मार्कोव संख्या: Difference between revisions

From Vigyanwiki
No edit summary
Line 148: Line 148:
:: {{cite journal | last1=Markoff | first1=A. | authorlink = Andrey Markov|title=First memory| journal=[[Mathematische Annalen]] | year=1879 | doi=10.1007/BF02086269 | volume=15 | pages=381–406 | issue=3–4 | s2cid=179177894 |url=https://gdz.sub.uni-goettingen.de/id/PPN235181684_0015?tify=%7B%22view%22:%22info%22,%22pages%22:%5B393%5D%7D}}<!--- ref=Markoff1879--->
:: {{cite journal | last1=Markoff | first1=A. | authorlink = Andrey Markov|title=First memory| journal=[[Mathematische Annalen]] | year=1879 | doi=10.1007/BF02086269 | volume=15 | pages=381–406 | issue=3–4 | s2cid=179177894 |url=https://gdz.sub.uni-goettingen.de/id/PPN235181684_0015?tify=%7B%22view%22:%22info%22,%22pages%22:%5B393%5D%7D}}<!--- ref=Markoff1879--->
:: {{cite journal | last1=Markoff | first1=A. | authorlink = Andrey Markov|title=Second memory| journal=[[Mathematische Annalen]] | year=1880 | doi=10.1007/BF01446234 | volume=17 | pages=379–399 | issue=3 | s2cid=121616054 |url=https://gdz.sub.uni-goettingen.de/id/PPN235181684_0017?tify=%7B%22view%22:%22info%22,%22pages%22:%5B394%5D%7D}}<!--- ref=Markoff1880--->
:: {{cite journal | last1=Markoff | first1=A. | authorlink = Andrey Markov|title=Second memory| journal=[[Mathematische Annalen]] | year=1880 | doi=10.1007/BF01446234 | volume=17 | pages=379–399 | issue=3 | s2cid=121616054 |url=https://gdz.sub.uni-goettingen.de/id/PPN235181684_0017?tify=%7B%22view%22:%22info%22,%22pages%22:%5B394%5D%7D}}<!--- ref=Markoff1880--->
[[Category: डायोफैंटाइन समीकरण]] [[Category: डायोफैंटाइन सन्निकटन]] [[Category: फाइबोनैचि संख्या]]


 
[[Category:All accuracy disputes]]
 
[[Category:Articles with disputed statements from July 2016]]
[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 28/02/2023]]
[[Category:Created On 28/02/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Templates Vigyan Ready]]
[[Category:डायोफैंटाइन सन्निकटन]]
[[Category:डायोफैंटाइन समीकरण]]
[[Category:फाइबोनैचि संख्या]]

Revision as of 10:21, 15 March 2023

मार्कोव संख्या ट्री का पहला स्तर

मार्कोव संख्या या मार्कऑफ़ संख्या एक धनात्मक पूर्णांक x, y या z है जो एंड्री मार्कोव (1879, 1880) द्वारा अध्ययन किए गए मार्कोव डायोफैंटाइन समीकरण के समाधान का भाग है

पहले कुछ मार्कोव संख्या दी गई हैं

1 (संख्या), 2 (संख्या), 5 (संख्या), 13 (संख्या), 29 (संख्या), 34 (संख्या), 89 (संख्या), 169 (संख्या), 194 (संख्या), 233 (संख्या) , 433, 610, 985, 1325, ... (sequence A002559 in the OEIS)

मार्कोव त्रिक के निर्देशांक के रूप में दिखाई दे रहे हैं

(1, 1, 1), (1, 1, 2), (1, 2, 5), (1, 5, 13), (2, 5, 29), (1, 13, 34), ( 1, 34, 89), (2, 29, 169), (5, 13, 194), (1, 89, 233), (5, 29, 433), (1, 233, 610), (2, 169, 985), (13, 34, 1325),...

