मुक्त कण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 35: Line 35:
<math display="block"> \rho(\mathbf{r},t) = \psi^*(\mathbf{r},t)\psi(\mathbf{r},t) = |\psi(\mathbf{r},t)|^2</math>
<math display="block"> \rho(\mathbf{r},t) = \psi^*(\mathbf{r},t)\psi(\mathbf{r},t) = |\psi(\mathbf{r},t)|^2</math>
जहां * जटिल संयुग्म को दर्शाता है, सभी '''अंतरिक्ष''' में कण को ​​​​सभी अंतरिक्ष में खोजने की संभावना है, जो कण मौजूद होने पर एकता होनी चाहिए:
जहां * जटिल संयुग्म को दर्शाता है, सभी '''अंतरिक्ष''' में कण को ​​​​सभी अंतरिक्ष में खोजने की संभावना है, जो कण मौजूद होने पर एकता होनी चाहिए:
<math display="block"> \int_\mathrm{all\,space} |\psi(\mathbf{r},t)|^2 d^3 \mathbf{r}=1</math>तरंग क्रिया के लिए यह सामान्यीकरण की स्थिति है। वेवफंक्शन प्लेन वेव के लिए सामान्य नहीं है, लेकिन[[ wavepacket | वेव पैकेट]] के लिए है।{{multiple image
<math display="block"> \int_\mathrm{all\,space} |\psi(\mathbf{r},t)|^2 d^3 \mathbf{r}=1</math>तरंग क्रिया के लिए यह सामान्यीकरण की स्थिति है। वेवफंक्शन प्लेन वेव के लिए सामान्य नहीं है, लेकिन[[ wavepacket | वेव पैकेट]] के लिए है।
  | align = केंद्र
 
  | direction = क्षैतिज
{{Clear}}
  | footer    = एक आयाम में एक स्पिन-0 कण के लिए तरंग फलन की व्याख्या। दिखाए गए वेवफंक्शन निरंतर, परिमित, एकल-मूल्यवान और सामान्यीकृत हैं। कणों की रंग अपारदर्शिता (%) एक्स-अक्ष पर बिंदुओं पर कण खोजने की संभावना घनत्व (जो% में मापी जा सकती है) से मेल खाती है।
{{multiple image
  | image1    = क्वांटम यांत्रिकी यात्रा तरंगों का कार्य करती है
  | align = center
  | caption1  = वेवपैकेट स्थानीयकरण की बढ़ती मात्रा, जिसका अर्थ है कि कण अधिक स्थानीयकृत हो जाता है।
  | direction = horizontal
  | footer    = Interpretation of wave function for one spin-0 particle in one dimension. The wavefunctions shown are continuous, finite, single-valued and normalized. The colour opacity (%) of the particles corresponds to the probability density (which can measure in %) of finding the particle at the points on the x-axis.
  | image1    = Quantum mechanics travelling wavefunctions.svg
  | caption1  = Increasing amounts of wavepacket localization, meaning the particle becomes more localized.
  | width1    = 400
  | width1    = 400
  | image2    = बिल्कुल सही स्थानीयकरण।svg
  | image2    = Perfect localization.svg
  | caption2  = ''ħ'' → 0 की सीमा में कण की स्थिति और संवेग का ठीक-ठीक पता चल जाता है
  | caption2  = In the limit ''ħ'' → 0, the particle's position and momentum become known exactly.
  | width2    = 200
  | width2    = 200
}}
}}
 
{{Clear}}
 
 
 
 


=== फूरियर अपघटन ===
=== फूरियर अपघटन ===
Line 112: Line 111:


{{DEFAULTSORT:Free Particle}}
{{DEFAULTSORT:Free Particle}}
[[Category: भौतिकी में अवधारणाएँ]]
[[Category: शास्त्रीय यांत्रिकी]]
[[Category: क्वांटम मॉडल]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Free Particle]]
[[Category:Created On 19/01/2023]]
[[Category:Created On 19/01/2023|Free Particle]]
[[Category:Machine Translated Page|Free Particle]]
[[Category:Pages with broken file links|Free Particle]]
[[Category:Pages with script errors|Short description/doc]]
[[Category:Short description with empty Wikidata description|Free Particle]]
[[Category:Template documentation pages|Short description/doc]]
[[Category:Templates Vigyan Ready|Free Particle]]
[[Category:Templates that add a tracking category|Free Particle]]
[[Category:Templates that generate short descriptions|Free Particle]]

