समूह वलय: Difference between revisions
Line 6: | Line 6: | ||
== परिभाषा == | == परिभाषा == | ||
जहाँ जी एक वलय का समूह है जिसे गुणात्मक रूप में लिखा जा सकता है और आर को एक समूह वलय होने का रूप दिया जा जाता है। तथा आर समूह व जी वलय होता है जिसे हम आर या जी (आर जी) द्वारा निरूपित करते हैं जो कार्य करने का सेट है एफ ,जी तथा आर का गणित में सामान्यीकरण होता है जहाँ जी जैसे बहुत से तत्वों को शून्य लिख सकते हैं तथा आर स्केेैलर व एल्फा मैपिंग के रूप में परिभाषित करते हैं। एल्फा तथा एफ -एक्स कार्य करते हैं और एफ व जी के मॉडुलेटर समूह योग को कार्य के रूप में परिभाषित किया जाता है जो इस प्रकार हैं-<math>x \mapsto f(x) + g(x)</math>योगात्मक समूह आर व जी को एक | जहाँ जी एक वलय का समूह है जिसे गुणात्मक रूप में लिखा जा सकता है और आर को एक समूह वलय होने का रूप दिया जा जाता है। तथा आर समूह व जी वलय होता है जिसे हम आर या जी (आर जी) द्वारा निरूपित करते हैं जो कार्य करने का सेट है एफ ,जी तथा आर का गणित में सामान्यीकरण होता है जहाँ जी जैसे बहुत से तत्वों को शून्य लिख सकते हैं तथा आर स्केेैलर व एल्फा मैपिंग के रूप में परिभाषित करते हैं। एल्फा तथा एफ -एक्स कार्य करते हैं और एफ व जी के मॉडुलेटर समूह योग को कार्य के रूप में परिभाषित किया जाता है जो इस प्रकार हैं-<math>x \mapsto f(x) + g(x)</math>योगात्मक समूह आर व जी को एक वलय में बदलने के लिए हम एफ और जी के उत्पाद को कार्य के रूप में परिभाषित करते हैं। | ||
:<math>x\mapsto\sum_{uv=x}f(u)g(v)=\sum_{u\in G}f(u)g(u^{-1}x).</math> | :<math>x\mapsto\sum_{uv=x}f(u)g(v)=\sum_{u\in G}f(u)g(u^{-1}x).</math> | ||
यहाँ एफ और जी परिमित समूह हैं | यहाँ एफ और जी परिमित समूह हैं और वलय को आसानी से सत्यापित कर सकता है। | ||
जो इस प्रकार है जैसे एफ: जी -आर तथा जी के तत्वों को आर के गुणांक को औपचारिक रैखिक संयोजनों के रूप | जो इस प्रकार है जैसे एफ: जी -आर तथा जी के तत्वों को आर के गुणांक को औपचारिक रैखिक संयोजनों के रूप मेंते हैं। | ||
: | : | ||
: | : | ||
<ref name="Polcino">श</ref> यदि वलय आर एक क्षेत्र में हैं तो समूह वलय संरचना मॉडुलेटर संरचना 'के' ऊपर एक सदिश स्थान लेता है। | <ref name="Polcino">श</ref> यदि वलय आर एक क्षेत्र में हैं तो समूह वलय संरचना मॉडुलेटर संरचना 'के' के ऊपर एक सदिश स्थान लेता है। | ||
== उदाहरण == | == उदाहरण == | ||
1. माना जी एक क्रमांक तथा [[चक्रीय समूह]] है जो विद्युत उत्पादक यंत्र के साथ ए तत्व सी | 1. माना जी समूह वलय एक क्रमांक तथा [[चक्रीय समूह]] है जो विद्युत उत्पादक यंत्र के साथ ए तत्व सी तथा जी तत्व को आर के रूप में लिखते हैं। | ||
:<math>r = z_0 1_G + z_1 a + z_2 a^2\,</math> | :<math>r = z_0 1_G + z_1 a + z_2 a^2\,</math> | ||
जहां कठिन संख्यायें | जहां कठिन संख्यायें जेड1 और जेड2 हैं। तो यह चर में बहुपद समूह वलय के समान है ऐसा इसलिए है कि <math>a^3=a^0=1</math> जो ''जी'' समूह वलय सी के लिए समरूपी है। | ||
तत्व एस के रूप में उनका योग<math>s=w_0 1_G +w_1 a +w_2 a^2</math> | तत्व एस के रूप में उनका योग<math>s=w_0 1_G +w_1 a +w_2 a^2</math> | ||
Line 28: | Line 28: | ||
:<math>rs = (z_0w_0 + z_1w_2 + z_2w_1) 1_G +(z_0w_1 + z_1w_0 + z_2w_2)a +(z_0w_2 + z_2w_0 + z_1w_1)a^2.</math> | :<math>rs = (z_0w_0 + z_1w_2 + z_2w_1) 1_G +(z_0w_1 + z_1w_0 + z_2w_2)a +(z_0w_2 + z_2w_0 + z_1w_1)a^2.</math> | ||
तत्व | तत्व जी का गुणांक समूह वलय सी तथा जी में एक निहित फोर्किंग को प्रेरित करता है जबकि सी जी के गुणक तत्व 1⋅1 हैं जो पहला सी से और दूसरा जी से आता है। जिसका योज्य पहचान तत्व शून्य होता है। | ||
जब जी एक गैर-कम्यूटेटिव समूह होता है तो शर्तों को गुणा करते समय समूह में तत्वों के क्रम को बनाए रखने के लिए सावधानी बरतनी चाहिए तथा गलती से उन्हें | जब जी एक गैर-कम्यूटेटिव समूह होता है तो शर्तों को गुणा करते समय समूह वलय में तत्वों के क्रम को बनाए रखने के लिए सावधानी बरतनी चाहिए तथा गलती से उन्हें गिनना नहीं चाहिए। | ||
2.उदाहरण एक वलय आर [[लॉरेंट बहुपद]] का है ये आर पर [[अनंत चक्रीय समूह]] जेड के वलय से ज्यादा या कम नहीं है। | 2.उदाहरण एक वलय आर [[लॉरेंट बहुपद]] का है ये आर पर [[अनंत चक्रीय समूह]] जेड के वलय से ज्यादा या कम नहीं है। | ||
Line 165: | Line 165: | ||
=== संलग्नक === | === संलग्नक === | ||
[[श्रेणी सिद्धांत]] समूह वलय निर्माण इकाइयों के समूह से जुड़ा हुआ है निम्नलिखित कारक | [[श्रेणी सिद्धांत]] समूह वलय की निर्माण इकाइयों के समूह से जुड़ा हुआ है इसके निम्नलिखित कारक हैं <math>R[-]\colon \mathbf{Grp} \to R\mathbf{\text{-}Alg}</math> | ||
:<math>(-)^\times\colon R\mathbf{\text{-}Alg} \to \mathbf{Grp}</math> | :<math>(-)^\times\colon R\mathbf{\text{-}Alg} \to \mathbf{Grp}</math> | ||
जहां आर | जहां आर एक समूह वलय में जाता है और इकाइयों को अपने समूह के लिए आर वलय में ले जाता है। | ||
जहाँ आर=जेड [[समूहों की श्रेणी]] और वलय की श्रेणी के बीच एक संयोजन देता है और संयोजन की इकाई समूह जी को उस समूह में ले जाता है जिसमें सत्वरहित इकाइयाँ होती हैं जी×(+_1)=(+जी) समूह के छल्ले में भी | जहाँ आर=जेड [[समूहों की श्रेणी]] और वलय की श्रेणी के बीच एक संयोजन देता है और संयोजन की इकाई समूह जी को उस समूह में ले जाता है जिसमें सत्वरहित इकाइयाँ होती हैं जी×(+_1)=(+जी) समूह के छल्ले में भी सत्वरहित इकाइयां होती हैं। यदि जी में तत्व ए और बी हैं जैसे कि <math>a^n=1</math> और बी सामान्य नहीं है । | ||