अपरिमित रूप से कई मार्कोव संख्याएँ और मार्कोव त्रिक हैं।

मार्कोव ट्री

पुराने मार्कोव ट्रिपल (x, y, z) से नया मार्कोव ट्रिपल प्राप्त करने के दो सरल विधियाँ हैं। सबसे पहले, कोई 3 संख्याओं x,y,z को क्रमचयित कर सकता है, इसलिए विशेष रूप से कोई त्रिगुणों को सामान्य कर सकता है जिससे x ≤ y ≤ z। दूसरा, यदि (x, y, z) एक मार्कोव ट्रिपल है तो वीटा जंपिंग द्वारा (x, y, 3xy − z) ऐसा होता है। इस ऑपरेशन को दो बार प्रायुक्त करने से वही ट्रिपल एक के साथ प्रारंभ होता है। प्रत्येक सामान्यीकृत मार्कोव ट्रिपल को 1, 2, या 3 सामान्यीकृत ट्रिपल में सम्मिलित करने से कोई भी इससे प्राप्त कर सकता है, जो चित्र में (1,1,1) से प्रारंभ होने वाला ग्राफ देता है। यह ग्राफ दूसरे शब्दों में जुड़ा (ग्राफ सिद्धांत) हुआ है; प्रत्येक मार्कोव ट्रिपल को इन परिचालनों के अनुक्रम से (1,1,1) से जोड़ा जा सकता है।[1] यदि हम एक उदाहरण के रूप में (1, 5, 13) से प्रारंभ करते हैं, तो हमें इसके तीन निकटतम (5, 13, 194), (1, 13, 34) और (1, 2, 5) मार्कोव ट्री में मिलते हैं यदि z क्रमशः 1, 5 और 13 पर सेट है। उदाहरण के लिए (1, 1, 2) के साथ प्रारंभ करना और रूपांतरण सूची के प्रत्येक पुनरावृत्ति से पहले y और z का लेन-देन फाइबोनैचि संख्याओं के साथ मार्कोव ट्रिपल को सूचीबद्ध करता है। उसी ट्रिपलेट से प्रारंभ करना और प्रत्येक पुनरावृत्ति से पहले x और z का लेन-देन करना पेल संख्यों के साथ ट्रिपल देता है।

2 के क्षेत्र से सटे क्षेत्रों पर सभी मार्कोव संख्याएँ विषम (गणित) -अनुक्रमित पेल संख्याएँ हैं (या संख्याएँ n जैसे कि 2n2 − 1 वर्ग संख्या है, OEISA001653), और 1 के क्षेत्र से सटे क्षेत्रों पर सभी मार्कोव संख्याएँ विषम-अनुक्रमित फाइबोनैचि संख्याएँ (OEISA001519) है। इस प्रकार, के रूप में अपरिमित रूप से अनेक मार्कोव त्रिक हैं

जहां Fk kवी फाइबोनैचि संख्या है। इसी प्रकार, के रूप में अपरिमित रूप से कई मार्कोव त्रिक हैं

जहां Pk kवी पेल संख्या है।[2]


प्रमाण है कि यह सभी संभव ट्रिपल उत्पन्न करता है

किसी हल (x, y, z) से प्रारंभ करें, और मान लें कि तीनों भिन्न हैं। अब द्विघात फलन पर विचार करें

ध्यान दें कि z किसी बहुपद का एक मूल है। वीटा जंपिंग द्वारा, दूसरा मूल z' z + z' = 3xy और zz' = x 2 + y 2 को संतुष्ट करता है। इस प्रकार चूंकि z धनात्मक है, z′ भी धनात्मक है, हम देखते हैं कि z′ = 3xy - z एक अन्य समाधान देता हैं।

अब, WLOG, x > y मान लें, फिर लें

चूँकि y > 0, 2 − 3y ≤ −1, इसलिए f(x) < 0 हैं। चूँकि f(t) ऊपर की ओर उन्मुख परवलय है, इसका अर्थ min(z, z′ ) < x < max(z, z' ) है।

इसका कारण है कि हम तीन नए समाधान बना सकते हैं: (x, y, 3xy − z), (x, 3xz − y, z), और (3yz − x, y, z) और ये अलग हैं। उपरोक्त हमारी गणना से, तीन नए समाधानों में से एक में (x, y, z) (और अन्य दो बड़े) की तुलना में एक छोटा अधिकतम तत्व होगा।

इस प्रकार हम हर बार अधिकतम तत्व को कम करते हुए इस प्रकार से आगे बढ़ते हैं (जो वीटा जंपिंग का सार है)। चूँकि हम केवल सकारात्मक पूर्णांकों के साथ काम कर रहे हैं, हमें अंततः रुकना चाहिए जिसका अर्थ है कि हम एक ऐसे समाधान तक पहुँचते हैं जिसमें सभी तत्व अलग-अलग नहीं हैं।

इस प्रकार के समाधान पर विचार करना हमारे लिए शेष है। WLOG मान लें कि x = y तो 2x2 + z2 = 3x2z। इस प्रकार x2 | z2 और x | z अत: z = ax लिखिए। तो हम प्राप्त करते हैं

तो हम a|2 देखते हैं तो a = 1 या 2. यदि a = 1 तो हमें (1, 1, 1) मिलता है और यदि a = 2 तो हमें (1, 1, 2) मिलता है। और (1, 1, 2) से हम (x, y, 3xy - z) लेकर (1, 1, 1) प्राप्त करते हैं।

इस प्रकार हम देखते हैं कि स्वैच्छिक समाधान से प्रारंभ करके हम अंततः (1, 1, 1) पर आते हैं, और इसलिए ये सभी समाधान हैं।

अन्य गुण

दो सबसे छोटे एकवचन त्रिक (1, 1, 1) और (1, 1, 2) के अतिरिक्त, प्रत्येक मार्कोव त्रिक में तीन भिन्न पूर्णांक होते हैं।[3]

