) </math>.
के लिए असम्पीडित भौतिकी के लिए स्थिरता की स्थिति <math>I_1 = 3, \lambda_i = \lambda_j = 1</math> के रूप में व्यक्त किया जा सकता है
कई सामग्रियों के लिए, रैखिक लोच मॉडल देखे गए भौतिक व्यवहार का सटीक वर्णन नहीं करते हैं। इस तरह की भौतिकी का सबसे आम उदाहरण रबर है, जिसके तनाव-तनाव (भौतिकी) संबंध को गैर-रैखिक रूप से प्रत्यास्थ, समदैशिक और असम्पीडित के रूप में परिभाषित किया जा सकता है। हाइपरलास्टिक ऐसी सामग्रियों के तनाव-तनाव व्यवहार को मॉडलिंग करने का एक साधन प्रदान करता है।[2] अपूर्ण, वल्केनाइज्डइलास्टोमर्स का व्यवहार प्रायः हाइपरलास्टिक आदर्श के अनुरूप होता है। भरे हुए इलास्टोमर्स और जैविक ऊतक[3][4] भी प्रायः हाइपरलास्टिक आदर्शीकरण के माध्यम से तैयार किए जाते हैं।
रोनाल्ड रिवलिन और मेल्विन मूनी ने नियो-हुकेन और मूनी-रिवलिन ठोस यांत्रिकी मॉडल के पहले हाइपरलास्टिक मॉडल को विकसित किया था इसके बाद से कई अन्य हाइपरलास्टिक मॉडल विकसित किए गए हैं। अन्य व्यापक रूप से उपयोग किए जाने वाले हाइपरलास्टिक भौतिकी मॉडल में ओग्डेन मॉडल और अरुडा-बॉयस मॉडल सम्मिलित हैं।
सबसे सामान्य हाइपरलास्टिक भौतिकी मॉडल सेंट वेनेंट-किरचॉफ मॉडल है जो ज्यामितीय रूप से गैर-रैखिक मॉडल के लिए ज्यामितीय रूप से रैखिक प्रत्यास्थ भौतिकी मॉडल का विस्तार है। इस मॉडल का क्रमशः सामान्य और समदैशिक रूप है:
जहाँ टेंसर संकुचन है दूसरा पिओला-किरचॉफ तनाव है :और चौथा क्रम कठोरता टेन्सर है, जिसे लग्रांगियन ग्रीन स्ट्रेन द्वारा दिया गया है:
और स्थिरांक हैं और दूसरा क्रम इकाई टेन्सर है। जो सेंट वेनांट-किरचॉफ मॉडल के लिए तनाव-ऊर्जा घनत्व कार्य है
और दूसरा पिओला-किरचॉफ तनाव संबंध से प्राप्त किया जा सकता है:
हाइपरलास्टिक भौतिकी मॉडल का वर्गीकरण
हाइपरलास्टिक भौतिकी मॉडल को इस प्रकार वर्गीकृत किया जा सकता है:
सामान्यतः एक हाइपरलास्टिक मॉडल को ड्रकर स्थिरता मानदंड को पूर्ण करने की आवश्यकता होती है। क्योकि कुछ हाइपरलास्टिक मॉडल वैलेनिस-लैंडल परिकल्पना को सिद्ध करते हैं जो प्रदर्शित करते है कि तनाव ऊर्जा कार्य को प्रमुख भागों के अलग-अलग कार्यों के योग में विभाजित किया जा सकता है।
किरचॉफ तनाव और लग्रांगियन विरूपण मे संबंध
संकुचित हाइपरलास्टिक भौतिकी
पहला पिओला-किरचॉफ तनाव
यदि तनाव ऊर्जा घनत्व फलन है, तो पहले पिओला-किरचॉफ तनाव टेन्सर की गणना हाइपरलास्टिक भौतिकी के रूप में की जा सकती है:
जहाँ विरूपण प्रवणता है। लग्रांगियन तनाव के संदर्भ में
परिमित कॉची-ग्रीन विरूपण टेन्सर के संदर्भ में
दूसरा पियोला-किरचॉफ तनाव
यदि दूसरा पिओला-किरचॉफ तनाव टेंसर है तो
लग्रांगियन तनाव के संदर्भ में
परिमित कॉची-ग्रीन विरूपण टेंसर के संदर्भ में
उपरोक्त संबंध को भौतिक विरूपण में "डॉयल-एरिक्सन सूत्र" के रूप में भी जाना जाता है।
कॉची तनाव
इसी प्रकार, यह तनाव (भौतिकी) द्वारा दिया जाता है:
लग्रांगियन ग्रीन तनाव के संदर्भ में
परिमित सही कॉची-ग्रीन विरूपण टेंसर के संदर्भ में
उपरोक्त भाव विषमदैशिक मीडिया के लिए भी मान्य हैं जिस स्थिति में, संभावित कार्य को प्रारंभिक फाइबर अभिविन्यास जैसे संदर्भ दिशात्मक राशियों पर निहित रूप से निर्भर करने के लिए समझा जाता है। समदैशिक की विशेष स्थिति में, कॉची तनाव को बाएं कॉची-ग्रीन विरूपण टेंसर के संदर्भ में निम्नानुसार व्यक्त किया जा सकता है:[7]
असंपीड्य हाइपरलास्टिक भौतिकी
एक असंपीड्य भौतिकी के लिए असंपीड्यता अवरोध है। हाइपरलास्टिक भौतिकी की असंपीड्यता सुनिश्चित करने के लिए तनाव-ऊर्जा फलन को निम्न प्रकार में लिखा जा सकता है:
जहां स्थैतिक दाब असंपीड्यता अवरोध को प्रयुक्त करने के लिए लैग्रेंज गुणक के रूप में कार्य करता है। अब पिओला-किरचॉफ तनाव पहला तनाव बन गया है:
इस तनाव टेन्सर को बाद में किसी भी अन्य भौतिकी तनाव टेंसर में परिवर्तित किया जा सकता है, जैसे कॉची तनाव टेन्सर जो इसके द्वारा दिया जाता है
कॉची तनाव के लिए अभिव्यक्तियाँ
संपीड्य समदैशिक हाइपरलास्टिक भौतिकी
संपीड्य समदैशिक हाइपरलास्टिक भौतिकी के लिए कॉची तनाव को बाएं कॉची-ग्रीन विरूपण टेंसर या दाएं कॉची-ग्रीन विरूपण टेंसर के संपीड्यता के सिद्धांत के रूप में व्यक्त किया जा सकता है। यदि तनाव ऊर्जा घनत्व फलन है:
तब
इन प्रतीकों की परिभाषाओं के लिए बाएँ कॉची-ग्रीन विरूपण टेन्सर सिद्धान्त को देखें।
where is an undetermined pressure which acts as a Lagrange multiplier to enforce the incompressibility constraint.