Revision as of 14:15, 1 March 2023

भौतिकी में, मुक्त कण एक ऐसा कण होता है, जो किसी अर्थ में, किसी बाहरी बल से बंधा नहीं होता है, या समतुल्य रूप से उस क्षेत्र में नहीं होता है जहां इसकी संभावित ऊर्जा भिन्न होती हैl चिरसम्मत भौतिकी में, इसका अर्थ है कि कण एक क्षेत्र-मुक्त स्थान में उपलब्ध है। क्वांटम यांत्रिकी में, इसका मतलब है कि कण एक समान क्षमता के क्षेत्र में है, सामान्यतः रुचि के क्षेत्र में शून्य पर सेट होता है क्योंकि क्षमता को अंतरिक्ष में किसी भी बिंदु पर मनमाने ढंग से शून्य पर सेट किया जा सकता है।

प्राचीन मुक्त कण

प्राचीन मुक्त कण की विशेषता एक निश्चित वेग v है। संवेग द्वारा दिया जाता है

और गतिज ऊर्जा (कुल ऊर्जा के बराबर) द्वारा
जहाँ m कण का द्रव्यमान है और 'v' कण का सदिश वेग है।

क्वांटम मुक्त कण

1d में पदार्थ तरंग का प्रसार - जटिल संख्या आयाम का वास्तविक भाग नीला है, काल्पनिक भाग हरा है। किसी दिए गए बिंदु x पर कण को ​​​​खोजने की संभावना (रंग अपारदर्शिता (प्रकाशिकी) के रूप में दिखाई गई) एक तरंग की तरह फैली हुई है, कण की कोई निश्चित स्थिति नहीं है। जैसा कि आयाम शून्य से ऊपर बढ़ता है, वक्रता कम हो जाती है, इसलिए फिर से घट जाती है, और इसके विपरीत - परिणाम एक वैकल्पिक आयाम होता है: एक लहर। शीर्ष: हवाई जहाज की लहर। नीचे: वेव पैकेट

गणितीय विवरण

द्रव्यमान वाला एक मुक्त कण गैर-सापेक्षवादी क्वांटम यांत्रिकी में मुक्त श्रोडिंगर समीकरण द्वारा वर्णित है:

जहाँ ψ स्थिति 'r' और समय t पर कण का तरंग फलन है। कोणीय आवृत्ति ω या ऊर्जा E पर संवेग 'p' या तरंग सदिश 'k' वाले कण का समाधान सम्मिश्र संख्या समतल तरंग द्वारा दिया जाता है:

आयाम ए के साथ और इसके लिए प्रतिबंधित:

a. यदि कण में द्रव्यमान है : (या उसके बराबर ).

b. यदि कण द्रव्यमान रहित कण है:

आइगेनवैल्यू स्पेक्ट्रम असीम रूप से पतित होता है क्योंकि प्रत्येक आइगेनवैल्यू E> 0 के लिए अलग-अलग दिशाओं के अनुरूप अनंत संख्या में ईजेनफंक्शन होते हैं। . डी ब्रोगली संबंध: , लागू। चूँकि स्थितिज ऊर्जा (कहा गया है) शून्य है, कुल ऊर्जा E गतिज ऊर्जा के बराबर है, जिसका प्राचीन भौतिकी के समान रूप है:

