अंतर भागफल: Difference between revisions

From Vigyanwiki
No edit summary
Line 257: Line 257:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 01/03/2023]]
[[Category:Created On 01/03/2023]]
[[Category:Vigyan Ready]]

Revision as of 11:13, 14 March 2023

एकल-चर कलन में अंतर भागफल सामान्यतः अभिव्यक्ति का नाम होता है

जिसे जब किसी फ़ंक्शन की सीमा तक उपयोग किया जाता है, जैसे h0 की ओर अग्रेषित होता है, तो फ़ंक्शन (गणित) f का यौगिक का मान देता है।[1][2][3][4] इस प्रकार इस अभिव्यक्ति का नाम इस तथ्य से उत्पादित होता है कि यह फ़ंक्शन के भिन्न मानो के अंतर का भागफल है जो इस प्रकार इसके तर्क के संगत मानों (इसमें इसके बाद वाली स्थिति (x + h) - x = h है) के अंतर से प्रदर्शित होता है।[5][6] इसके अंतर भागफल के अंतराल (गणित) पर फ़ंक्शन के परिवर्तन की औसत दर का उपयोग किया जाता है, इस प्रकार इस स्थिति में लंबाई h का अंतराल निर्दिष्ट किया जाता हैं।[7][8]: 237 [9] इस प्रकार अंतर भागफल की सीमा (अर्थात, व्युत्पन्न) इस प्रकार से होने वाले परिवर्तन की तात्कालिक दर को दर्शाने का कार्य करता है।[9]

इस प्रकार अंकन (और दृष्टिकोण) में साधारण परिवर्तन के लिए अंतराल [a, b] का अंतर भागफल इस प्रकार होगा

इस प्रकार हम कह सकते है[5]कि अंतराल [a,b] पर f के व्युत्पन्न का औसत (या औसत) मान निर्धारित होता हैं। यह नाम औसत मान की प्रमेय द्वारा सुनिश्चित किया जाता है, जो बताता है कि अलग-अलग फ़ंक्शन f के लिए, इसका व्युत्पन्न f' अंतराल में किसी बिंदु पर फ़ंक्शन के अपने माध्य तक पहुंचता है।[5] इस प्रकार ज्यामितीय रूप से यह अंतर भागफल निर्देशांक (a, f(a)) और (b, f(b)) वाले बिंदुओं से गुजरने वाली इस रेखा के प्रवणता को मापता है।[10]

भिन्न भागफल का उपयोग संख्यात्मक विभेदन में सन्निकटन के रूप में किया जाता है,[8] किन्तु वे इस आवेदन में आलोचना का विषय भी रहे हैं।[11]

इस प्रकार टेम्पोरल डिस्क्रिटाइजेशन से जुड़े अनुप्रयोगों में अंतर कोशेंट भी प्रासंगिकता पा सकते हैं, जहां इस प्रकार H के मान के लिए समय स्थिति की चौड़ाई का उपयोग किया जाता है।

इस प्रकार अंतर भागफल को कभी-कभी (आइजैक न्यूटन के बाद) या फर्मेट का अंतर भागफल (पियरे D फर्मेट के बाद) न्यूटन भागफल भी कहा जाता है।[10][12][13][14][15]

अवलोकन

अंतर भागफल की विशिष्ट धारणा अधिक सामान्य अवधारणा का विशेष स्थिति है जिसकी ऊपर चर्चा की गयी हैं। इस प्रकार इसके कलन और अन्य उच्च गणित का प्राथमिक वाहन फलन है। इसके इनपुट मान इसका तर्क है, जिसके लिए सामान्यतः बिंदु (P) को ग्राफ पर अभिव्यक्त किया जाता है। इस प्रकार दो बिंदुओं के बीच का अंतर स्वयं उनके डेल्टा (पत्र) अक्षर) (ΔP) के रूप में जाना जाता है, जैसा कि उनके कार्य परिणाम में अंतर है, इस प्रकार इसके गठन करने की दिशा द्वारा इसे विशेष अंकन के लिए निर्धारित किया जाता हैं:

  • आगे का अंतर:  ΔF(P) = F(P + ΔP) - F(P)
  • केंद्रीय अंतर:  δF(P) = F(P + ½ΔP) − F(P − ½ΔP)
  • पिछड़ा अंतर: ∇F(P) = F(P) − F(P − ΔP)

इस प्रकार सामान्य वरीयता आगे की ओर उन्मुखीकरण है, क्योंकि F(P) आधार है, जिसमें अंतर (अर्थात, ΔP s) जोड़े जाते हैं।

  • अगर |ΔP| परिमित है (अर्थात् मापने योग्य), तो ΔF(P) को 'परिमित अंतर' के रूप में जाना जाता है, इस प्रकार जिसमें DP और DF(P) के विशिष्ट अर्थ होते हैं,
  • अगर |ΔP (इसके लिए उच्च सीमा से छोटे मान को द्वारा सामान्यतः मानक विश्लेषण में सीमा के रूप में व्यक्त किया जाता है: तो ΔF(P) को dP और dF(P) के विशिष्ट अर्थों के साथ अतिसूक्ष्म अंतर के रूप में जाना जाता है, (कैलकुलस ग्राफ़िंग में, बिंदु को लगभग अनन्य रूप से x और F(x) को y के रूप में पहचाना जाता है)।

