गॉसियन अभिन्न: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Integral of the Gaussian function, equal to sqrt(π)}}
{{Short description|Integral of the Gaussian function, equal to sqrt(π)}}
''आँकड़ों और भौतिकी से इस समाकलन को गौसियन चतुर्भुज, संख्यात्मक समाकलन की एक विधि के साथ भ्रमित नहीं होना है।''
''आँकड़ों और भौतिकी से इस समाकलन को गौसियन चतुर्भुज, संख्यात्मक समाकलन की एक विधि के साथ भ्रमित नहीं होना है।''
Line 240: Line 239:
श्रेणी:विश्लेषण में प्रमेय
श्रेणी:विश्लेषण में प्रमेय


 
[[Category:All articles with unsourced statements]]
[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with unsourced statements from August 2015]]
[[Category:Articles with unsourced statements from June 2011]]
[[Category:Collapse templates]]
[[Category:Created On 28/02/2023]]
[[Category:Created On 28/02/2023]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]

Revision as of 11:22, 14 March 2023

आँकड़ों और भौतिकी से इस समाकलन को गौसियन चतुर्भुज, संख्यात्मक समाकलन की एक विधि के साथ भ्रमित नहीं होना है।

गॉसियन समाकलन, जिसे यूलर-पॉइसन समाकलन के रूप में भी जाना जाता है, गौसियन फलन का समाकलन है जो पूरी वास्तविक रेखा पर है। जर्मन गणितज्ञ कार्ल फ्रेडरिक गॉस के नाम पर, समाकलन है

अब्राहम डी मोइवरे ने मूल रूप से 1733 में इस प्रकार के समाकलन की खोज की थी, जबकि गॉस ने 1809 में परिशुद्ध रूप से समाकलन प्रकाशित किया था।[1] समाकलन में अनुप्रयोगों की एक विस्तृत श्रृंखला है। उदाहरण के लिए, चरों में सामान्य परिवर्तन के साथ इसका उपयोग सामान्य वितरण के सामान्यीकरण स्थिरांक की गणना करने के लिए किया जाता है। परिमित सीमाओं के साथ एक ही समाकलन त्रुटि फलन और सामान्य वितरण के संचयी वितरण फलन दोनों से निकटता से संबंधित है। भौतिक विज्ञान में इस प्रकार का समाकलन प्रायः प्रकट होता है, उदाहरण के लिए, क्वांटम यांत्रिकी में, सरल आवर्ती दोलक की निम्नतम अवस्था की संभावना घनत्व का पता लगाने के लिए। सरल आवर्ती दोलक के प्रचारक को पता लगाने के लिए, और सांख्यिकीय यांत्रिकी में, इसके विभाजन फलन (सांख्यिकीय यांत्रिकी) को पता लगाने के लिए, इस समाकलन का उपयोग पथ समाकलन सूत्रीकरण में भी किया जाता है।

हालांकि त्रुटि फलन के लिए कोई प्राथमिक फलन सम्मिलित नहीं है, जैसा कि राइश्च एल्गोरिथम द्वारा सिद्ध किया जा सकता है,[2] गॉसियन समाकलन को बहुभिन्नरूपी गणना के तरीकों के माध्यम से विश्लेषणात्मक रूप से संशोधित किया जा सकता है। अर्थात् कोई प्राथमिक अनिश्चित समाकलन नहीं है

लेकिन निश्चित समाकलन
मूल्यांकन किया जा सकता है। एकपक्षीय गॉसियन फलन का निश्चित समाकलन है


संगणना

ध्रुवीय निर्देशांक द्वारा

गॉसियन समाकलन की गणना करने का एक मानक तरीका, जिसका विचार पोइसन तक जाता है,[3] गुण का उपयोग करना है कि:

फलन तल पर विचार करें, और इसके समाकलन दो तरीकों की गणना करें:

  1. एक ओर, कार्तीय समन्वय प्रणाली में दोहरे समाकलन द्वारा, इसका समाकलन वर्ग है:
  2. दूसरी ओर, शेल समाकलन (ध्रुवीय निर्देशांक में दोहरे समाकलन की स्थिति) द्वारा, इसके समाकलन की गणना के रूप में की जाती है

इन दो संगणनाओं की तुलना करने से समाकलन प्राप्त होती है, हालांकि इसमें सम्मिलित अनुपयुक्त समाकलनो के बारे में ध्यान रखना चाहिए।

जहां r का कारक जैकबियन निर्धारक है जो ध्रुवीय निर्देशांक में परिवर्तन के कारण प्रकट होता है (r dr समतल पर मानक माप है, जिसे ध्रुवीय निर्देशांकों विकीबुक्स: गणना/ध्रुवीय समाकलन#सामान्यीकरण सामान्यीकरण में व्यक्त किया गया है, और प्रतिस्थापन में s = −r2 इसलिए ds = −2r dr लेना सम्मिलित है।

इससे उत्पन्न का संयोजन

इसलिए


पूरा प्रमाण

अनुपयुक्त दोहरा समाकलन को सही करने के लिए और दो पदों को समान करने के लिए, हम एक अनुमानित फलन से प्रारंभ करते हैं:

यदि समाकलन
पूर्ण रूप से अभिसारी होते तो हमें उसका कॉची मूल मान, अर्थात लिमिट होती
के साथ अनुरूप है
यह देखने के लिए कि यह स्थिति है, उस पर विचार करें

तो हम गणना कर सकते हैं
केवल लिमिट लेकर
का वर्ग लेने पर प्राप्त होता है

फ़ुबिनी के प्रमेय का उपयोग करते हुए, उपरोक्त दोहरे समाकलन को एक क्षेत्र समाकलन के रूप में देखा जा सकता है
xy-क्षेत्र पर शीर्षों {(−a, a), (a, a), (a, −a), (−a, −a)} के साथ एक वर्ग पर प्रग्रहण कर लिया।