मुक्त या बाध्य सभी क्वांटम कणों के लिए, हाइजेनबर्ग अनिश्चितता सिद्धांत लागू करें। यह स्पष्ट है कि चूंकि समतल तरंग का निश्चित संवेग (निश्चित ऊर्जा) होता है, इसलिए पूरे अंतरिक्ष में कण के स्थान को खोजने की संभावना समान और नगण्य होती है। दूसरे शब्दों में, यूक्लिडियन अंतरिक्ष में तरंग कार्य सामान्य नहीं है, ये स्थिर राज्य भौतिक वसूली योग्य राज्यों के अनुरूप नहीं हो सकते हैं।[1]

  • ===माप और गणना === प्रायिकता घनत्व फ़ंक्शन का अभिन्न अंग
    जहां * जटिल संयुग्म को दर्शाता है, सभी अंतरिक्ष में कण को ​​​​सभी अंतरिक्ष में खोजने की संभावना है, जो कण मौजूद होने पर एकता होनी चाहिए:
    तरंग क्रिया के लिए यह सामान्यीकरण की स्थिति है। वेवफंक्शन प्लेन वेव के लिए सामान्य नहीं है, लेकिन वेव पैकेट के लिए है।
    Increasing amounts of wavepacket localization, meaning the particle becomes more localized.
    In the limit ħ → 0, the particle's position and momentum become known exactly.
    Interpretation of wave function for one spin-0 particle in one dimension. The wavefunctions shown are continuous, finite, single-valued and normalized. The colour opacity (%) of the particles corresponds to the probability density (which can measure in %) of finding the particle at the points on the x-axis.

    फूरियर अपघटन

    फ्री पार्टिकल वेव फंक्शन को मोमेंटम ईजेनफंक्शन के सुपरपोजिशन द्वारा दर्शाया जा सकता है, जिसमें शुरुआती वेवफंक्शन के फूरियर रूपांतरण द्वारा दिए गए गुणांक होते हैं:[2]

    जहां इंटीग्रल सभी के-स्पेस पर है और (यह सुनिश्चित करने के लिए कि तरंग पैकेट मुक्त कण श्रोडिंगर समीकरण का समाधान है)। यहां समय 0 और पर तरंग फ़ंक्शन का मान है का फूरियर रूपांतरण है . (फूरियर रूपांतरण अनिवार्य रूप से पोजीशन वेव फंक्शन का वेव_फंक्शन#मोमेंटम-स्पेस_वेव_फंक्शन है , लेकिन के एक समारोह के रूप में लिखा इसके बजाय .)

    जटिल समतल तरंग के लिए संवेग p का प्रत्याशित मान है

    और सामान्य तरंग पैकेट के लिए यह है

    ऊर्जा ई का अपेक्षित मूल्य है

    समूह वेग और चरण वेग

    बैंगनी रंग में छायांकित एकल शिखर की गति के साथ एक तरंग पैकेट का प्रसार। चोटियाँ चरण वेग से चलती हैं जबकि समग्र पैकेट समूह वेग से चलता है।
    चरण वेग को उस गति के रूप में परिभाषित किया जाता है जिस पर एक समतल तरंग समाधान फैलता है, अर्थात्

    ध्यान दें कि गति के साथ प्राचीन कण की गति नहीं है ; बल्कि, यह प्राचीन वेग का आधा है।

    इस बीच, मान लीजिए कि प्रारंभिक तरंग कार्य करती है एक तरंग पैकेट है जिसका फूरियर रूपांतरित होता है एक विशेष तरंग वेक्टर के पास केंद्रित है . तब समतल तरंग के समूह वेग को इस प्रकार परिभाषित किया जाता है

    जो कण के प्राचीन वेग के सूत्र से सहमत है। समूह वेग वह (अनुमानित) गति है जिस पर संपूर्ण तरंग पैकेट फैलता है, जबकि चरण वेग वह गति है जिस पर तरंग पैकेट में व्यक्तिगत चोटियाँ चलती हैं।[3] आंकड़ा इस घटना को दिखाता है, लहर पैकेट के भीतर अलग-अलग चोटियों के साथ समग्र पैकेट की आधी गति से फैलता है।