:<math>x=(a-1)b \left (1+a+a^2+...+a^{n-1} \right )</math> | :<math>x=(a-1)b \left (1+a+a^2+...+a^{n-1} \right )</math> | ||
Line 176: | Line 175: | ||
=== वैश्विक संपत्ति === | === वैश्विक संपत्ति === | ||
उपरोक्त संयोजन समूह के छल्ले सार्वभौमिक संपत्ति को व्यक्त करता | उपरोक्त संयोजन समूह के छल्ले सार्वभौमिक संपत्ति को व्यक्त करता है <ref name="Polcino" /> तथा आर समूह वलय पर बने और जी समूह वलय पर बने व बीजगणित किसी भी समूह समरूपता के लिए एफ:जी-एस और आर बीजगणित की समरूपता <math>\overline{f}:R[G]\to S</math> है तो <math>\overline{f}\circ i=f</math>{{var|i}} समावेशन है। | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 182: | Line 181: | ||
g &\longmapsto 1_Rg | g &\longmapsto 1_Rg | ||
\end{align}</math> | \end{align}</math> | ||
दूसरे शब्दों में, <math>\overline{f}</math> अद्वितीय समाकारिता है जो निम्न रेखाचित्र को | दूसरे शब्दों में, <math>\overline{f}</math> अद्वितीय समाकारिता है जो निम्न रेखाचित्र को गणना करती है। | ||
:[[Image:Group ring UMP.svg|200px]]इस लाभदायक वस्तु में छल्लो के लिए गणितीय शब्दावली आइसोमोर्फिक की सूची सम्मिलित है। | :[[Image:Group ring UMP.svg|200px]]इस लाभदायक वस्तु में छल्लो के लिए गणितीय शब्दावली आइसोमोर्फिक की सूची सम्मिलित है। | ||
=== आशा बीजगणित === | === आशा बीजगणित === | ||
समूह बीजगणित आशा बीजगणित की एक प्राकृतिक संरचना | यदि समूह वलय बीजगणित आशा वलय बीजगणित की एक प्राकृतिक संरचना है जो सहगुणन द्वारा परिभाषित की जाती है। | ||
उदाहरण- यदि त्रिभुज जी=जी×जी के रूप से विस्तारित और एंटीपोड है । | |||
=== सामान्यीकरण === | === सामान्यीकरण === | ||
कोई समूह [[मोनॉइड रिंग|मोनोलोड छल्ले]] के लिए सामान्यीकरण करता है | यदि कोई समूह [[मोनॉइड रिंग|मोनोलोड छल्ले]] के लिए सामान्यीकरण करता है । उदाहरण[[श्रेणी बीजगणित]] [[घटना बीजगणित|घटना]]। | ||
== छानने का कार्य == | == छानने का कार्य == | ||
यदि किसी समूह का कार्य लम्बाई है | यदि किसी समूह वलय का कार्य लम्बाई होता है तो उदाहरण के लिए- जेनरेटर ।यदि समूह वलय कोई आव्यूह शब्द लेता है तथा यह विपरीत वलय [[कॉक्सेटर समूह|समूहों]] में होता है तो यह समूह का समूह वलय एक [[फ़िल्टर्ड बीजगणित|बीजगणित]] बन जाती है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* स्थानीय रूप से | * स्थानीय रूप से समूह बीजगणित। | ||
* मोनोलोड | * | ||
* कपलान्सकी के | * मोनोलोड वलय। | ||
* कपलान्सकी के अनुसार। | |||
=== प्रतिनिधित्व सिद्धांत === | === प्रतिनिधित्व सिद्धांत === | ||
* समूह का | * समूह प्रतिनिधित्व का सिद्धांत। | ||
* नियमित प्रतिनिधित्व | * नियमित प्रतिनिधित्व का सिद्धांत। | ||
=== श्रेणी सिद्धांत === | === श्रेणी सिद्धांत === | ||
* स्पष्ट बीजगणित। | * स्पष्ट बीजगणित। | ||
* इकाइयों का वलय। | * इकाइयों का वलय। | ||
* घटना बीजगणित। | * घटना बीजगणित। | ||
* [[तरकश (गणित)]] | * [[तरकश (गणित)|तरकश (गणित)।]] | ||
== टिप्पणियाँ == | == टिप्पणियाँ == |
Revision as of 07:38, 1 March 2023
बीजगणित में वलय तथा एक मुक्त मॉडुलेटर होता है जो वलय किसी समूह (गणित) में प्राकृतिक तरीके से निर्मित होता है। यह नि: शुल्क मॉडरेटर के रूप में अदिश रॉशि में वलय पर स्थित होता है और इसके आधार पर दिए गए समूह के तत्वों का सेट भी स्थित होता है। जो वलय योग के नियम का मॉडुलेटर तत्व है और इसका गुणन रैखिकता द्वारा विस्तारित किया जाता है। औपचारिकता का वह रूप जो समूह में वलय के प्रत्येक तत्व में दिये गये वलय के भार को एकत्र कर समूह का सामान्यीकरण करता है।
यदि यहां वलय क्रमविनिमेय हो तो इसे वलय का बीजगणित भी कहा जाता है समूह वलय की संरचना कुछ तत्वों पर आधारित होती है जो बीजगणित (हॉफ बीजगणित) की एक संरचना होती है जिसे समूह हॉफ बीजगणित कहते हैं।
समूह के छल्ले का प्रयोग समूह प्रतिनिधित्व के सिद्धांत में किया जाता है।
परिभाषा
जहाँ जी एक वलय का समूह है जिसे गुणात्मक रूप में लिखा जा सकता है और आर को एक समूह वलय होने का रूप दिया जा जाता है। तथा आर समूह व जी वलय होता है जिसे हम आर या जी (आर जी) द्वारा निरूपित करते हैं जो कार्य करने का सेट है एफ ,जी तथा आर का गणित में सामान्यीकरण होता है जहाँ जी जैसे बहुत से तत्वों को शून्य लिख सकते हैं तथा आर स्केेैलर व एल्फा मैपिंग के रूप में परिभाषित करते हैं। एल्फा तथा एफ -एक्स कार्य करते हैं और एफ व जी के मॉडुलेटर समूह योग को कार्य के रूप में परिभाषित किया जाता है जो इस प्रकार हैं-योगात्मक समूह आर व जी को एक वलय में बदलने के लिए हम एफ और जी के उत्पाद को कार्य के रूप में परिभाषित करते हैं।
यहाँ एफ और जी परिमित समूह हैं और वलय को आसानी से सत्यापित कर सकता है।
जो इस प्रकार है जैसे एफ: जी -आर तथा जी के तत्वों को आर के गुणांक को औपचारिक रैखिक संयोजनों के रूप मेंते हैं।
[1] यदि वलय आर एक क्षेत्र में हैं तो समूह वलय संरचना मॉडुलेटर संरचना 'के' के ऊपर एक सदिश स्थान लेता है।
उदाहरण
1. माना जी समूह वलय एक क्रमांक तथा चक्रीय समूह है जो विद्युत उत्पादक यंत्र के साथ ए तत्व सी तथा जी तत्व को आर के रूप में लिखते हैं।
जहां कठिन संख्यायें जेड1 और जेड2 हैं। तो यह चर में बहुपद समूह वलय के समान है ऐसा इसलिए है कि जो जी समूह वलय सी के लिए समरूपी है।
तत्व एस के रूप में उनका योग
और उनका उत्पाद इस प्रकार है-
तत्व जी का गुणांक समूह वलय सी तथा जी में एक निहित फोर्किंग को प्रेरित करता है जबकि सी जी के गुणक तत्व 1⋅1 हैं जो पहला सी से और दूसरा जी से आता है। जिसका योज्य पहचान तत्व शून्य होता है।
जब जी एक गैर-कम्यूटेटिव समूह होता है तो शर्तों को गुणा करते समय समूह वलय में तत्वों के क्रम को बनाए रखने के लिए सावधानी बरतनी चाहिए तथा गलती से उन्हें गिनना नहीं चाहिए।
2.उदाहरण एक वलय आर लॉरेंट बहुपद का है ये आर पर अनंत चक्रीय समूह जेड के वलय से ज्यादा या कम नहीं है।
3. क्यू तत्वों का चतुष्कोणीय समूह इस प्रकार है - जहाँ आर वास्तविक संख्याओं का समुच्चय है जो समूह वलय का तत्व है।
जहाँ एक वास्तविक संख्या है।
गुणन किसी अन्य वलय में होता है जो समूह संचालन के आधार पर परिभाषित किया जाता है उदाहरण के लिए-
माना कि आर क्यू आर चतुष्कोणों के तिरछे क्षेत्र के समान नहीं हैं। क्योंकि चतुष्कोणों का तिरछा क्षेत्र वलय के अतिरिक्त अन्य संबंधों को संतुष्ट करता है जैसे कि जबकि समूह का वलय आर क्यू में के बराबर नहीं है . को अधिक विशिष्ट होने के लिए समूह आर को क्यू के स्थान को वास्तविक रूप से सदिश रॉशि के स्थान आयाम को आठ के रूप में लिखा जाता है जबकि चतुष्कोणों को तिरछे क्षेत्र के वास्तविक सदिश स्थान के रूप में आयाम चार के रूप में रखा जाता है।
4. गैर-अबेलियन समूह वलय का उदाहरण है जहाँ जेड तीन अक्षरों पर सममित समूह है। यह एक अभिन्न डोमेन नहीं है क्योंकि हमारे पास ये तत्व टॉंर्सपोजीशियन के क्रम हैं जो केवल एक और दो को फ्रिज करता है। इसलिए अंतर्निहित वलय एक अभिन्न डोमेन पर नहीं होना चाहिए।
कुछ बुनियादी गुण
वलय आर की गुणात्मक पहचान को दर्शाने के लिए एक संख्या का उपयोग करना चाहिए और समूह इकाई को एक जी द्वारा निरूपित किया जाना चाहिए तथा वलय आर और जी में आर के लिए एक सबरिंग आइसोमोर्फिक होता है और तत्वों के समूह में जी के लिए एक उपसमूह आइसोमोर्फिक होता है। जो एक संकेतक समारोह पर विचार करने के लिए एक सदिश एफ द्वारा परिभाषित करते हैं जो इस प्रकार है-
एफ के सभी स्केलर गुणकों का सेट आर है जी आइसोमोर्फिक में आर का एक सबरिंग है। यदि हम जी के प्रत्येक तत्व को {एस} सूचक समारोह में रखते हैं जो एफ द्वारा परिभाषित किया गया है
परिणामी मैपिंग एक इंजेक्शन समूह समरूपता है जो आर [जी] में गुणन के संबंध में नहीं है।
यदि आंक्ति समूह है तो
एच जी का एक उपसमूह होता है और आर (एच),आर (जी) का एक उपसमूह होता है इसी प्रकार यदि एस, आर का एक उपवलय है तो एस (जी) का एक उपवलय है।
यदि जी एक से अधिक क्रम का परिमित समूह है तो आर [जी] हमेशा शून्य विभाजक होते हैं। उदाहरण के लिए क्रम जी के तत्व जी पर विचार करें - एम > फिर एक जी एक शून्य विभाजक है।
उदाहरण के लिए समूह जेड [एस पर विचार करें ] और क्रम 3 का अवयव जी=123
एक संबंधित परिणाम यदि के,जी वलय है तो जी की कोई पहचान परिमित रूप से सामान्य उपसमूह नहीं है विशेष रूप से जी अनंत होना चाहिए।
एच एक गैर-पहचान परिमित सामान्य उपसमूह है जो इस प्रकार है-.
जैसा कि हम जानते हैं कि , , तो के आधार पर हम यह लिख सकते हैं।
यदि एक परिमित समूह प्रतिनिधित्व के सिद्धांत में होते हैं। तो समूह बीजगणित में अनिवार्य रूप से समूह वलय है जिसमें क्षेत्र के वलय का स्थान जी ले रहा है। एक समुच्चय और सदिश राशि में मुक्त गुणन का उपयोग करके परिभाषित किया गया है।
जहां बाईं ओर जी बीजगणित के तत्वों को दर्शाते हैं, तथा दाईं ओर आर गुणन समूह संक्रिया को दर्शाते हैं ।
इसलिए के ,जी के आधार पर सदिशों को ई के रूप में भी लिखा जा सकता है -
कार्यों के रूप में व्याख्या
जी मूल्यवान कार्यों के रूप में न हीअंतरिक्ष के बारे में सोचते हैं बल्कि बीजगणित गुणन कार्यों का दृढ़ संकल्प लेते हैं।
जबकि एक परिमित समूह कार्यों के साथ पहचाना जा सकता है तथा अनंत समूह के लिए ये भिन्न होते हैं। समूह बीजगणित जिसमें परिमित योग होते हैं जो समूह के कार्यों से मेल खाते हैं तथा निश्चित रूप से कई बिंदुओं को गायब कर देते हैं कुछ उपयोग के रूप से (असतत टोपोलॉजी का उपयोग करके) ये कॉम्पैक्ट समर्थन वाले कार्यों के अनुरूप कार्य करते हैं।
जबकि समूह बीजगणित में के,जी के तत्वों के स्थान हैं तथा समूह बीजगणित का एक तत्व दिया गया है जो इस प्रकार है-
जबकि समूह पर एक समारोह एफ:जी-के एक तत्व देने के लिए इस प्रकार है-
जो एक परिभाषित योग है क्योंकि यह परिमित है।
एक समूह बीजगणित के प्रतिनिधित्व के ,जी को एक अमूर्त बीजगणित लेते हुए एक आयाम डी के 'के'-वेक्टर अंतरिक्ष वी पर कार्य करने वाले बीजगणित के समूह प्रतिनिधित्व के लिए कह सकता है। ऐसा प्रतिनिधित्व यह है
समूह बीजगणित में एंडोमोर्फिज्म के होमोमोर्फिज्म हैं जो डी × डी मैट्रिक्स के वलय के लिए आइसोमोर्फिक है।जो पर समतुल्य है, यह एक फ्रेमवर्क (गणित) है, जी फ्रेमवर्क एबेलियन समूह वी पर स्थित है।
तदनुसार
जी से वी के रैखिक ऑटोमोर्फिज़्म के समूह के लिए एक समूह की समरूपता जो कि उलटा मेट्रिसेस के सामान्य रैखिक समूह के लिए आइसोमोर्फिक है ऐसा कोई भी प्रतिनिधित्व बीजगणित को प्रेरित नहीं करता है।
जब रैखिक रूप से फैल रहा हो तो इस प्रकार समूह के निरूपण बिल्कुल बीजगणित के निरूपण के अनुरूप होते हैं और दो सिद्धांत अनिवार्य रूप से समकक्ष हैं।
नियमित प्रतिनिधित्व
समूह बीजगणित आर और आर,जी मॉड्यूल पर अभ्यावेदन के पत्राचार के तहत यह समूह का नियमित प्रतिनिधित्व करता है।
एक प्रतिनिधित्व के रूप में ये लिखा गया कि यह प्रतिनिधित्व जी है जो इस प्रकार है , या
अर्ध-सरल अपघटन
सदिश राशि के जी का आयाम समूह में तत्वों की संख्या के बराबर है। जो क्षेत्र 'के' को सामान्यतः जटिल संख्या सी या वास्तविक संख्या आर के रूप में लिखा जाता है जिससे बीजगणित का कोई समूह सी (जी) या ऑर (जी) पर चर्चा कर सके।
