अनौपचारिक प्रणाली: Difference between revisions

From Vigyanwiki
mNo edit summary
mNo edit summary
Line 4: Line 4:
किसी भी समय अगर किसी कार्य का आउटपुट केवल निविष्ट के अतीत और वर्तमान मूल्यों पर निर्भर करता है तो सामान्यतौर पर संदर्भित गुणों द्वारा करणीयता के रूप में परिभाषित किया जाता है। अगर किसी प्रणाली में संभावित अतीत या वर्त्तमान निविष्ट मूल्यों के अतिरिक्त भविष्य से निविष्ट मूल्यों पर कुछ निर्भरता होती है तो उस प्रणाली को गैर-कारण या आकस्मिक प्रणाली कहा जाता है, और जो प्रणाली  पूरी तरह से भविष्य के निविष्ट मूल्यों पर निर्भर करती है उसे '''आकस्मिक प्रणाली कहा जाता''' है। कुछ लेखकों के अनुसार अ[[कारण प्रणाली]] को भविष्य और वर्त्तमान निविष्ट मूल्यों पर निर्भरता के रूप में परिभाषित किया है, अधिक सरलता से, एक ऐसी प्रणाली जो अतीत के निविष्ट मूल्यों पर निर्भर नहीं करता है। <ref>{{cite journal |author1=Karimi, K. | author2=Hamilton, H.J. | year=2011 | title=अस्थायी निर्णय नियमों की उत्पत्ति और व्याख्या| journal=International Journal of Computer Information Systems and Industrial Management Applications | volume=3 | arxiv=1004.3334 }}</ref>
किसी भी समय अगर किसी कार्य का आउटपुट केवल निविष्ट के अतीत और वर्तमान मूल्यों पर निर्भर करता है तो सामान्यतौर पर संदर्भित गुणों द्वारा करणीयता के रूप में परिभाषित किया जाता है। अगर किसी प्रणाली में संभावित अतीत या वर्त्तमान निविष्ट मूल्यों के अतिरिक्त भविष्य से निविष्ट मूल्यों पर कुछ निर्भरता होती है तो उस प्रणाली को गैर-कारण या आकस्मिक प्रणाली कहा जाता है, और जो प्रणाली  पूरी तरह से भविष्य के निविष्ट मूल्यों पर निर्भर करती है उसे '''आकस्मिक प्रणाली कहा जाता''' है। कुछ लेखकों के अनुसार अ[[कारण प्रणाली]] को भविष्य और वर्त्तमान निविष्ट मूल्यों पर निर्भरता के रूप में परिभाषित किया है, अधिक सरलता से, एक ऐसी प्रणाली जो अतीत के निविष्ट मूल्यों पर निर्भर नहीं करता है। <ref>{{cite journal |author1=Karimi, K. | author2=Hamilton, H.J. | year=2011 | title=अस्थायी निर्णय नियमों की उत्पत्ति और व्याख्या| journal=International Journal of Computer Information Systems and Industrial Management Applications | volume=3 | arxiv=1004.3334 }}</ref>


प्राचीन रूप से, [[प्रकृति]] या भौतिक वास्तविकता को एक कारण प्रणाली माना गया है। विशेष आपेक्षिकता या [[सामान्य सापेक्षता]] वाले भौतिकी में कार्य-कारण की अधिक सावधान परिभाषाओं की आवश्यकता होती है, जैसा कि [[कारणता (भौतिकी)]] में विस्तृत रूप से वर्णित है।
प्राचीन रूप से, [[प्रकृति]] या भौतिक वास्तविकता को एक कारण प्रणाली माना गया है। विशेष आपेक्षिकता या [[सामान्य सापेक्षता]] वाले भौतिक विज्ञान में कार्य-कारण की अधिक सटीक परिभाषाओं की आवश्यकता होती है, जैसा कि [[कारणता (भौतिकी)|कारणता (भौतिक विज्ञान)]] में विस्तृत रूप से वर्णित है।


