हेटिंग बीजगणित: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में, हेयटिंग बीजगणित (छद्म-बूलियन बीजगणित के रूप में भी जाना जाता है<ref>{{Cite web|url=https://www.encyclopediaofmath.org/index.php/Pseudo-Boolean_algebra|title = Pseudo-Boolean algebra - Encyclopedia of Mathematics}}</ref>) लैटिस (ऑर्डर) | गणित में, हेयटिंग बीजगणित (छद्म-बूलियन बीजगणित के रूप में भी जाना जाता है<ref>{{Cite web|url=https://www.encyclopediaofmath.org/index.php/Pseudo-Boolean_algebra|title = Pseudo-Boolean algebra - Encyclopedia of Mathematics}}</ref>) लैटिस (ऑर्डर) या बाउंडेड जाली है (जॉइन और मीट ऑपरेशंस लिखित ∨ और ∧ के साथ और कम से कम एलिमेंट 0 और सबसे बड़ा एलिमेंट 1 के साथ) बाइनरी ऑपरेशन a → b से लैस है, जैसे कि (c ∧ a) ≤ b है सी ≤ (ए → बी) के बराबर। तार्किक दृष्टिकोण से, ए → बी इस परिभाषा के अनुसार सबसे कमजोर तर्कवाक्य है जिसके लिए [[मूड सेट करना]], अनुमान नियम ए → बी, ए ⊢ बी, ध्वनि है। [[बूलियन बीजगणित (संरचना)]] की तरह, हेयटिंग बीजगणित [[विविधता (सार्वभौमिक बीजगणित)]] बनाते हैं जो बहुत से समीकरणों के साथ स्वयंसिद्ध है। हेटिंग अलजेब्रा की प्रारंभिक किसके द्वारा की गई थी {{harvs|txt|authorlink= Arend Heyting|first=अरेंड|last= हेटिंग|year=1930}} [[अंतर्ज्ञानवादी तर्क]] को औपचारिक रूप देना। | ||
जाली के रूप में, | जाली के रूप में, हेटिंग बीजगणित वितरित जाली हैं। प्रत्येक बूलियन बीजगणित हेटिंग बीजगणित है जब a → b को ¬a ∨ b के रूप में परिभाषित किया जाता है, जैसा कि प्रत्येक [[पूर्णता (आदेश सिद्धांत)]] वितरणात्मक जाली है जो एक तरफा वितरण (आदेश सिद्धांत) को संतुष्ट करती है या पूर्ण जाली के लिए वितरण नियम जब a → b है सभी c के समुच्चय का सर्वोच्च माना जाता है जिसके लिए c ∧ a ≤ b। सीमित स्थितियों में, प्रत्येक गैर-खाली [[वितरण जाली]], विशेष रूप से प्रत्येक गैर-खाली सीमित कुल आदेशया चेन्स, स्वचालित रूप से पूर्ण और पूरी तरह से वितरण योग्य है, और इसलिए विषम बीजगणित है। | ||
यह परिभाषा से अनुसरण करता है कि 1 ≤ 0 → ए, अंतर्ज्ञान के अनुरूप है कि कोई भी प्रस्ताव विरोधाभास 0 से निहित है। चूंकि नकारात्मक ऑपरेशन ¬a परिभाषा का हिस्सा नहीं है, यह → 0 के रूप में परिभाषित है। सहज ज्ञान युक्त ¬a की सामग्री वह प्रस्ताव है जो मान लेने से विरोधाभास हो जाएगा। परिभाषा का तात्पर्य है कि ∧ ¬a = 0. आगे यह दिखाया जा सकता है कि ≤ ¬¬a, चूंकि इसका विलोम, ¬¬a ≤ a, सामान्य रूप से सत्य नहीं है, अर्थात, [[दोहरा निषेध उन्मूलन]] सामान्य रूप से मान्य नहीं है हेटिंग बीजगणित में। | यह परिभाषा से अनुसरण करता है कि 1 ≤ 0 → ए, अंतर्ज्ञान के अनुरूप है कि कोई भी प्रस्ताव विरोधाभास 0 से निहित है। चूंकि नकारात्मक ऑपरेशन ¬a परिभाषा का हिस्सा नहीं है, यह → 0 के रूप में परिभाषित है। सहज ज्ञान युक्त ¬a की सामग्री वह प्रस्ताव है जो मान लेने से विरोधाभास हो जाएगा। परिभाषा का तात्पर्य है कि ∧ ¬a = 0. आगे यह दिखाया जा सकता है कि ≤ ¬¬a, चूंकि इसका विलोम, ¬¬a ≤ a, सामान्य रूप से सत्य नहीं है, अर्थात, [[दोहरा निषेध उन्मूलन]] सामान्य रूप से मान्य नहीं है हेटिंग बीजगणित में। | ||