समूह बीजगणित 'सी' [जी] सम्मिश्र संख्याओं पर परिमित समूह का एक अर्धसरल वलय है। यह परिणाम मास्चके प्रमेय, हमें 'सी', जी को 'सी' में अनुरेखण के साथ के छल्ले के परिमित उत्पाद के रूप में समझने की अनुमति देता है। यदि हम जी के जटिल अप्रासंगिक अभ्यवेदन को वी के रूप में सूचीबद्ध करते हैं जो समूह समरूपता के अनुरूप है। और बीजगणित समरूपता के लिए इन मानचित्रणों को जोड़ने से बीजगणित समरूपता प्राप्त होती है
जहां वी का आयाम के है सी (जी) का एल्जेब्रा ईएनडी वी के विचार से वलय परिभाषित हैं |
जहाँ वी का चरित्र सिद्धांत है के ये ट्रोगोनल इडेम्पोटेंट्स की एक पूरी प्रणाली बनाते हैं, जिससे , . समरूपता परिमित समूहों पर फूरियर रूपांतरण से निकटता से संबंधित है।
अधिक सामान्य क्षेत्र 'के' के लिए जब भी 'के' की विशेषता (बीजगणित) समूह जी के क्रम को विभाजित नहीं करती है तब के, जी अर्धसरल होता है। जब जी एक परिमित एबेलियन समूह किसी वलय के (जी) क्रमविनिमेय रूप में होता है तो इसकी संरचना को एकता की जड़ के रूप में व्यक्त करना आसान होता है।
जब 'के' विशेषता पी का एक क्षेत्र होता है जो जी के क्रम को विभाजित करता है तो समूह का वलय अर्ध-सरल नहीं होत है इसमें एक गैर-शून्य जैकबसन कट्टरपंथी होता है जो यह मॉड्यूलर प्रतिनिधित्व सिद्धांत से संबंधित विषय को अपना, गहरा चरित्र देता है।
एक समूह बीजगणित का केंद्र
समूह बीजगणित एक समूह का केंद्र है जो समूह बीजगणित के सभी तत्वों के साथ आवागमन करते हैं।
केंद्र वर्ग कार्यों के समुच्चय के बराबर है अर्थात उन तत्वों का समुच्चय जो प्रत्येक संयुग्मन वर्ग पर स्थिर होते हैं।
यदि के बराबर सी जी के अलघुकरणीय चरित्र सिद्धांत का सेट आंतरिक उत्पाद के संबंध में जेड के जी का एक असामान्य आधार है।
समूह एक अनंत समूह पर बनता है जो उस जगहों में बहुत कम जाना जाता है और यह सक्रिय शोध का एक क्षेत्र है।[2] तथा आर जटिल संख्याओं का क्षेत्र है जहाँ सबसे अच्छा अध्ययन किया गया है। इन जगहों में, इरविंग कपलान्स्की ने द्रढ़ किया कि यदि ए और बी 'सी' [जी] के तत्व हैं ab = 1, तब ba = 1 आर सकारात्मक विशेषता का क्षेत्र है जो अज्ञात रहता है।
कप्लान्स्की के अनुमान (1940) कहते हैं कि यदि जी एक मरोड़-मुक्त समूह है और के एक क्षेत्र है तो समूह वलय के(जी) में कोई गैर-तुच्छ शून्य विभाजक नहीं है। यह अनुमान के (जी) के समतुल्य है जिसमें के और जी के लिए समान परिकल्पना है।
जबकि स्थिति यह है कि के एक क्षेत्र है जिसे किसी भी वलय में शिथिल किया जा सकता है जिसे एक अभिन्न डोमेन में करने के लिए किया जा सकता है ।
जबकि मरोड़-मुक्त समूहों के कुछ विशेष जगहों को शून्य विभाजक में दिखाया गया है जो इसमें सम्मिलित है।
- अनोखा उत्पाद समूह।
- प्राथमिक अनुमन्य समूह (जैसे वस्तुतः एबेलियन समूह)।