[[ अंकीय संकेत प्रक्रिया ]] में सिस्टम की कार्य-कारणता भी एक महत्वपूर्ण भूमिका निभाती है, जहां LTI सिस्टम सिद्धांत का निर्माण किया जाता है ताकि वे कारणात्मक हों, कभी-कभी कार्य-कारण की कमी को दूर करने के लिए एक गैर-कारण सूत्रीकरण को बदलकर, ताकि यह वसूली योग्य हो। अधिक जानकारी के लिए [[कारण फ़िल्टर]] देखें।
कार्य-कारणता [[प्रणाली]] [[ अंकीय संकेत प्रक्रिया |अंकीय संकेत प्रक्रिया]] में भी एक महत्वपूर्ण भूमिका निभाती है। कभी-कभी कार्य-कारण की कमी को दूर करने के लिए एक '''आकस्मिक''' सूत्रीकरण में बदलाव करके रैखिक समय-अपरिवर्तनीय प्रणाली सिद्धांत का निर्माण किया जाता है ताकि वे वास्तविक कारण [[प्रणाली]] हों सके। अधिक जानकारी के लिए [[कारण फ़िल्टर]] देखें।


एक कारण प्रणाली के लिए, सिस्टम की [[आवेग प्रतिक्रिया]] को आउटपुट निर्धारित करने के लिए केवल निविष्ट के वर्तमान और पिछले मूल्यों का उपयोग करना चाहिए। रैखिकता की परवाह किए बिना, यह आवश्यकता एक प्रणाली के कारण होने के लिए एक आवश्यक और पर्याप्त स्थिति है। ध्यान दें कि समान नियम असतत या निरंतर मामलों पर लागू होते हैं। भविष्य के निविष्ट मूल्यों की आवश्यकता नहीं होने की इस परिभाषा के अनुसार, सिस्टम को वास्तविक समय में संकेतों को संसाधित करने के लिए कारण होना चाहिए।<ref>{{cite book |author1=McClellan, James H. |author2=Schafer, Ronald W. |author3=Yoder, Mark A. | title=डीएसपी प्रथम, द्वितीय संस्करण| publisher=Pearson Education | year=2015 | isbn=978-0136019251 | page=151 }}</ref>
एक कारण प्रणाली के लिए, प्रणाली की [[आवेग प्रतिक्रिया]] को आउटपुट निर्धारित करने के लिए केवल निविष्ट के वर्तमान और पिछले मूल्यों का उपयोग करना चाहिए। रैखिकता की परवाह किए बिना, यह आवश्यकता एक प्रणाली के कारण होने के लिए एक आवश्यक और पर्याप्त स्थिति है। ध्यान दें कि समान नियम असतत या निरंतर मामलों पर लागू होते हैं। भविष्य के निविष्ट मूल्यों की आवश्यकता नहीं होने की इस परिभाषा के अनुसार, प्रणाली को वास्तविक समय में संकेतों को संसाधित करने के लिए कारण होना चाहिए।<ref>{{cite book |author1=McClellan, James H. |author2=Schafer, Ronald W. |author3=Yoder, Mark A. | title=डीएसपी प्रथम, द्वितीय संस्करण| publisher=Pearson Education | year=2015 | isbn=978-0136019251 | page=151 }}</ref>




== गणितीय परिभाषाएँ ==
== गणितीय परिभाषाएँ ==


परिभाषा 1: एक सिस्टम मैपिंग <math>x</math> को <math>y</math> निविष्ट सिग्नल की किसी भी जोड़ी के लिए अगर और केवल अगर कारण है <math>x_{1}(t)</math>, <math>x_{2}(t)</math> और कोई भी विकल्प <math>t_{0}</math>, ऐसा है कि
परिभाषा 1: एक प्रणाली मैपिंग <math>x</math> को <math>y</math> निविष्ट सिग्नल की किसी भी जोड़ी के लिए अगर और केवल अगर कारण है <math>x_{1}(t)</math>, <math>x_{2}(t)</math> और कोई भी विकल्प <math>t_{0}</math>, ऐसा है कि
:<math>x_{1}(t) = x_{2}(t), \quad \forall \ t < t_{0},</math>
:<math>x_{1}(t) = x_{2}(t), \quad \forall \ t < t_{0},</math>
संबंधित आउटपुट संतुष्ट करते हैं
संबंधित आउटपुट संतुष्ट करते हैं
Line 22: Line 22:


