डायमंड सिद्धांत: Difference between revisions

From Vigyanwiki
Line 43: Line 43:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 13/02/2023]]
[[Category:Created On 13/02/2023]]
[[Category:Vigyan Ready]]

Revision as of 16:31, 10 March 2023

गणित में, और विशेष रूप से स्वयंसिद्ध समुच्चय सिद्धांत में, हीरा सिद्धांत जेन्सन (1972) में रोनाल्ड जेन्सेन द्वारा भेंट किया गया, संयोजन सिद्धांत है जो रचनात्मक ब्रह्मांड (एल) में है और इसका तात्पर्य सातत्य परिकल्पना से है। जेन्सेन ने हीरे के सिद्धांत को अपने प्रमाण से निकाला कि निर्माण की स्वयंसिद्धता (V = L) का तात्पर्य सुस्लिन वृक्ष के अस्तित्व से है। गणित में, और विशेष रूप से स्वयंसिद्ध समुच्चय सिद्धांत में, हीरा सिद्धांत जेन्सन (1972) में रोनाल्ड जेन्सेन द्वारा भेंट किया गया, संयोजन सिद्धांत है जो रचनात्मक ब्रह्मांड (एल) में है और इसका तात्पर्य सातत्य परिकल्पना से है। जेन्सेन ने हीरे के सिद्धांत को अपने प्रमाण से निकाला कि निर्माण की स्वयंसिद्धता (V = L) का तात्पर्य सुस्लिन वृक्ष के अस्तित्व से है।

परिभाषाएँ

हीरा सिद्धांत का कहना हैं कि एक ◊-अनुक्रम उपस्थित है, सेट का परिवार Aαα के लिए α < ω1 ऐसा कि किसी भी उपसमुच्चय के लिए A प्रथम अगणनीय क्रमसूचक |ω1के समुच्चय α साथ Aα = Aα में स्थिर है ω1.

हीरा सिद्धांत के कई समतुल्य रूप हैं। एक कहता है कि गणनीय संग्रह है Aα के सबसेट का α प्रत्येक गणनीय अध्यादेश के लिए α ऐसा कि किसी भी उपसमुच्चय के लिए A का ω1 स्थिर उपसमुच्चय है C का ω1 ऐसा कि सभी के लिए α में C अपने पास AαAα और CαAα. एक अन्य समतुल्य रूप बताता है कि सेट उपस्थित हैं Aαα के लिए α < ω1 ऐसा कि किसी भी उपसमुच्चय के लिए A का ω1 कम से कम एक अनंत है α साथ Aα = Aα.

अधिक सामान्यतः, किसी दिए गए बुनियादी संख्या के लिए κ और स्थिर सेट Sκ, कथन S (कभी-कभी लिखा जाता है ◊(S) या κ(S)) कथन है कि एक क्रम है Aα : αS ऐसा है कि

  • प्रत्येक Aαα
  • हर एक के लिए Aκ, {αS : Aα = Aα} में स्थिर है κ

सिद्धांत ω1 वैसा ही है जैसा कि .

हीरा-प्लस सिद्धांत + बताता है कि एक +-अनुक्रम उपस्थित है, दूसरे शब्दों में गणनीय संग्रह Aα के सबसेट का α प्रत्येक गणनीय क्रमिक α के लिए जैसे कि किसी भी सबसेट के लिए A का ω1 बंद असीमित उपसमुच्चय है C का ω1 ऐसा कि सभी के लिए α में C अपने पास AαAα और CαAα.

गुण और उपस्थित

जेन्सन (1972) दिखाया कि हीरा सिद्धांत सुस्लिन वृक्षों के अस्तित्व को दर्शाता है। उन्होंने यह भी दिखाया V = L हीरा-प्लस सिद्धांत का तात्पर्य है, जो हीरा सिद्धांत का तात्पर्य है, जिसका अर्थ है निरंतर परिकल्पना। विशेष रूप से हीरा सिद्धांत और हीरा-प्लस सिद्धांत दोनों जेडएफसी के स्वयंसिद्धों की स्वतंत्रता (गणितीय तर्क) हैं। भी + सीएच तात्पर्य , बूत सहारों शेलाह गावे मॉडल्स ऑफ़ ♣ + ¬ सीएच, इसलिए और समतुल्य नहीं हैं (किंतु, से कमजोर है ).

हीरा सिद्धांत कुरेपा वृक्ष के अस्तित्व का अर्थ नहीं है, किंतु मजबूत + सिद्धांत, ◊ सिद्धांत और कुरेपा वृक्ष के अस्तित्व दोनों को दर्शाता है।

एकमन & वीवर (2004) उपयोग किया गया सी*-बीजगणित बनाने के लिए |C*- बीजगणित नाइमार्क की समस्या के प्रति उदाहरण के रूप में कार्य करता है।

सभी कार्डिनल्स के लिए κ और स्थिर उपसमुच्चय Sκ+, S रचनात्मक ब्रह्मांड में रखता है। शेला (2010) के लिए सिद्ध किया κ > ℵ0, κ+(S) से अनुसरण करता है 2κ = κ+ स्थिर के लिए S जिसमें कोफ़िनलिटी के अध्यादेश सम्मिलित नहीं हैं κ.

शेलाह ने दिखाया कि हीरे का सिद्धांत व्हाइटहेड समस्या को हल करता है, जिसका अर्थ है कि व्हाइटहेड की हर समस्या मुक्त है।

यह भी देखें

संदर्भ