हेटिंग बीजगणित बूलियन बीजगणित का सामान्यीकरण इस अर्थ में करते हैं कि बूलियन बीजगणित निश्चित रूप से हेटिंग बीजगणित हैं जो ∨ ¬a = 1 (मध्य को छोड़कर), समकक्ष ¬¬a = a को संतुष्ट करते हैं। हेटिंग बीजगणित एच के फॉर्म ¬ए के वे तत्व बूलियन जाली सम्मिलित करते हैं, किन्तु सामान्यतः यह एच का [[subalgebra]] नहीं है (देखें | हेटिंग बीजगणित बूलियन बीजगणित का सामान्यीकरण इस अर्थ में करते हैं कि बूलियन बीजगणित निश्चित रूप से हेटिंग बीजगणित हैं जो ∨ ¬a = 1 (मध्य को छोड़कर), समकक्ष ¬¬a = a को संतुष्ट करते हैं। हेटिंग बीजगणित एच के फॉर्म ¬ए के वे तत्व बूलियन जाली सम्मिलित करते हैं, किन्तु सामान्यतः यह एच का [[subalgebra|उपबीजगणित]] नहीं है (देखें या नियमित और पूरक तत्व)। | ||
हेटिंग बीजगणित उसी तरह से प्रस्तावपरक अंतर्ज्ञानवादी तर्क के बीजगणितीय मॉडल के रूप में काम करते हैं जैसे बूलियन बीजगणित मॉडल प्रस्तावपरक [[शास्त्रीय तर्क|मौलिक तर्क]]। [[प्राथमिक टोपोस]] का आंतरिक तर्क [[टर्मिनल वस्तु]] 1 के उप- | हेटिंग बीजगणित उसी तरह से प्रस्तावपरक अंतर्ज्ञानवादी तर्क के बीजगणितीय मॉडल के रूप में काम करते हैं जैसे बूलियन बीजगणित मॉडल प्रस्तावपरक [[शास्त्रीय तर्क|मौलिक तर्क]]। [[प्राथमिक टोपोस]] का आंतरिक तर्क [[टर्मिनल वस्तु]] 1 के उप-वस्तु के हेटिंग बीजगणित पर आधारित होता है, जो समावेशन द्वारा आदेशित होता है, समकक्ष रूप से 1 से [[subobject|उपवस्तु]] वर्गीकरणकर्ता Ω तक। | ||
किसी भी [[टोपोलॉजिकल स्पेस]] के खुले सेट पूर्ण हेटिंग बीजगणित बनाते हैं। पूर्ण हेटिंग बीजगणित इस प्रकार [[व्यर्थ टोपोलॉजी]] में अध्ययन का केंद्रीय उद्देश्य बन जाता है। | किसी भी [[टोपोलॉजिकल स्पेस|संस्थानिक स्पेस]] के खुले सेट पूर्ण हेटिंग बीजगणित बनाते हैं। पूर्ण हेटिंग बीजगणित इस प्रकार [[व्यर्थ टोपोलॉजी]] में अध्ययन का केंद्रीय उद्देश्य बन जाता है। | ||
प्रत्येक हेटिंग बीजगणित जिसके गैर-महानतम तत्वों के सेट में सबसे बड़ा तत्व होता है (और और हेटिंग बीजगणित बनाता है) उप-प्रत्यक्ष रूप से अलघुकरणीय बीजगणित होता है, जहां से प्रत्येक हेटिंग बीजगणित को नए महानतम तत्व से जोड़कर उप-प्रत्यक्ष रूप से अलघुकरणीय बनाया जा सकता है। यह इस प्रकार है कि सीमित हेटिंग बीजगणितों में भी असीम रूप से कई ऐसे उपस्थित हैं जो उप-प्रत्यक्ष रूप से अलघुकरणीय हैं, जिनमें से दो में समान [[समीकरण सिद्धांत]] नहीं है। इसलिए सीमित हेटिंग बीजगणित का कोई सीमित समुच्चय हेटिंग बीजगणित के गैर-नियमों के लिए सभी प्रतिउदाहरणों की आपूर्ति नहीं कर सकता है। यह बूलियन बीजगणित के बिल्कुल विपरीत है, जिसका एकमात्र उप-प्रत्यक्ष रूप से अप्रासंगिक दो-तत्व वाला है, जो अपने दम पर बूलियन बीजगणित के गैर-नियमों के लिए सभी प्रति-उदाहरणों के लिए पर्याप्त है, जो सरल सत्य तालिका निर्णय पद्धति का आधार है। फिर भी, यह [[निर्णायकता (तर्क)]] है कि क्या समीकरण सभी हेटिंग बीजगणितों को धारण करता है।<ref name="Kripke63">Kripke, S. A.: 1965, 'Semantical analysis of intuitionistic logic I'. In: J. N. Crossley and M. A. E. Dummett (eds.): Formal Systems and Recursive Functions. Amsterdam: North-Holland, pp. 92–130.</ref> | |||
हेयटिंग बीजगणित को अधिकांशतः छद्म-बूलियन बीजगणित कहा जाता है,<ref name="Rasiowa-Sikorski">{{cite book|author1=Helena Rasiowa|author2=Roman Sikorski|title=The Mathematics of Metamathematics|year=1963 |publisher=Państwowe Wydawnictwo Naukowe (PWN)|pages=54–62, 93–95, 123–130}}</ref> या यहां तक कि ब्रोवर जाली,<ref name="KusraevKutateladze1999">{{cite book|author1=A. G. Kusraev|author2=Samson Semenovich Kutateladze|title=Boolean valued analysis|url=https://books.google.com/books?id=MzVXq3LRHOYC&pg=PA12 |year=1999 |publisher=Springer|isbn=978-0-7923-5921-0|page=12}}</ref> चूंकि बाद वाला शब्द दोहरी परिभाषा को निरूपित कर सकता है,<ref>{{springer | title=Brouwer lattice | id= b/b017660 | last= Yankov | first= V.A.}}</ref> या थोड़ा और सामान्य अर्थ है।<ref name="Blyth2005">{{cite book|author=Thomas Scott Blyth|title=Lattices and ordered algebraic structures|url=https://books.google.com/books?id=WgROkcmTxG4C&pg=PA151 |year=2005 |publisher=Springer |isbn=978-1-85233-905-0|page=151}}</ref> | |||
== औपचारिक परिभाषा == | == औपचारिक परिभाषा == | ||
हेटिंग बीजगणित एच जाली (आदेश) या आंशिक रूप से आदेशित सेट के रूप में है कि एच में सभी ए और बी के लिए एच का सबसे बड़ा तत्व एक्स है जैसे कि | |||
:<math> a \wedge x \le b.</math> | :<math> a \wedge x \le b.</math> | ||
यह तत्व ''बी'' के संबंध में ''ए'' का सापेक्ष छद्म-पूरक है, और इसे ''ए''→''बी'' के रूप में दर्शाया गया है। हम क्रमशः ''H'' के सबसे बड़े और सबसे छोटे अवयव के लिए 1 और 0 लिखते हैं। | यह तत्व ''बी'' के संबंध में ''ए'' का सापेक्ष छद्म-पूरक है, और इसे ''ए''→''बी'' के रूप में दर्शाया गया है। हम क्रमशः ''H'' के सबसे बड़े और सबसे छोटे अवयव के लिए 1 और 0 लिखते हैं। | ||
किसी भी | किसी भी हेटिंग बीजगणित में, कोई व्यक्ति ¬''a'' = (''a''→0) सेट करके किसी भी तत्व ''a'' के छद्म-पूरक ¬''a'' को परिभाषित करता है। परिभाषा से, <math>a\wedge \lnot a = 0</math>, और ¬a इस गुण वाला सबसे बड़ा तत्व है। चूँकि, यह सामान्य रूप से सच नहीं है <math>a\vee\lnot a=1</math>, इस प्रकार ¬ केवल छद्म पूरक है, वास्तविक [[पूरक (सेट सिद्धांत)]] नहीं है, जैसा कि बूलियन बीजगणित में होता है। | ||
पूर्ण हेटिंग बीजगणित हेटिंग बीजगणित है जो [[पूर्ण जाली]] है। | पूर्ण हेटिंग बीजगणित हेटिंग बीजगणित है जो [[पूर्ण जाली]] है। | ||
एक | एक हेटिंग बीजगणित ''H'' का उपलजगणित उपसमुच्चय ''H'' है<sub>1</sub> H का जिसमें 0 और 1 है और संचालन ∧, ∨ और → के अनुसार बंद है। यह इस प्रकार है कि यह भी ¬ के अनुसार बंद है। प्रेरित संक्रियाओं द्वारा उपबीजगणित को हेयटिंग बीजगणित में बनाया जाता है। | ||
== वैकल्पिक परिभाषाएँ == | == वैकल्पिक परिभाषाएँ == | ||
Line 33: | Line 35: | ||
जाली <math>H</math> [[श्रेणी (गणित)]] के रूप में माना जाता है जहाँ | जाली <math>H</math> [[श्रेणी (गणित)]] के रूप में माना जाता है जहाँ | ||
मिलना, <math>\wedge</math>, [[उत्पाद (श्रेणी सिद्धांत)]] है। घातीय स्थिति का अर्थ है कि किसी भी वस्तु के लिए <math>Y</math> और <math>Z</math> में <math>H</math> घातीय <math>Z^Y</math> विशिष्ट रूप से वस्तु के रूप में उपस्थित है <math>H</math>. | मिलना, <math>\wedge</math>, [[उत्पाद (श्रेणी सिद्धांत)]] है। घातीय स्थिति का अर्थ है कि किसी भी वस्तु के लिए <math>Y</math> और <math>Z</math> में <math>H</math> घातीय <math>Z^Y</math> विशिष्ट रूप से वस्तु के रूप में उपस्थित है <math>H</math>. | ||
Line 40: | Line 43: | ||
=== जाली-सैद्धांतिक परिभाषाएँ === | === जाली-सैद्धांतिक परिभाषाएँ === | ||
मानचित्रण पर विचार करके हेटिंग बीजगणित की समकक्ष परिभाषा दी जा सकती है: | |||
:<math>\begin{cases} f_a \colon H \to H \\ f_a(x)=a\wedge x \end{cases}</math> | :<math>\begin{cases} f_a \colon H \to H \\ f_a(x)=a\wedge x \end{cases}</math> | ||
एच में कुछ निश्चित के लिए। बंधी हुई जाली | एच में कुछ निश्चित के लिए। बंधी हुई जाली h हेटिंग बीजगणित है [[अगर और केवल अगर|यदि और केवल यदि]] हर मानचित्रण f<sub>a</sub> एक लय [[गाल्वा कनेक्शन]] का निचला भाग है। इस स्थितियों में संबंधित ऊपरी संलग्न जी<sub>a</sub>जी द्वारा दिया जाता है<sub>a</sub>(x) = a→x, जहाँ → ऊपर के रूप में परिभाषित किया गया है। | ||
फिर भी और परिभाषा [[अवशिष्ट जाली]] के रूप में है जिसका मोनोइड ऑपरेशन ∧ है। मोनॉइड इकाई तब शीर्ष तत्व 1 होना चाहिए। इस मोनॉइड की | फिर भी और परिभाषा [[अवशिष्ट जाली]] के रूप में है जिसका मोनोइड ऑपरेशन ∧ है। मोनॉइड इकाई तब शीर्ष तत्व 1 होना चाहिए। इस मोनॉइड की क्रमविनिमेयता का अर्थ है कि दो अवशेष → बी के रूप में मेल खाते हैं। | ||
=== एक निहितार्थ ऑपरेशन के साथ घिरा जाली === | === एक निहितार्थ ऑपरेशन के साथ घिरा जाली === | ||
Line 56: | Line 59: | ||
===अंतर्ज्ञानवादी तर्क === के स्वयंसिद्धों का उपयोग करके लक्षण वर्णन | ===अंतर्ज्ञानवादी तर्क === के स्वयंसिद्धों का उपयोग करके लक्षण वर्णन | ||
हेटिंग बीजगणित का यह लक्षण वर्णन अंतर्ज्ञानवादी प्रस्तावपरक कलन और हेटिंग बीजगणित के बीच के संबंध से संबंधित मूलभूत तथ्यों का प्रमाण तत्काल बनाता है। (इन तथ्यों के लिए, अनुभाग देखें | |||
हेटिंग बीजगणित का यह लक्षण वर्णन अंतर्ज्ञानवादी प्रस्तावपरक कलन और हेटिंग बीजगणित के बीच के संबंध से संबंधित मूलभूत तथ्यों का प्रमाण तत्काल बनाता है। (इन तथ्यों के लिए, अनुभाग देखें या प्रामाणिक पहचान और या सार्वभौमिक निर्माण।) तत्व के बारे में सोचना चाहिए <math>\top</math> अर्थ के रूप में, सहज रूप से, सिद्ध रूप से सत्य। अंतर्ज्ञानवादी तर्कया अक्षीयकरण पर सिद्धांतों के साथ तुलना करें)। | |||
सेट ए को तीन बाइनरी ऑपरेशंस →, ∧ और ∨, और दो विशिष्ट तत्वों के साथ दिया गया है <math>\bot</math> और <math>\top</math>, तो ए इन परिचालनों के लिए हेटिंग बीजगणित है (और संबंध ≤ शर्त द्वारा परिभाषित किया गया है <math>a \le b</math> जब ए → बी = <math>\top</math>) यदि और केवल यदि निम्नलिखित शर्तें ए के किसी भी तत्व x, y और z के लिए हैं: | सेट ए को तीन बाइनरी ऑपरेशंस →, ∧ और ∨, और दो विशिष्ट तत्वों के साथ दिया गया है <math>\bot</math> और <math>\top</math>, तो ए इन परिचालनों के लिए हेटिंग बीजगणित है (और संबंध ≤ शर्त द्वारा परिभाषित किया गया है <math>a \le b</math> जब ए → बी = <math>\top</math>) यदि और केवल यदि निम्नलिखित शर्तें ए के किसी भी तत्व x, y और z के लिए हैं: | ||
Line 78: | Line 82: | ||
== उदाहरण == | == उदाहरण == | ||
[[File:Rieger-Nishimura.svg|thumb|right|280px|एक जनरेटर (उर्फ रिगर-निशिमुरा जाली) पर [[मुक्त वस्तु]] हेयटिंग बीजगणित]] | [[File:Rieger-Nishimura.svg|thumb|right|280px|एक जनरेटर (उर्फ रिगर-निशिमुरा जाली) पर [[मुक्त वस्तु]] हेयटिंग बीजगणित]]<li> प्रत्येक बूलियन बीजगणित (संरचना) हेटिंग बीजगणित है, जिसमें p→q ¬p∨q द्वारा दिया गया है।</li> | ||
<li> प्रत्येक बूलियन बीजगणित (संरचना) हेटिंग बीजगणित है, जिसमें p→q ¬p∨q द्वारा दिया गया है।</li> | |||
<li> प्रत्येक कुल क्रम जिसमें कम से कम तत्व 0 और सबसे बड़ा तत्व 1 है, हेटिंग बीजगणित है (यदि जाली के रूप में देखा जाता है)। इस स्थिति में p→q 1 के बराबर होता है जब p≤q, और q अन्यथा।</li> | <li> प्रत्येक कुल क्रम जिसमें कम से कम तत्व 0 और सबसे बड़ा तत्व 1 है, हेटिंग बीजगणित है (यदि जाली के रूप में देखा जाता है)। इस स्थिति में p→q 1 के बराबर होता है जब p≤q, और q अन्यथा।</li> | ||