== उदाहरण ==
== उदाहरण ==
निम्नलिखित उदाहरण एक निविष्ट वाले सिस्टम के लिए हैं <math>x</math> और आउटपुट <math>y</math>.
निम्नलिखित उदाहरण निविष्ट <math>x</math> और आउटपुट <math>y</math> वाले प्रणाली के लिए हैं.


=== कारण प्रणालियों के उदाहरण ===
=== कारण प्रणालियों के उदाहरण ===
* मेमोरीलेस सिस्टम
* स्मृतिहीन प्रणाली
::<math>y \left( t \right) = 1 - x \left( t \right) \cos \left( \omega t \right)</math>
::<math>y \left( t \right) = 1 - x \left( t \right) \cos \left( \omega t \right)</math>
* ऑटोरेग्रेसिव फिल्टर
* स्वतःप्रगति फिल्टर
::<math>y \left( t \right) = \int_0^\infty x(t-\tau) e^{-\beta\tau}\,d\tau</math>
::<math>y \left( t \right) = \int_0^\infty x(t-\tau) e^{-\beta\tau}\,d\tau</math>


 
'''<big>गैर-कारण (अकारण) प्रणालियों के उदाहरण</big>'''
=== गैर-कारण (अकारण) प्रणालियों के उदाहरण ===
*
*
::<math>y(t)=\int_{-\infty}^\infty \sin (t+\tau) x(\tau)\,d\tau</math>
::<math>y(t)=\int_{-\infty}^\infty \sin (t+\tau) x(\tau)\,d\tau</math>
* सेंट्रल मूविंग एवरेज
* केंद्रीय गतिशील औसत
::<math>y_n=\frac{1}{2}\,x_{n-1}+\frac{1}{2}\,x_{n+1}</math>
::<math>y_n=\frac{1}{2}\,x_{n-1}+\frac{1}{2}\,x_{n+1}</math>


 
'''<big>विरोधी कारण प्रणाली के उदाहरण</big>'''
=== विरोधी कारण प्रणाली के उदाहरण ===
*
*
::<math>y(t) =\int _0^\infty x (t+\tau)\,d\tau</math>
::<math>y(t) =\int _0^\infty x (t+\tau)\,d\tau</math>
*भविष्य का ध्यान करना
*अग्रावलोकन
::<math>y_n=x_{n+1}</math>
::<math>y_n=x_{n+1}</math>



Revision as of 19:10, 12 March 2023

नियंत्रण सिद्धांत में, कारण प्रणाली एक ऐसी प्रणाली है जहां आउटपुट अतीत और वर्तमान निविष्ट पर निर्भर करता है लेकिन भविष्य के निविष्ट पर नहीं- यानी मान के लिए आउटपुट , निविष्ट पर ही निर्भर करता है। कारण प्रणाली को भौतिक प्रणाली या गैर-प्रत्याशित प्रणाली के रूप में भी जाना जाता है

किसी भी समय अगर किसी कार्य का आउटपुट केवल निविष्ट के अतीत और वर्तमान मूल्यों पर निर्भर करता है तो सामान्यतौर पर संदर्भित गुणों द्वारा करणीयता के रूप में परिभाषित किया जाता है। अगर किसी प्रणाली में संभावित अतीत या वर्त्तमान निविष्ट मूल्यों के अतिरिक्त भविष्य से निविष्ट मूल्यों पर कुछ निर्भरता होती है तो उस प्रणाली को गैर-कारण या आकस्मिक प्रणाली कहा जाता है, और जो प्रणाली पूरी तरह से भविष्य के निविष्ट मूल्यों पर निर्भर करती है उसे आकस्मिक प्रणाली कहा जाता है। कुछ लेखकों के अनुसार अकारण प्रणाली को भविष्य और वर्त्तमान निविष्ट मूल्यों पर निर्भरता के रूप में परिभाषित किया है, अधिक सरलता से, एक ऐसी प्रणाली जो अतीत के निविष्ट मूल्यों पर निर्भर नहीं करता है। [1]