    वेव पैकेट का प्रसार

    समूह वेग की धारणा फैलाव संबंध के रैखिक सन्निकटन पर आधारित है के एक विशेष मूल्य के पास .[4] इस सन्निकटन में, तरंग पैकेट का आयाम बिना आकार बदले समूह वेग के बराबर वेग से चलता है। यह परिणाम एक सन्निकटन है जो एक मुक्त क्वांटम कण के विकास के कुछ दिलचस्प पहलुओं को पकड़ने में विफल रहता है। विशेष रूप से, लहर पैकेट की चौड़ाई, जैसा कि स्थिति में अनिश्चितता से मापा जाता है, बड़े समय के लिए रैखिक रूप से बढ़ता है। मुक्त कण के लिए इस घटना को वेव_पैकेट#गाऊसी_वेव_पैकेट_इन_क्वांटम_यांत्रिकी कहा जाता है।

    विशेष रूप से, अनिश्चितता के लिए सटीक सूत्र की गणना करना कठिन नहीं है समय के एक कार्य के रूप में, जहाँ स्थिति संचालिका है। सादगी के लिए एक स्थानिक आयाम में कार्य करना, हमारे पास है:[5]

    जहां समय-शून्य तरंग क्रिया है। दाहिने हाथ की ओर दूसरे पद में कोष्ठक में अभिव्यक्ति का क्वांटम सहप्रसरण है और .

    इस प्रकार, बड़े सकारात्मक समय के लिए, में अनिश्चितता के गुणांक के साथ रैखिक रूप से बढ़ता है के बराबर . यदि प्रारंभिक तरंग क्रिया की गति अत्यधिक स्थानीयकृत है, तरंग पैकेट धीरे-धीरे फैलेगा और समूह-वेग सन्निकटन लंबे समय तक अच्छा रहेगा। सहजता से, यह परिणाम कहता है कि यदि प्रारंभिक तरंग क्रिया में बहुत तेजी से परिभाषित गति होती है, तो कण में तेजी से परिभाषित वेग होता है और इस वेग पर लंबे समय तक (अच्छे सन्निकटन के लिए) प्रचार करेगा।

    आपेक्षिकीय क्वांटम मुक्त कण

    सापेक्षतावादी कणों का वर्णन करने वाले कई समीकरण हैं: सापेक्षिक तरंग समीकरण देखें।

    यह भी देखें

    संदर्भ

    • Quantum Mechanics, E. Abers, Pearson Ed., Addison Wesley, Prentice Hall Inc, 2004, ISBN 978-0-13-146100-0
    • Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles (2nd Edition), R. Eisberg, R. Resnick, John Wiley & Sons, 1985, ISBN 978-0-471-87373-0
    • Stationary States, A. Holden, College Physics Monographs (USA), Oxford University Press, 1971, ISBN 0-19-851121-3
    • Hall, Brian C. (2013), Quantum Theory for Mathematicians, Graduate Texts in Mathematics, vol. 267, Springer, ISBN 978-1461471158
    • Quantum Mechanics Demystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN 0-07-145546 9
    • Elementary Quantum Mechanics, N.F. Mott, Wykeham Science, Wykeham Press (Taylor & Francis Group), 1972, ISBN 0-85109-270-5
    • Quantum mechanics, E. Zaarur, Y. Peleg, R. Pnini, Schaum's Outlines, Mc Graw Hill (USA), 1998, ISBN 007-0540187
    Specific
    1. "Lecture 9" (PDF).
    2. Hall 2013 Section 4.1
    3. Hall 2013 Sections 4.3 and 4.4
    4. Hall 2013 Equation 4.24
    5. Hall 2013 Proposition 4.10

    आगे की पढाई

    • The New Quantum Universe, T.Hey, P.Walters, Cambridge University Press, 2009, ISBN 978-0-521-56457-1.
    • Quantum Field Theory, D. McMahon, Mc Graw Hill (USA), 2008, ISBN 978-0-07-154382-8
    • Quantum mechanics, E. Zaarur, Y. Peleg, R. Pnini, Schaum's Easy Outlines Crash Course, Mc Graw Hill (USA), 2006, ISBN 978-007-145533-6