<li> सबसे सरल हेटिंग बीजगणित जो पहले से ही बूलियन बीजगणित नहीं है, पूरी तरह से आदेशित सेट है {0, {{sfrac|1|2}}, 1} (जाली के रूप में देखा जाता है), संचालन प्रदान करते हुए: | <li> सबसे सरल हेटिंग बीजगणित जो पहले से ही बूलियन बीजगणित नहीं है, पूरी तरह से आदेशित सेट है {0, {{sfrac|1|2}}, 1} (जाली के रूप में देखा जाता है), संचालन प्रदान करते हुए: | ||
Line 185: | Line 188: | ||
<li> प्रत्येक [[टोपोलॉजी]] अपने खुले सेट जाली के रूप में पूर्ण हेटिंग बीजगणित प्रदान करती है। इस स्थितियों में, तत्व A → B, A के मिलन का आंतरिक (टोपोलॉजी) है | <li> प्रत्येक [[टोपोलॉजी]] अपने खुले सेट जाली के रूप में पूर्ण हेटिंग बीजगणित प्रदान करती है। इस स्थितियों में, तत्व A → B, ''A<sup>c</sup>'' के मिलन का आंतरिक (टोपोलॉजी) है और बी, जहां A<sup>c</sup> खुले सेट A के पूरक (सेट सिद्धांत) को दर्शाता है। सभी पूर्ण हेटिंग बीजगणित इस रूप के नहीं होते हैं। इन मुद्दों का अध्ययन व्यर्थ टोपोलॉजी में किया जाता है, जहां पूर्ण हेटिंग बीजगणित को 'फ्रेम' या 'लोकेल' भी कहा जाता है। | ||
<li> प्रत्येक [[आंतरिक बीजगणित]] खुले तत्वों की जाली के रूप में हेटिंग बीजगणित प्रदान करता है। हर | <li> प्रत्येक [[आंतरिक बीजगणित]] खुले तत्वों की जाली के रूप में हेटिंग बीजगणित प्रदान करता है। हर हेटिंग बीजगणित इस रूप का है क्योंकि हेटिंग बीजगणित को बूलियन बीजगणित में बाध्य वितरण जाली के रूप में अपने मुक्त बूलियन विस्तार को लेकर पूरा किया जा सकता है और फिर इसे इस बूलियन बीजगणित में [[सामान्यीकृत टोपोलॉजी]] के रूप में माना जा सकता है। | ||
<li> प्रस्तावित अंतर्ज्ञानवादी तर्क का लिंडेनबाम बीजगणित हेटिंग बीजगणित है।</li> | <li> प्रस्तावित अंतर्ज्ञानवादी तर्क का लिंडेनबाम बीजगणित हेटिंग बीजगणित है।</li> | ||
<li> प्राथमिक टोपोस के उप-ऑब्जेक्ट क्लासिफायर Ω के [[वैश्विक तत्व]] हेटिंग बीजगणित बनाते हैं; यह टोपोस द्वारा प्रेरित अंतर्ज्ञानवादी उच्च-क्रम तर्क के [[सत्य मूल्य]] | <li> प्राथमिक टोपोस के उप-ऑब्जेक्ट क्लासिफायर Ω के [[वैश्विक तत्व]] हेटिंग बीजगणित बनाते हैं; यह टोपोस द्वारा प्रेरित अंतर्ज्ञानवादी उच्च-क्रम तर्क के [[सत्य मूल्य|सत्य]] मूल्यों का हेयटिंग बीजगणित है। अधिक सामान्यतः, किसी भी वस्तु एक्स के उपवस्तुओं का सेट टोपोस में हेटिंग बीजगणित बनाता है।</li> | ||
<li> लुकासिविक्ज़-मोइसिल | <li> लुकासिविक्ज़-मोइसिल बीजगणित (LM<sub>''n''</sub>) भी किसी भी n के लिए बीजगणित कर रहे हैं<ref>{{Cite journal | doi = 10.1007/s10516-005-4145-6| title = N-Valued Logics and Łukasiewicz–Moisil Algebras| journal = Axiomathes| volume = 16| pages = 123–136| year = 2006| last1 = Georgescu | first1 = G. | issue = 1–2| s2cid = 121264473}}, Theorem 3.6</ref> (किन्तु वे n ≥ 5 के लिए MV-बीजगणित नहीं हैं<ref>Iorgulescu, A.: Connections between MV<sub>''n''</sub>-algebras and ''n''-valued Łukasiewicz–Moisil algebras—I. Discrete Math. 181, 155–177 (1998) {{doi|10.1016/S0012-365X(97)00052-6}}</ref>). | ||
== गु</ul>ण == | |||
=== सामान्य गुण === | === सामान्य गुण === | ||
आदेश <math>\le</math> हेटिंग बीजगणित एच पर ऑपरेशन से पुनर्प्राप्त किया जा सकता है → निम्नानुसार: एच के किसी भी तत्व ए, बी के लिए, <math>a \le b</math> यदि और केवल यदि ए → बी = 1। | आदेश <math>\le</math> हेटिंग बीजगणित एच पर ऑपरेशन से पुनर्प्राप्त किया जा सकता है → निम्नानुसार: एच के किसी भी तत्व ए, बी के लिए, <math>a \le b</math> यदि और केवल यदि ए → बी = 1। | ||
कुछ [[बहु-मूल्यवान तर्क]] | कुछ [[बहु-मूल्यवान तर्क|बहु-मूल्यवान]] तर्कों के विपरीत, हेटिंग बीजगणित बूलियन बीजगणित के साथ निम्नलिखित संपत्ति साझा करते हैं: यदि निषेध का [[निश्चित बिंदु (गणित)]] है (अर्थात ¬a = कुछ a के लिए), तो हेटिंग बीजगणित तुच्छ एक-तत्व हेटिंग है बीजगणित। | ||
===साध्य पहचान === | ===साध्य पहचान === | ||
एक सूत्र दिया <math>F(A_1, A_2,\ldots, A_n)</math> | एक सूत्र दिया <math>F(A_1, A_2,\ldots, A_n)</math> प्रस्तावक गणना (चरों के अतिरिक्त, संयोजकों का उपयोग करके <math>\land, \lor, \lnot, \to</math>, और स्थिरांक 0 और 1), यह तथ्य है, हेटिंग बीजगणित के किसी भी अध्ययन में जल्दी सिद्ध हुआ, कि निम्नलिखित दो स्थितियाँ समतुल्य हैं: | ||
# फॉर्मूला एफ | # फॉर्मूला एफ अंतर्ज्ञानवादी प्रस्तावक गणना में अधिक हद तक सही है। | ||
# पहचान <math>F(a_1, a_2,\ldots, a_n) = 1</math> किसी भी | # पहचान <math>F(a_1, a_2,\ldots, a_n) = 1</math> किसी भी हेटिंग बीजगणित H और किसी भी तत्व के लिए सत्य है <math>a_1, a_2,\ldots, a_n \in H</math>. | ||
मेटानिहितार्थ {{nowrap|1 ⇒ 2}} अत्यंत उपयोगी है और हेयटिंग बीजगणित में सर्वसमिका सिद्ध करने का प्रमुख व्यावहारिक विधि है। व्यवहार में, ऐसे प्रमाणों में अधिकांशतः [[कटौती प्रमेय]] का उपयोग किया जाता है। | |||
चूंकि हेटिंग बीजगणित एच में किसी भी ए और बी के लिए हमारे पास है <math>a \le b</math> यदि और केवल यदि a→b = 1, यह इस प्रकार है {{nowrap|1 ⇒ 2}} कि जब भी कोई सूत्र F→G सिद्ध रूप से सत्य होता है, हमारे पास होता है <math>F(a_1, a_2,\ldots, a_n) \le G(a_1, a_2,\ldots, a_n)</math> किसी भी | चूंकि हेटिंग बीजगणित एच में किसी भी ए और बी के लिए हमारे पास है <math>a \le b</math> यदि और केवल यदि a→b = 1, यह इस प्रकार है {{nowrap|1 ⇒ 2}} कि जब भी कोई सूत्र F→G सिद्ध रूप से सत्य होता है, हमारे पास होता है <math>F(a_1, a_2,\ldots, a_n) \le G(a_1, a_2,\ldots, a_n)</math> किसी भी हेटिंग बीजगणित एच, और किसी भी तत्व के लिए <math>a_1, a_2,\ldots, a_n \in H</math>. (कटौती प्रमेय से यह पता चलता है कि F→G साध्य है (बिना शर्त के) यदि और केवल यदि G, F से साध्य है, अर्थात, यदि G, F का साध्य परिणाम है।) विअक्षीयकरणशेष रूप से, यदि F और G सिद्ध रूप से समतुल्य हैं, तब <math>F(a_1, a_2,\ldots, a_n) = G(a_1, a_2,\ldots, a_n)</math>, क्योंकि ≤ आदेश संबंध है। | ||
1 ⇒ 2 को सबूत की प्रणाली के तार्किक स्वयंसिद्धों की जांच करके और यह सत्यापित करके सिद्ध किया जा सकता है कि किसी भी हेटिंग बीजगणित में उनका मान 1 है, और फिर यह सत्यापित करना कि हेटिंग बीजगणित में मूल्य 1 के साथ भावों के अनुमान के नियमों का प्रयोग होता है मूल्य 1 के साथ अभिव्यक्तियाँ। उदाहरण के लिए, आइए हम अनुमान के एकमात्र नियम के रूप में मॉडस पोनेन्स वाले सबूत की प्रणाली का चयन करें, और जिनके सिद्धांत हिल्बर्ट-शैली वाले हैं जो अंतर्ज्ञानवादी तर्क | 1 ⇒ 2 को सबूत की प्रणाली के तार्किक स्वयंसिद्धों की जांच करके और यह सत्यापित करके सिद्ध किया जा सकता है कि किसी भी हेटिंग बीजगणित में उनका मान 1 है, और फिर यह सत्यापित करना कि हेटिंग बीजगणित में मूल्य 1 के साथ भावों के अनुमान के नियमों का प्रयोग होता है मूल्य 1 के साथ अभिव्यक्तियाँ। उदाहरण के लिए, आइए हम अनुमान के एकमात्र नियम के रूप में मॉडस पोनेन्स वाले सबूत की प्रणाली का चयन करें, और जिनके सिद्धांत हिल्बर्ट-शैली वाले हैं जो अंतर्ज्ञानवादी तर्क या अक्षीयकरण में दिए गए हैं। तत्पश्चात् सत्यापित किए जाने वाले तथ्य ऊपर दिए गए हेयटिंग बीजगणित की अभिगृहीत-जैसी परिभाषा से तुरंत अनुसरण करते हैं। | ||