- विशेष रूप से समूह जो स्वतंत्र रूप से आर पर असममित रूप से कार्य करते हैं और प्रक्षेपी विमान की एक दो या तीन प्रतियों के प्रत्यक्ष योगों के मूलभूत समूहों को छोड़कर सतह समूहों के मूलभूत समूह हैं।
स्थानीय रूप से कॉम्पैक्ट समूह के लेख समूह बीजगणित में अधिक विस्तार हैं।
श्रेणी सिद्धांत
संलग्नक
श्रेणी सिद्धांत समूह वलय की निर्माण इकाइयों के समूह से जुड़ा हुआ है इसके निम्नलिखित कारक हैं
जहां आर एक समूह वलय में जाता है और इकाइयों को अपने समूह के लिए आर वलय में ले जाता है।
जहाँ आर=जेड समूहों की श्रेणी और वलय की श्रेणी के बीच एक संयोजन देता है और संयोजन की इकाई समूह जी को उस समूह में ले जाता है जिसमें सत्वरहित इकाइयाँ होती हैं जी×(+_1)=(+जी) समूह के छल्ले में भी सत्वरहित इकाइयां होती हैं। यदि जी में तत्व ए और बी हैं जैसे कि और बी सामान्य नहीं है ।
इसलिए . तत्व 1 + x अनंत क्रम की एक इकाई है।
वैश्विक संपत्ति
उपरोक्त संयोजन समूह के छल्ले सार्वभौमिक संपत्ति को व्यक्त करता है [1] तथा आर समूह वलय पर बने और जी समूह वलय पर बने व बीजगणित किसी भी समूह समरूपता के लिए एफ:जी-एस और आर बीजगणित की समरूपता है तो i समावेशन है।
दूसरे शब्दों में, अद्वितीय समाकारिता है जो निम्न रेखाचित्र को गणना करती है।
आशा बीजगणित
यदि समूह वलय बीजगणित आशा वलय बीजगणित की एक प्राकृतिक संरचना है जो सहगुणन द्वारा परिभाषित की जाती है।
उदाहरण- यदि त्रिभुज जी=जी×जी के रूप से विस्तारित और एंटीपोड है ।
सामान्यीकरण
यदि कोई समूह मोनोलोड छल्ले के लिए सामान्यीकरण करता है । उदाहरणश्रेणी बीजगणित घटना।
छानने का कार्य
यदि किसी समूह वलय का कार्य लम्बाई होता है तो उदाहरण के लिए- जेनरेटर ।यदि समूह वलय कोई आव्यूह शब्द लेता है तथा यह विपरीत वलय समूहों में होता है तो यह समूह का समूह वलय एक बीजगणित बन जाती है।
यह भी देखें
- स्थानीय रूप से समूह बीजगणित।
- मोनोलोड वलय।
- कपलान्सकी के अनुसार।
प्रतिनिधित्व सिद्धांत
- समूह प्रतिनिधित्व का सिद्धांत।
- नियमित प्रतिनिधित्व का सिद्धांत।
श्रेणी सिद्धांत
- स्पष्ट बीजगणित।
- इकाइयों का वलय।
- घटना बीजगणित।
- तरकश (गणित)।
टिप्पणियाँ
- ↑ 1.0 1.1 श
- ↑ Passman, Donald S. (1976). "What is a group ring?". Amer. Math. Monthly. 83: 173–185. doi:10.2307/2977018.
संदर्भ
- A. A. Bovdi (2001) [1994], "Group algebra", Encyclopedia of Mathematics, EMS Press
- Milies, César Polcino; Sehgal, Sudarshan K. An introduction to group rings. Algebras and applications, Volume 1. Springer, 2002. ISBN 978-1-4020-0238-0
- Charles W. Curtis, Irving Reiner. Representation theory of finite groups and associative algebras, Interscience (1962)
- D.S. Passman, The algebraic structure of group rings, Wiley (1977)