एकता अनुमान बताता है कि किसी दिए गए मार्कोव संख्या सी के लिए, सी के सबसे बड़े तत्व के रूप में सामान्यीकृत समाधान है: इस अनुमान के गणितीय प्रमाण का प्रमाणित किया गया है किन्तु कोई भी सही नहीं लगता है।[4]

विषम मार्कोव संख्याएँ 4 के गुणकों से 1 अधिक हैं, जबकि समता (गणित) मार्कोव संख्याएँ 32 के गुणकों से 2 अधिक हैं।[5]

अपने 1982 के पेपर में, डॉन ज़गियर ने अनुमान लगाया कि nवें मार्कोव संख्या विषम रूप से दी गई है

त्रुटि नीचे प्लॉट किया गया है।

बड़ी मार्कोव संख्याओं के सन्निकटन में त्रुटि

इसके अतिरिक्त उन्होंने बताया कि , मूल डायोफैंटाइन समीकरण का एक सन्निकटन, के साथ f(t) = आर्कोश (3t  / 2) के बराबर है।[6] 1995 में अतिशयोक्तिपूर्ण ज्यामिति की विधियों का उपयोग करके ग्रेग मैकशेन और इगोर रिविन द्वारा अनुमान[disputed ] सिद्ध हुआ था।[7]

nवें लग्रेंज संख्या की गणना सूत्र के साथ nवीं मार्कोव संख्या से की जा सकती है

मार्कोव संख्याएँ वर्गों के जोड़े (गैर-अद्वितीय) का योग हैं।

मार्कोव का प्रमेय

मार्कोव (1879, 1880) ने दिखाया कि यदि

वास्तविक संख्या गुणांकों और विविक्तकर के साथ एक अनिश्चित द्विघात रूप द्विआधारी द्विघात रूप है, तो ऐसे पूर्णांक x, y हैं जिनके लिए f अधिक से अधिक निरपेक्ष मान का शून्येतर मान लेता है

जब तक कि f एक मार्कोव रूप नहीं है:[8] एक स्थिर समय है

ऐसा है कि

जहां (p, q, r) एक मार्कोव ट्रिपल है।

मैट्रिक्स

मान लो Tr मैट्रिक्स (गणित) पर ट्रेस (रैखिक बीजगणित) फलन को दर्शाता है। यदि X और Y विशेष रैखिक समूह SL2() में हैं, तो

Tr(X) Tr(Y) Tr(X⋅Y) + Tr(X⋅Y⋅X−1⋅Y−1) + 2 = Tr(X)2 + Tr(Y)2 + Tr(X⋅Y)2 जिससे यदि Tr(X⋅Y⋅X−1⋅Y−1) = −2 तब Tr(X) Tr(Y) Tr(X⋅Y) = Tr(X)2 + Tr(Y)2 + Tr(X⋅Y)2

विशेष रूप से यदि X और Y में भी पूर्णांक प्रविष्टियाँ हैं तो Tr(X)/3, Tr(Y)/3, और Tr(X⋅Y)/3 एक मार्कोव ट्रिपल हैं। यदि X⋅Y⋅Z = I तो Tr(X⋅Y) = Tr(Z), तो अधिक सममित रूप से यदि X, Y, और Z SL2(ℤ) में X⋅Y⋅Z = I और दो के कम्यूटेटर के साथ हैं उनमें से निशान -2 है, तो उनके निशान/3 एक मार्कोव ट्रिपल हैं।[9]


यह भी देखें

टिप्पणियाँ

  1. Cassels (1957) p.28
  2. OEISA030452 lists Markov numbers that appear in solutions where one of the other two terms is 5.
  3. Cassels (1957) p.27
  4. Guy (2004) p.263
  5. Zhang, Ying (2007). "Congruence and Uniqueness of Certain Markov Numbers". Acta Arithmetica. 128 (3): 295–301. arXiv:math/0612620. Bibcode:2007AcAri.128..295Z. doi:10.4064/aa128-3-7. MR 2313995. S2CID 9615526.
  6. Zagier, Don B. (1982). "On the Number of Markoff Numbers Below a Given Bound". Mathematics of Computation. 160 (160): 709–723. doi:10.2307/2007348. JSTOR 2007348. MR 0669663.
  7. Greg McShane; Igor Rivin (1995). "Simple curves on hyperbolic tori". Comptes Rendus de l'Académie des Sciences, Série I. 320 (12).
  8. Cassels (1957) p.39
  9. Aigner, Martin (2013), "The Cohn tree", Markov's Theorem and 100 Years of the Uniqueness Conjecture, Springer, pp. 63–77, doi:10.1007/978-3-319-00888-2_4, ISBN 978-3-319-00887-5, MR 3098784.


संदर्भ

Markoff, A. (1879). "First memory". Mathematische Annalen. 15 (3–4): 381–406. doi:10.1007/BF02086269. S2CID 179177894.
Markoff, A. (1880). "Second memory". Mathematische Annalen. 17 (3): 379–399. doi:10.1007/BF01446234. S2CID 121616054.