चूँकि सभी वास्तविक संख्याओं के लिए घातीय फलन 0 से अधिक है, तो यह इस प्रकार है कि वर्ग के अंतर्वृत्त पर लिया गया समाकलन इससे कम होना चाहिए, और इसी प्रकार वर्ग के परिवृत्त पर लिया गया समाकलन इससे बड़ा होना चाहिए। कार्टेसियन निर्देशांक से ध्रुवीय निर्देशांक पर सूची में स्विच करके दो डिस्क पर समाकलन आसानी से गणना की जा सकती है:

(ध्रुवीय परिवर्तन में सहायता के लिए कार्टेशियन निर्देशांक से ध्रुवीय निर्देशांक देखें।)

समाकलन,

निष्पीडन प्रमेय द्वारा, यह गॉसियन समाकलन देता है


कार्तीय निर्देशांक द्वारा

एक अलग तकनीक, जो लाप्लास (1812) तक जाती है,[3] निम्नलखित है, मान लीजिए

चूँकि s पर y → ±∞ की लिमिट x के चिन्ह पर निर्भर करती हैं, यह इस तथ्य का उपयोग करने के लिए गणना को सरल करता है कि ex2 एक सम फलन है, और, इसलिए, सभी वास्तविक संख्याओं का समाकलन शून्य से अनंत तक समाकलन का दुगुना है। वह है,

इस प्रकार, समाकलन की सीमा से अधिक, x ≥ 0, और चर y और s की समान लिमिट हैं। यह प्रदान करता है:
फिर, समाकलन के क्रम (कलन) को बदलने के लिए फ़ुबिनी के प्रमेय का उपयोग करना:
इसलिए, , अपेक्षा अनुसार।

लाप्लास की विधि से

लाप्लास आकलन में, हम टेलर विस्तार में केवल दूसरे क्रम की शर्तों तक ही व्यवहार करते हैं, इसलिए हम विचार करते हैं

.

वास्तव में, चूंकि सभी के लिए हमारे पास परिशुद्ध रूप से सीमाएँ हैं:

तब हम लाप्लास आकलन सीमा पर बाध्य कर सकते हैं:
वह है,
त्रिकोणमितीय प्रतिस्थापन द्वारा, हम वास्तव में दो सीमाओं की गणना करते हैं: ,

वालिस सूत्र द्वारा, दो सीमाओं का भागफल 1 में परिवर्तित होता है। प्रत्यक्ष गणना द्वारा, दो सीमाओं का उत्पाद में परिवर्तित होता है।

इसके विपरीत, यदि हम पहले उपरोक्त अन्य विधियों में से एक के साथ समाकलन की गणना करते हैं, तो हमें वालिस सूत्र का एक प्रमाण प्राप्त होगा।

गामा फलन से संबंध

समाकलन एक सम फलन है,

इस प्रकार, चर के परिवर्तन के बाद यह यूलर समाकलन में बदल जाता है

जहाँ गामा फलन है। इससे पता चलता है कि आधे पूर्णांक का क्रमगुणन का परिमेय गुणक क्यों होता है सामान्य रूप से अधिक,
जिसे प्राप्त करने के लिए गामा फलन के समाकलन में प्रतिस्थापित करके प्राप्त किया जा सकता है

सामान्यीकरण

गौसियन फलन का समाकलन

एकपक्षीय गौसियन फलन का समाकलन है

वैकल्पिक रूप है
यह रूप सामान्य वितरण से संबंधित कुछ सतत संभाव्यता वितरण की अपेक्षाओं की गणना के लिए उपयोगी है, उदाहरण के लिए लॉग-सामान्य वितरण

n-आयामी और कार्यात्मक सामान्यीकरण

मान लीजिए A सममित सकारात्मक-निश्चित है (इसलिए प्रतीप्य) n × n परिशुद्ध आव्यूह, जो सहचरता आव्यूह का आव्यूह व्युत्क्रम है। तब,

जहां समाकलन को Rn पर समझा जाता है यह तथ्य बहुभिन्नरूपी सामान्य वितरण के अध्ययन में प्रयुक्त होता है।

भी,

जहां σ {1, …, 2N} का क्रमचय है और दाहिनी ओर का अतिरिक्त गुणनखंड A−1 की N प्रतिलिपियों के {1, …, 2N} के सभी संयोजक युग्मों का योग है।

वैकल्पिक रूप से,[4]

कुछ विश्लेषणात्मक फलन f के लिए, बशर्ते कि यह इसके विकास और कुछ अन्य तकनीकी मानदंडों पर कुछ उपयुक्त सीमाओं को पूरा करे। (यह कुछ फलनों के लिए काम करता है और दूसरों के लिए विफल रहता है। बहुपद सही हैं।) एक अवकलन संकारक पर घातांक को एक शक्ति श्रृंखला के रूप में समझा जाता है।

जबकि कार्यात्मक समाकलन की कोई कठिन परिभाषा नहीं है (या यहां तक ​​​​कि अधिकतम स्थितियों में एक अनमनीय अभिकलनात्मक), हम परिमित-आयामी स्थिति के अनुरूप एक गॉसियन कार्यात्मक समाकलन को परिभाषित कर सकते हैं।[citation needed] हालांकि, समस्या अभी भी कि अनंत है और साथ ही, कार्यात्मक निर्धारक भी सामान्य रूप से अनंत होगा। यदि हम केवल अनुपातों पर विचार करें तो इसका ध्यान रखा जा सकता है: