समरूपता अवयव: Difference between revisions
m (Abhishek moved page पहचान तत्व to समरूपता अवयव without leaving a redirect) |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Specific element of an algebraic structure}} | {{Short description|Specific element of an algebraic structure}} | ||
गणित में, एक समुच्चय पर संचालित [[बाइनरी ऑपरेशन|द्विआधारी ऑपरेशन (द्विआधारी संचालन)]] का | गणित में, एक समुच्चय पर संचालित [[बाइनरी ऑपरेशन|द्विआधारी ऑपरेशन (द्विआधारी संचालन)]] का समरूपता अवयव, या तटस्थ तत्व, समुच्चय का तत्व है जो संचालन प्रयुक्त होने पर समुच्चय के प्रत्येक तत्व को अपरिवर्तित छोड़ देता है।<ref>{{Cite web |url = http://mathworld.wolfram.com/IdentityElement.html |title = पहचान तत्व|last = Weisstein |first = Eric W. |authorlink = Eric W. Weisstein|website = mathworld.wolfram.com |language = en |access-date = 2019-12-01 }}</ref><ref>{{Cite web |url = https://www.merriam-webster.com/dictionary/identity+element |title = पहचान तत्व की परिभाषा|website = www.merriam-webster.com |access-date = 2019-12-01 }}</ref> इस अवधारणा का उपयोग [[बीजगणितीय संरचना|बीजगणितीय संरचनाओं]] जैसे कि [[समूह (गणित)|समू]]हों और वलयों में किया जाता है। सर्वसमिका(सर्वसमिका) तत्व शब्द को प्रायः सर्वसमिका के लिए छोटा किया जाता है (जैसा कि योगात्मक सर्वसमिका और गुणक सर्वसमिका की स्थितियों में)<ref name=":0">{{Cite web |url = https://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/identity-element |title = पहचान तत्व|website = www.encyclopedia.com |access-date = 2019-12-01}}</ref> जब भ्रम की कोई संभावना नहीं होती है, किंतु सर्वसमिका अंतर्निहित रूप से उस द्विआधारी संचालन पर निर्भर करती है जिससे यह जुड़ा हुआ है। | ||
== परिभाषाएँ == | == परिभाषाएँ == | ||
होने देना {{math|(''S'', ∗)}} एक समुच्चय हो {{mvar|S}} द्विआधारी संचालन से लैस ∗। फिर एक तत्व {{mvar|e}} का {{mvar|S}} a कहा जाता है {{visible anchor|left identity element|text='''[[left and right (algebra)|left]] identity'''}} यदि {{math|1=''e'' ∗ ''s'' = ''s''}} सभी के लिए {{mvar|s}} में {{mvar|S}}, और a {{visible anchor|right identity element|text='''[[left and right (algebra)|right]] identity'''}} यदि {{math|1=''s'' ∗ ''e'' = ''s''}} सभी के लिए {{mvar|s}} में {{mvar|S}}.<ref>{{harvtxt|Fraleigh|1976|p=21}}</ref> यदि {{mvar|e}} एक बायीं सर्वसमिका और एक सही सर्वसमिका दोनों है, तो इसे a कहा जाता है {{visible anchor|two-sided identity}}, या बस एक {{visible anchor|identity}}.<ref>{{harvtxt|Beauregard|Fraleigh|1973|p=96}}</ref><ref>{{harvtxt|Fraleigh|1976|p=18}}</ref><ref>{{harvtxt|Herstein|1964|p=26}}</ref><ref>{{harvtxt|McCoy|1973|p=17}}</ref><ref>{{Cite web|url=https://brilliant.org/wiki/identity-element/|title=पहचान तत्व {{!}} शानदार गणित और विज्ञान विकी|website=brilliant.org|language=en-us|access-date=2019-12-01}}</ref> | होने देना {{math|(''S'', ∗)}} एक समुच्चय हो {{mvar|S}} द्विआधारी संचालन से लैस ∗। फिर एक तत्व {{mvar|e}} का {{mvar|S}} a कहा जाता है {{visible anchor|left identity element|text='''[[left and right (algebra)|left]] identity'''}} यदि {{math|1=''e'' ∗ ''s'' = ''s''}} सभी के लिए {{mvar|s}} में {{mvar|S}}, और a {{visible anchor|right identity element|text='''[[left and right (algebra)|right]] identity'''}} यदि {{math|1=''s'' ∗ ''e'' = ''s''}} सभी के लिए {{mvar|s}} में {{mvar|S}}.