1 ⇒ 2 यह भी सिद्ध करने के लिए विधि प्रदान करता है कि मौलिक तर्क में [[टॉटोलॉजी (तर्क)]] के अतिरिक्त कुछ तर्कवाक्य सूत्र, अंतर्ज्ञानवादी तर्कवाक्य तर्क में सिद्ध नहीं किए जा सकते हैं। किसी सूत्र को सिद्ध करने के लिए <math>F(A_1, A_2,\ldots, A_n)</math> साध्य नहीं है, यह हेटिंग बीजगणित एच और तत्वों को प्रदर्शित करने के लिए पर्याप्त है <math>a_1, a_2,\ldots, a_n \in H</math> ऐसा है कि <math>F(a_1, a_2,\ldots, a_n) \ne 1</math>. | 1 ⇒ 2 यह भी सिद्ध करने के लिए विधि प्रदान करता है कि मौलिक तर्क में [[टॉटोलॉजी (तर्क)]] के अतिरिक्त कुछ तर्कवाक्य सूत्र, अंतर्ज्ञानवादी तर्कवाक्य तर्क में सिद्ध नहीं किए जा सकते हैं। किसी सूत्र को सिद्ध करने के लिए <math>F(A_1, A_2,\ldots, A_n)</math> साध्य नहीं है, यह हेटिंग बीजगणित एच और तत्वों को प्रदर्शित करने के लिए पर्याप्त है <math>a_1, a_2,\ldots, a_n \in H</math> ऐसा है कि <math>F(a_1, a_2,\ldots, a_n) \ne 1</math>. | ||
Line 211: | Line 214: | ||
यदि कोई तर्क के उल्लेख से बचना चाहता है, तो व्यवहार में यह आवश्यक हो जाता है कि हेयटिंग बीजगणित के लिए वैध कटौती प्रमेय का संस्करण लेम्मा के रूप में सिद्ध हो: हेटिंग बीजगणित एच के किसी भी तत्व ए, बी और सी के लिए, हमारे पास है <math>(a \land b) \to c = a \to (b \to c)</math>. | यदि कोई तर्क के उल्लेख से बचना चाहता है, तो व्यवहार में यह आवश्यक हो जाता है कि हेयटिंग बीजगणित के लिए वैध कटौती प्रमेय का संस्करण लेम्मा के रूप में सिद्ध हो: हेटिंग बीजगणित एच के किसी भी तत्व ए, बी और सी के लिए, हमारे पास है <math>(a \land b) \to c = a \to (b \to c)</math>. | ||
मेटानिहितार्थ 2 ⇒ 1 के बारे में अधिक जानकारी के लिए, नीचे या सार्वभौमिक निर्माण अनुभाग देखें। | |||
=== वितरणशीलता === | === वितरणशीलता === | ||
Line 226: | Line 229: | ||
=== नियमित और पूरक तत्व === | === नियमित और पूरक तत्व === | ||
एक | एक हेटिंग बीजगणित H के तत्व x को 'नियमित' कहा जाता है यदि निम्न समतुल्य शर्तों में से कोई भी हो: | ||
#x = ¬¬x। | #x = ¬¬x। | ||
#x = ¬y H में कुछ y के लिए। | #x = ¬y H में कुछ y के लिए। | ||
इन स्थितियों की समतुल्यता को केवल पहचान ¬¬¬x = ¬x के रूप में दोहराया जा सकता है, जो H में सभी x के लिए मान्य है। | इन स्थितियों की समतुल्यता को केवल पहचान ¬¬¬x = ¬x के रूप में दोहराया जा सकता है, जो H में सभी x के लिए मान्य है। | ||
यदि x∧y = 0 और x∨y = 1 है तो हेटिंग बीजगणित H के तत्व x और y दूसरे के 'पूरक' कहलाते हैं। यदि यह उपस्थित है, तो ऐसा कोई भी y अद्वितीय है और वास्तव में ¬x के बराबर होना चाहिए। हम तत्व x को 'पूरक' कहते हैं यदि यह पूरक को स्वीकार करता है। यह सच है कि यदि x पूरक है, तो ¬x भी है, और फिर x और ¬x दूसरे के पूरक हैं। चूँकि, भ्रामक रूप से, तथापि x पूरक न हो, फिर भी ¬x में पूरक (x के बराबर नहीं) हो सकता है। किसी भी | यदि x∧y = 0 और x∨y = 1 है तो हेटिंग बीजगणित H के तत्व x और y दूसरे के 'पूरक' कहलाते हैं। यदि यह उपस्थित है, तो ऐसा कोई भी y अद्वितीय है और वास्तव में ¬x के बराबर होना चाहिए। हम तत्व x को 'पूरक' कहते हैं यदि यह पूरक को स्वीकार करता है। यह सच है कि यदि x पूरक है, तो ¬x भी है, और फिर x और ¬x दूसरे के पूरक हैं। चूँकि, भ्रामक रूप से, तथापि x पूरक न हो, फिर भी ¬x में पूरक (x के बराबर नहीं) हो सकता है। किसी भी हेटिंग बीजगणित में, तत्व 0 और 1 दूसरे के पूरक हैं। उदाहरण के लिए, यह संभव है कि ¬x 0 से भिन्न प्रत्येक x के लिए 0 है, और 1 यदि x = 0 है, तो इस स्थितियों में 0 और 1 केवल नियमित तत्व हैं। | ||