If, in addition, , we have and hence
In that case the Cauchy stress can be expressed as
Proof 2
The isochoric deformation gradient is defined as , resulting in the isochoric deformation gradient having a determinant of 1, in other words it is volume stretch free. Using this one can subsequently define the isochoric left Cauchy–Green deformation tensor .
The invariants of are
The set of invariants which are used to define the distortional behavior are the first two invariants of the isochoric left Cauchy–Green deformation tensor tensor, (which are identical to the ones for the right Cauchy Green stretch tensor), and add into the fray to describe the volumetric behaviour.
To express the Cauchy stress in terms of the invariants recall that
The chain rule of differentiation gives us
Recall that the Cauchy stress is given by
In terms of the invariants we have
Plugging in the expressions for the derivatives of in terms of , we have
or,
In terms of the deviatoric part of , we can write
For an incompressible material and hence .Then
the Cauchy stress is given by
where is an undetermined pressure-like Lagrange multiplier term. In addition, if , we have and hence
the Cauchy stress can be expressed as
Proof 3
To express the Cauchy stress in terms of the stretches recall that
The chain rule gives
The Cauchy stress is given by
Plugging in the expression for the derivative of leads to
If we express the stress in terms of differences between components,
If in addition to incompressibility we have then a possible solution to the problem
requires and we can write the stress differences as
असंपीड्य आइसोट्रोपिक हाइपरलास्टिक भौतिकी
असंपीड्य समदैशिक हाइपरलास्टिक भौतिकी के लिए, तनाव ऊर्जा घनत्व कार्य है तब कॉची तनाव द्वारा दिया जाता है:
जहाँ एक अनिश्चित दाब है। तनाव के संदर्भ में
यदि इसके अतिरिक्त तब,
यदि , तब
रैखिक प्रत्यास्थता के साथ संगतता
रैखिक प्रत्यास्थता के साथ संगतता का उपयोग प्रायः हाइपरलास्टिक भौतिकी मॉडल के कुछ मापदंडों को निर्धारित करने के लिए किया जाता है। इन संगतता स्थितियों को हुक के सिद्धान्त की तुलना छोटे तनाव पर रैखिककृत अतिप्रत्यास्थता के साथ प्रयोग करके प्राप्त किया जा सकता है।
संपीड्य प्रत्यास्थ भौतिकी मॉडल के लिए संगतता की स्थिति
संपीड्य प्रत्यास्थ भौतिकी मॉडल के लिए संपीड्य रैखिक प्रत्यास्थता के अनुरूप होने के लिए, किरचॉफ तनाव और लग्रांगियन विरूपण के संबंध में अतिसूक्ष्म तनाव सिद्धांत सीमा में निम्न रूप होना चाहिए:
जहाँ "लमे" स्थिरांक हैं। उपरोक्त संबंध के अनुरूप तनाव ऊर्जा घनत्व कार्य है:[1]
एक असंपीड्य भौतिकी के लिए और
है
किसी भी नाव ऊर्जा घनत्व फलन के लिए छोटे लग्रांगियन तनाव विरूपण के लिए उपरोक्त रूपों को कम करने के लिए निम्नलिखित शर्तों को पूर्ण करना आवश्यक होता है।[1]
यदि भौतिकी असंपीड्य है, तो उपरोक्त शर्तों को निम्नलिखित रूप में व्यक्त किया जा सकता है:
इन स्थितियों का उपयोग किसी दिए गए अतिप्रत्यास्थ मॉडल, कर्तनी मॉडल और स्थूल मोडुली के पैरामीटर के बीच संबंधों को खोजने के लिए किया जा सकता है।
असंपीड्य I1 पर आधारित संगतता की स्थिति
कई इलास्टोमर्स को तनाव ऊर्जा घनत्व फलन द्वारा पर्याप्त रूप से तैयार किया जाता है जो केवल पर निर्भर करता है। ऐसी भौतिकी के लिए हमारे पास है। के लिए असम्पीडित भौतिकी के लिए स्थिरता की स्थिति तब निम्न समीकरण के रूप में व्यक्त की जा सकती है:
ऊपर दी गई दूसरी संगतता की स्थिति को ध्यान में रखते हुए प्राप्त किया जा सकता है कि
इन संबंधों को तब समदैशिक असंपीड्य हाइपरलास्टिक भौतिकी के लिए संगतता की स्थिति में प्रतिस्थापित किया जा सकता है।