<ref>{{harvtxt|Fraleigh|1976|p=21}}</ref> यदि {{mvar|e}} एक बायीं सर्वसमिका और एक सही सर्वसमिका दोनों है, तो इसे a कहा जाता है {{visible anchor|two-sided identity}}, या बस एक {{visible anchor|identity}}.<ref>{{harvtxt|Beauregard|Fraleigh|1973|p=96}}</ref><ref>{{harvtxt|Fraleigh|1976|p=18}}</ref><ref>{{harvtxt|Herstein|1964|p=26}}</ref><ref>{{harvtxt|McCoy|1973|p=17}}</ref><ref>{{Cite web|url=https://brilliant.org/wiki/identity-element/|title=पहचान तत्व {{!}} शानदार गणित और विज्ञान विकी|website=brilliant.org|language=en-us|access-date=2019-12-01}}</ref> | ||
जोड़ के संबंध में एक सर्वसमिका को योगात्मक तत्समक कहा जाता है|{{visible anchor|additive identity}} (प्रायः 0 के रूप में दर्शाया जाता है) और गुणन के संबंध में एक सर्वसमिका को कहा जाता है {{visible anchor|multiplicative identity}}(प्रायः 1 के रूप में दर्शाया जाता है)।<ref name=":0" /> इन्हें सामान्य जोड़ और गुणा करने की आवश्यकता नहीं है - क्योंकि अंतर्निहित संचालन मनमाना हो सकता है। उदाहरण के लिए एक समूह के स्थितियों में, | जोड़ के संबंध में एक सर्वसमिका को योगात्मक तत्समक कहा जाता है|{{visible anchor|additive identity}} (प्रायः 0 के रूप में दर्शाया जाता है) और गुणन के संबंध में एक सर्वसमिका को कहा जाता है {{visible anchor|multiplicative identity}}(प्रायः 1 के रूप में दर्शाया जाता है)।<ref name=":0" /> इन्हें सामान्य जोड़ और गुणा करने की आवश्यकता नहीं है - क्योंकि अंतर्निहित संचालन मनमाना हो सकता है। उदाहरण के लिए एक समूह के स्थितियों में, समरूपता अवयव को कभी-कभी केवल प्रतीक द्वारा निरूपित किया जाता है <math>e</math>. योज्य और गुणक सर्वसमिका के बीच अंतर का उपयोग प्रायः उन समुच्चयों के लिए किया जाता है जो दोनों द्विआधारी संचालन का समर्थन करते हैं, जैसे कि रिंग, [[अभिन्न डोमेन]] और फ़ील्ड है। गुणात्मक सर्वसमिका को प्रायः कहा जाता है{{visible anchor|unity}}बाद के संदर्भ में (एकता के साथ एक वलय )।<ref>{{harvtxt|Beauregard|Fraleigh|1973|p=135}}</ref><ref>{{harvtxt|Fraleigh|1976|p=198}}</ref><ref>{{harvtxt|McCoy|1973|p=22}}</ref> इसे रिंग थ्योरी में एक इकाई (रिंग सिद्धांत) के साथ भ्रमित नहीं होना चाहिए, जो कि गुणक व्युत्क्रम वाला कोई भी तत्व है। अपनी परिभाषा के अनुसार, एकता अपने आप में अनिवार्य रूप से एक इकाई है।<ref>{{harvtxt|Fraleigh|1976|pp=198,266}}</ref><ref>{{harvtxt|Herstein|1964|p=106}}</ref> | ||
== उदाहरण == | == उदाहरण == | ||
{| class="wikitable" | {| class="wikitable" | ||
! समूह !! | ! समूह !! संचालन !! सर्वसमिका | ||
|- | |- | ||
| [[Real number|वास्तविक संख्याएँ]] || + ([[addition|जोड़]]) || [[0 (number)|0]] | | [[Real number|वास्तविक संख्याएँ]] || + ([[addition|जोड़]]) || [[0 (number)|0]] | ||
Line 83: | Line 83: | ||
इसे देखने के लिए ध्यान दें कि अगर {{mvar|l}} एक वाम सर्वसमिका है और {{mvar|r}} एक सही सर्वसमिका है, फिर {{math|1=''l'' = ''l'' ∗ ''r'' = ''r''}}. विशेष रूप से, एक से अधिक दो पक्षीय सर्वसमिका कभी नहीं हो सकती है: यदि दो थे, तो कहें {{mvar|e}} तथा {{mvar|f}}, फिर {{math|''e'' ∗ ''f''}} दोनों के बराबर होना होगा {{mvar|e}} तथा {{mvar|f}}. | इसे देखने के लिए ध्यान दें कि अगर {{mvar|l}} एक वाम सर्वसमिका है और {{mvar|r}} एक सही सर्वसमिका है, फिर {{math|1=''l'' = ''l'' ∗ ''r'' = ''r''}}. विशेष रूप से, एक से अधिक दो पक्षीय सर्वसमिका कभी नहीं हो सकती है: यदि दो थे, तो कहें {{mvar|e}} तथा {{mvar|f}}, फिर {{math|''e'' ∗ ''f''}} दोनों के बराबर होना होगा {{mvar|e}} तथा {{mvar|f}}. | ||
के लिए भी काफी संभव है {{math|(''S'', ∗)}} कोई | के लिए भी काफी संभव है {{math|(''S'', ∗)}} कोई समरूपता अवयव नहीं होने के लिए,<ref>{{harvtxt|McCoy|1973|p=22}}</ref> जैसे गुणन संक्रिया के अंतर्गत सम पूर्णांकों की स्थिति।<ref name=":0" /> एक अन्य सामान्य उदाहरण [[यूक्लिडियन वेक्टर]] का क्रॉस उत्पाद है, जहां समरूपता अवयव की अनुपस्थिति इस तथ्य से संबंधित है कि किसी भी गैर-शून्य क्रॉस उत्पाद की [[दिशा (ज्यामिति)|दिशा]] हमेशा किसी भी तत्व के गुणन के लिए [[ओर्थोगोनल]] होती है। यही है, मूल के समान दिशा में गैर-शून्य वेक्टर प्राप्त करना संभव नहीं है। फिर भी समरूपता अवयव के बिना संरचना का एक और उदाहरण [[सकारात्मक संख्या]] [[प्राकृतिक संख्या]]ओं के योगात्मक अर्धसमूह को शामिल करता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 94: | Line 94: | ||
* [[उलटा तत्व|प्रतिलोम तत्व]] | * [[उलटा तत्व|प्रतिलोम तत्व]] | ||
* [[मोनोइड]] | * [[मोनोइड]] | ||
* | * [[मोनोइड|छद्म-वलय]] | ||
* [[quasigroup|अर्धसमूह(क्वासीग्रुप]]) | * [[quasigroup|अर्धसमूह(क्वासीग्रुप]]) | ||
* | * यूनिटल (असंबद्धता) | ||
== नोट्स और संदर्भ == | == नोट्स और संदर्भ == | ||
Line 107: | Line 107: | ||
* {{ citation | last1 = Herstein | first1 = I. N. |authorlink = I. N. Herstein| title = Topics In Algebra | location = Waltham | publisher = [[Blaisdell Publishing Company]] | year = 1964 | isbn = 978-1114541016 }} | * {{ citation | last1 = Herstein | first1 = I. N. |authorlink = I. N. Herstein| title = Topics In Algebra | location = Waltham | publisher = [[Blaisdell Publishing Company]] | year = 1964 | isbn = 978-1114541016 }} | ||
* {{ citation | last1 = McCoy | first1 = Neal H. | title = Introduction To Modern Algebra, Revised Edition | location = Boston | publisher = [[Allyn and Bacon]] | year = 1973 | lccn = 68015225 }} | * {{ citation | last1 = McCoy | first1 = Neal H. | title = Introduction To Modern Algebra, Revised Edition | location = Boston | publisher = [[Allyn and Bacon]] | year = 1973 | lccn = 68015225 }} | ||
==अग्रिम पठन== | ==अग्रिम पठन== | ||
Revision as of 12:36, 2 March 2023
गणित में, एक समुच्चय पर संचालित द्विआधारी ऑपरेशन (द्विआधारी संचालन) का समरूपता अवयव, या तटस्थ तत्व, समुच्चय का तत्व है जो संचालन प्रयुक्त होने पर समुच्चय के प्रत्येक तत्व को अपरिवर्तित छोड़ देता है।[1][2] इस अवधारणा का उपयोग बीजगणितीय संरचनाओं जैसे कि समूहों और वलयों में किया जाता है। सर्वसमिका(सर्वसमिका) तत्व शब्द को प्रायः सर्वसमिका के लिए छोटा किया जाता है (जैसा कि योगात्मक सर्वसमिका और गुणक सर्वसमिका की स्थितियों में)[3] जब भ्रम की कोई संभावना नहीं होती है, किंतु सर्वसमिका अंतर्निहित रूप से उस द्विआधारी संचालन पर निर्भर करती है जिससे यह जुड़ा हुआ है।
परिभाषाएँ
होने देना (S, ∗) एक समुच्चय हो S द्विआधारी संचालन से लैस ∗। फिर एक तत्व e का S a कहा जाता है left identity यदि e ∗ s = s सभी के लिए s में S, और a right identity यदि s ∗ e = s सभी के लिए s में S.[4] यदि e एक बायीं सर्वसमिका और एक सही सर्वसमिका दोनों है, तो इसे a कहा जाता है two-sided identity, या बस एक identity.[5][6][7][8][9]
जोड़ के संबंध में एक सर्वसमिका को योगात्मक तत्समक कहा जाता है|additive identity (प्रायः 0 के रूप में दर्शाया जाता है) और गुणन के संबंध में एक सर्वसमिका को कहा जाता है multiplicative identity(प्रायः 1 के रूप में दर्शाया जाता है)।[3] इन्हें सामान्य जोड़ और गुणा करने की आवश्यकता नहीं है - क्योंकि अंतर्निहित संचालन मनमाना हो सकता है। उदाहरण के लिए एक समूह के स्थितियों में, समरूपता अवयव को कभी-कभी केवल प्रतीक द्वारा निरूपित किया जाता है . योज्य और गुणक सर्वसमिका के बीच अंतर का उपयोग प्रायः उन समुच्चयों के लिए किया जाता है जो दोनों द्विआधारी संचालन का समर्थन करते हैं, जैसे कि रिंग, अभिन्न डोमेन और फ़ील्ड है। गुणात्मक सर्वसमिका को प्रायः कहा जाता हैunityबाद के संदर्भ में (एकता के साथ एक वलय )।[10][11][12] इसे रिंग थ्योरी में एक इकाई (रिंग सिद्धांत) के साथ भ्रमित नहीं होना चाहिए, जो कि गुणक व्युत्क्रम वाला कोई भी तत्व है। अपनी परिभाषा के अनुसार, एकता अपने आप में अनिवार्य रूप से एक इकाई है।[13][14]
उदाहरण
समूह | संचालन | सर्वसमिका | |
---|---|---|---|
वास्तविक संख्याएँ | + (जोड़) | 0 | |
वास्तविक संख्याएँ | · (घटाव) | 1 | |
मिश्रित संख्याएँ | + (जोड़) | 0 | |
मिश्रित संख्याएँ | · (गुणा) | 1 | |
धनात्मक पूर्णांक | न्यूनतम समापवर्तक | 1 | |
गैर-ऋणात्मक पूर्णांक | महत्तम सामान्य भाजक | 0 (जीसीडी की अधिकांश परिभाषाओं के अनुसार) | |
वैक्टर | वैक्टर जोड़ | जीरो वैक्टर | |
m-by-n आव्युह | आव्युह जोड़ | जीरो आव्युह | |
n-by-n वर्ग आव्युह | आव्युह गुणा | In (सर्वसमिका आव्युह) | |
m-by-n आव्युह | ○ (हैडमार्ड उत्पाद) | Jm, n (लोगों का आव्युह) | |
एक समुच्चय M से स्वयं तक सभी प्रकार्य | ∘ (प्रकार्य संघटन) | सर्वसमिका प्रकार्य | |
समूह पर सभी वितरण, G | ∗ सवलन(कनवल्शन) | δ (डायराक डेल्टा) | |
विस्तारित वास्तविक संख्याएँ | न्यूनतम/अनंत | +∞ | |
विस्तारित वास्तविक संख्याएँ | अधिकतम/सर्वोच्च | −∞ | |
समुच्चय M के उपसमुच्चय | ∩ (प्रतिच्छेदन) | M | |
समुच्चय | ∪ (संघ) | ∅ (रिक्त समुच्चय) | |
स्ट्रिंग्स, सूचियाँ | संयोजन | रिक्त स्ट्रिंग, रिक्त सूची | |
बूलियन बीजगणित | ∧ (तार्किक और) | ⊤ (सत्य) | |
बूलियन बीजगणित | ↔ (तार्किक द्विप्रतिबंध) | ⊤ (सत्य) | |
बूलियन बीजगणित | ∨ (तार्किक अथवा) | ⊥ (असत्यता) | |
बूलियन बीजगणित | ⊕ (विशिष्ट अथवा) | ⊥ (असत्यता) | |
गांठें | गांठों का योग | बिना गाँठ | |
सघन सतहें | # (जुड़ा हुआ योग) | S2 | |
समूह | प्रत्यक्ष उत्पाद | तुच्छ समूह | |
दो तत्व, {e, f} | e ∗ e = f ∗ e = e और f ∗ f = e ∗ f = f द्वारा परिभाषित |
e और f दोनों बाईं सर्वसमिका हैं,
लेकिन कोई सही सर्वसमिका नहीं है और कोई दो पक्षीय सर्वसमिका नहीं | |
समुच्चय X पर सजातीय संबंध | सापेक्ष उत्पाद | सर्वसमिका संबंध |
गुण
उदाहरण में S = {e, f} दी गई समानता के साथ, S एक अर्धसमूह है। की संभावना को प्रदर्शित करता है (S, ∗) कई वामपंथी सर्वसमिका रखने के लिए। वास्तव में, प्रत्येक तत्व एक वामपंथी सर्वसमिका हो सकता है। इसी तरह, कई सही सर्वसमिका हो सकती हैं। किंतु अगर सही सर्वसमिका और बाईं सर्वसमिका दोनों हैं, तो उन्हें समान होना चाहिए, जिसके परिणामस्वरूप एक दो-पक्षीय सर्वसमिका होती है।
इसे देखने के लिए ध्यान दें कि अगर l एक वाम सर्वसमिका है और r एक सही सर्वसमिका है, फिर l = l ∗ r = r. विशेष रूप से, एक से अधिक दो पक्षीय सर्वसमिका कभी नहीं हो सकती है: यदि दो थे, तो कहें e तथा f, फिर e ∗ f दोनों के बराबर होना होगा e तथा f.
के लिए भी काफी संभव है (S, ∗) कोई समरूपता अवयव नहीं होने के लिए,[15] जैसे गुणन संक्रिया के अंतर्गत सम पूर्णांकों की स्थिति।[3] एक अन्य सामान्य उदाहरण यूक्लिडियन वेक्टर का क्रॉस उत्पाद है, जहां समरूपता अवयव की अनुपस्थिति इस तथ्य से संबंधित है कि किसी भी गैर-शून्य क्रॉस उत्पाद की दिशा हमेशा किसी भी तत्व के गुणन के लिए ओर्थोगोनल होती है। यही है, मूल के समान दिशा में गैर-शून्य वेक्टर प्राप्त करना संभव नहीं है। फिर भी समरूपता अवयव के बिना संरचना का एक और उदाहरण सकारात्मक संख्या प्राकृतिक संख्याओं के योगात्मक अर्धसमूह को शामिल करता है।
यह भी देखें
- अवशोषित तत्व
- योगज(योगात्मक) प्रतिलोम
- सामान्यीकृत प्रतिलोम
- सर्वसमिका(समीकरण)
- सर्वसमिका प्रकार्य
- प्रतिलोम तत्व
- मोनोइड
- छद्म-वलय
- अर्धसमूह(क्वासीग्रुप)
- यूनिटल (असंबद्धता)
नोट्स और संदर्भ
- ↑ Weisstein, Eric W. "पहचान तत्व". mathworld.wolfram.com (in English). Retrieved 2019-12-01.
- ↑ "पहचान तत्व की परिभाषा". www.merriam-webster.com. Retrieved 2019-12-01.
- ↑ 3.0 3.1 3.2 "पहचान तत्व". www.encyclopedia.com. Retrieved 2019-12-01.
- ↑ Fraleigh (1976, p. 21)
- ↑ Beauregard & Fraleigh (1973, p. 96)
- ↑ Fraleigh (1976, p. 18)
- ↑ Herstein (1964, p. 26)
- ↑ McCoy (1973, p. 17)
- ↑ "पहचान तत्व | शानदार गणित और विज्ञान विकी". brilliant.org (in English). Retrieved 2019-12-01.
- ↑ Beauregard & Fraleigh (1973, p. 135)
- ↑ Fraleigh (1976, p. 198)
- ↑ McCoy (1973, p. 22)
- ↑ Fraleigh (1976, pp. 198, 266)
- ↑ Herstein (1964, p. 106)
- ↑ McCoy (1973, p. 22)
ग्रन्थसूची
- Beauregard, Raymond A.; Fraleigh, John B. (1973), A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields, Boston: Houghton Mifflin Company, ISBN 0-395-14017-X
- Fraleigh, John B. (1976), A First Course In Abstract Algebra (2nd ed.), Reading: Addison-Wesley, ISBN 0-201-01984-1
- Herstein, I. N. (1964), Topics In Algebra, Waltham: Blaisdell Publishing Company, ISBN 978-1114541016
- McCoy, Neal H. (1973), Introduction To Modern Algebra, Revised Edition, Boston: Allyn and Bacon, LCCN 68015225
अग्रिम पठन
- M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories with Applications to Wreath Products and Graphs, De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, ISBN 3-11-015248-7, p. 14–15