प्राचीन रूप से, प्रकृति या भौतिक वास्तविकता को एक कारण प्रणाली माना गया है। विशेष आपेक्षिकता या सामान्य सापेक्षता वाले भौतिक विज्ञान में कार्य-कारण की अधिक सटीक परिभाषाओं की आवश्यकता होती है, जैसा कि कारणता (भौतिक विज्ञान) में विस्तृत रूप से वर्णित है।

कार्य-कारणता प्रणाली अंकीय संकेत प्रक्रिया में भी एक महत्वपूर्ण भूमिका निभाती है। कभी-कभी कार्य-कारण की कमी को दूर करने के लिए एक आकस्मिक सूत्रीकरण में बदलाव करके रैखिक समय-अपरिवर्तनीय प्रणाली सिद्धांत का निर्माण किया जाता है ताकि वे वास्तविक कारण प्रणाली हों सके। अधिक जानकारी के लिए कारण फ़िल्टर देखें।

एक कारण प्रणाली के लिए, प्रणाली की आवेग प्रतिक्रिया को आउटपुट निर्धारित करने के लिए केवल निविष्ट के वर्तमान और पिछले मूल्यों का उपयोग करना चाहिए। रैखिकता की परवाह किए बिना, यह आवश्यकता एक प्रणाली के कारण होने के लिए एक आवश्यक और पर्याप्त स्थिति है। ध्यान दें कि समान नियम असतत या निरंतर मामलों पर लागू होते हैं। भविष्य के निविष्ट मूल्यों की आवश्यकता नहीं होने की इस परिभाषा के अनुसार, प्रणाली को वास्तविक समय में संकेतों को संसाधित करने के लिए कारण होना चाहिए।[2]


गणितीय परिभाषाएँ

परिभाषा 1: एक प्रणाली मैपिंग को निविष्ट सिग्नल की किसी भी जोड़ी के लिए अगर और केवल अगर कारण है , और कोई भी विकल्प , ऐसा है कि

संबंधित आउटपुट संतुष्ट करते हैं

परिभाषा 2: मान लीजिए किसी भी प्रणाली की आवेग प्रतिक्रिया है एक रेखीय निरंतर गुणांक अंतर समीकरण द्वारा वर्णित। प्रणाली कारण है अगर और केवल अगर

अन्यथा यह अकारण है।

उदाहरण

निम्नलिखित उदाहरण निविष्ट और आउटपुट वाले प्रणाली के लिए हैं.

कारण प्रणालियों के उदाहरण

  • स्मृतिहीन प्रणाली
  • स्वतःप्रगति फिल्टर

गैर-कारण (अकारण) प्रणालियों के उदाहरण

  • केंद्रीय गतिशील औसत

विरोधी कारण प्रणाली के उदाहरण

  • अग्रावलोकन


संदर्भ

  1. Karimi, K.; Hamilton, H.J. (2011). "अस्थायी निर्णय नियमों की उत्पत्ति और व्याख्या". International Journal of Computer Information Systems and Industrial Management Applications. 3. arXiv:1004.3334.
  2. McClellan, James H.; Schafer, Ronald W.; Yoder, Mark A. (2015). डीएसपी प्रथम, द्वितीय संस्करण. Pearson Education. p. 151. ISBN 978-0136019251.
  • Oppenheim, Alan V.; Willsky, Alan S.; Nawab, Hamid; with S. Hamid (1998). Signals and Systems. Pearson Education. ISBN 0-13-814757-4.