इस प्रकार बिंदु अंतर से विभाजित फ़ंक्शन अंतर को अंतर भागफल के रूप में जाना जाता है:

यदि ΔP अपरिमित है, तो अंतर भागफल व्युत्पन्न है, अन्यथा यह विभाजित अंतर है:

बिंदु सीमा को परिभाषित करना

इस प्रकार भले ही ΔP अपरिमेय या परिमित होती हैं, इस प्रकार ऐसी स्थिति में कम से कम व्युत्पन्न के स्थिति में सैद्धांतिक रूप से इसकी बिंदु सीमा होती है, जहां सीमाएँ P ± (0.5) ΔP (अभिविन्यास के आधार पर—ΔF(P), δF( P) या ∇F (P)):

LB = निचली सीमा, UB = ऊपरी सीमा

डेरिवेटिव्स को स्वयं कार्यों के रूप में माना जा सकता है, इस प्रकार अपने स्वयं के डेरिवेटिव्स को आश्रय देना सरल होता हैं। इस प्रकार प्रत्येक कार्य व्युत्पत्ति, या विभेदीकरण की अनुक्रमिक डिग्री (उच्च क्रम) का घर है। इस संपत्ति को सभी अंतर भागफलों के लिए सामान्यीकृत किया जा सकता है।
चूंकि इस अनुक्रमण के लिए समान सीमा स्प्लिन्टरिंग की आवश्यकता होती है, इसलिए बिंदु श्रेणी को छोटे, सम-आकार वाले खंडों में विभाजित करना व्यावहारिक है, इस प्रकार प्रत्येक अनुभाग को मध्यस्थ बिंदु (P) द्वारा चिह्नित किया जाता है।i), जहां LB = P0 और UB = Pń, nवाँ बिंदु, डिग्री/क्रम के बराबर होता हैं:

LB = P0 = P0 + 0D1P = Pń - (Ń-0)D1P;

        P1 = P0 + 1 D1P = Pń - (Ń-1)D1P;
        P2 = P0 + 2D1P = Pń - (Ń-2)D1P;
        P3 = P0 + 3D1P = Pń - (Ń-3)D1P;
            ↓ ↓ ↓ ↓
       Pń-3 = P0 + (Ń-3)D1P = Pń - 3D1P;
       Pń-2 = P0 + (Ń-2)D1P = Pń - 2D1P;
       Pń-1 = P0 + (Ń-1)D1P = Pń - 1D1P;
  UB = Pń-0 = P0 + (Ń-0)D1P = Pń - 0D1P = Pń;
  ΔP = Δ1P = P1 - P0 = P2 - P1 = P3 - P2 = ... = Pń - Pń-1;
  ΔB = UB - LB = Pń - P0 = DńP = ŃΔ1P।

प्राथमिक अंतर भागफल (Ń = 1)

व्युत्पन्न के रूप में

इस प्रकार व्युत्पन्न के रूप में अंतर भागफल को कोई स्पष्टीकरण की आवश्यकता नहीं होती है, इसके अतिरिक्त P0 अनिवार्य रूप से P1 = P2 = ... = Pń के बराबर होता है (चूंकि अंतर अतिसूक्ष्म हैं), लीबनिज संकेतन और व्युत्पन्न अभिव्यक्तियाँ P से P0 या Pń में अंतर नहीं करती हैं :

अवकलन के लिए डेरिवेटिव के लिए नोटेशन दी जाती हैं, किन्तु ये सबसे अधिक मान्यता प्राप्त मानक के पदनाम होते हैं।

विभाजित अंतर के रूप में

विभाजित अंतर के लिए आगे स्पष्टीकरण की आवश्यकता होती है, क्योंकि यह LB और UB के बीच औसत व्युत्पन्न के बराबर होता है:
इस व्याख्या में Pã निकाले गए फ़ंक्शन का प्रतिनिधित्व करता है, P का औसत मान (मिडरेंज, किन्तु सामान्यतः बिल्कुल मिडपॉइंट नहीं), फ़ंक्शन औसत के आधार पर विशेष मानांकन से निकाला जाता है। इस प्रकार अधिक औपचारिक रूप से Pã कलन के माध्य मान प्रमेय में पाया जाता है, जो कहता है किसी भी कार्य के लिए जो [LB, UB] पर निरंतर है और इस प्रकार अलग-अलग (LB, UB) पर कुछ P सम्म्लित हैã अंतराल में (LB,UB) जैसे कि अंतराल [LB,UB] के अंत बिंदुओं में सम्म्लित होने वाला छेदक Pã पर स्पर्शरेखा के समानांतर है
इस प्रकार अनिवार्य रूप से, Pã LB और UB के बीच P के कुछ मान को दर्शाता है- इसलिए,
जो माध्य मान परिणाम को विभाजित अंतर से जोड़ता है:
जैसा कि इसकी परिभाषा के अनुसार LB/P0 के बीच ठोस अंतर है और UB/Pń, लीबनिज़ और व्युत्पन्न अभिव्यक्तियों को फ़ंक्शन तर्क के विचलन की आवश्यकता होती है।

उच्च-क्रम अंतर भागफल

दूसरा क्रम


तीसरा क्रम