हेटिंग बीजगणित का कोई भी पूरक तत्व नियमित है, चूंकि इसका विलोम सामान्य रूप से सत्य नहीं है। विशेष रूप से, 0 और 1 सदैव नियमित होते हैं। | हेटिंग बीजगणित का कोई भी पूरक तत्व नियमित है, चूंकि इसका विलोम सामान्य रूप से सत्य नहीं है। विशेष रूप से, 0 और 1 सदैव नियमित होते हैं। | ||
किसी भी | किसी भी हेटिंग बीजगणित H के लिए, निम्नलिखित स्थितियाँ समतुल्य हैं: | ||
# एच बूलियन बीजगणित (संरचना) है; | # एच बूलियन बीजगणित (संरचना) है; | ||
# एच में प्रत्येक एक्स नियमित है;<ref>Rutherford (1965), Th.26.2 p.78.</ref> | # एच में प्रत्येक एक्स नियमित है;<ref>Rutherford (1965), Th.26.2 p.78.</ref> | ||
# H में प्रत्येक x पूरक है।<ref>Rutherford (1965), Th.26.1 p.78.</ref> | # H में प्रत्येक x पूरक है।<ref>Rutherford (1965), Th.26.1 p.78.</ref> | ||
इस स्थितियों में, तत्व {{nowrap|1=''a''→''b''}} के बराबर है {{nowrap|1=¬''a'' ∨ ''b''.}} | इस स्थितियों में, तत्व {{nowrap|1=''a''→''b''}} के बराबर है {{nowrap|1=¬''a'' ∨ ''b''.}} | ||
किसी भी | |||
<li> | |||
<li>किसी भी हेटिंग बीजगणित H के नियमित (क्रमशः पूरक) तत्व बूलियन बीजगणित H का निर्माण करते हैं<sub>reg</sub> (क्रमशः H<sub>comp</sub>), जिसमें संचालन ∧, ¬ और →, साथ ही स्थिरांक 0 और 1, एच के साथ मेल खाते हैं। h के स्थितियों में<sub>comp</sub>संक्रिया ∨ भी वही है, इसलिए H<sub>comp</sub> एच का उपबीजगणित है। सामान्यतः, एच<sub>reg</sub> एच का उपबीजगणित नहीं होगा, क्योंकि इसका ज्वाइन ऑपरेशन ∨ है<sub>reg</sub> ∨ से भिन्न हो सकता है। के लिए {{nowrap|1=''x'', ''y'' ∈ ''H''<sub>reg</sub>,}} अपने पास {{nowrap|1=''x'' ∨<sub>reg</sub> ''y'' = ¬(¬''x'' ∧ ¬''y'').}} ∨ के क्रम में आवश्यक और पर्याप्त शर्तों के लिए नीचे देखें<sub>reg</sub> ∨ के साथ मेल खाना। | |||
=== हेटिंग बीजगणित में [[डी मॉर्गन कानून|डी मॉर्गन नियम]] === | === हेटिंग बीजगणित में [[डी मॉर्गन कानून|डी मॉर्गन नियम]] === | ||
Line 247: | Line 253: | ||
चूंकि, अन्य डी मॉर्गन नियम सदैव मान्य नहीं होता है। के अतिरिक्त हमारे पास कमजोर डी मॉर्गन नियम है: | चूंकि, अन्य डी मॉर्गन नियम सदैव मान्य नहीं होता है। के अतिरिक्त हमारे पास कमजोर डी मॉर्गन नियम है: | ||
:<math>\forall x,y \in H: \qquad \lnot(x \wedge y)= \lnot \lnot (\lnot x \vee \lnot y).</math> | :<math>\forall x,y \in H: \qquad \lnot(x \wedge y)= \lnot \lnot (\lnot x \vee \lnot y).</math> | ||
निम्नलिखित बयान सभी | निम्नलिखित बयान सभी हेटिंग बीजगणित एच के बराबर हैं: | ||
#एच दोनों डी मॉर्गन नियमों को संतुष्ट करता है, | #एच दोनों डी मॉर्गन नियमों को संतुष्ट करता है, | ||
#<math>\lnot(x \wedge y)=\lnot x \vee \lnot y \mbox{ for all } x, y \in H,</math> | #<math>\lnot(x \wedge y)=\lnot x \vee \lnot y \mbox{ for all } x, y \in H,</math> | ||
Line 255: | Line 261: | ||
#<math>\lnot(\lnot x \wedge \lnot y) = x \vee y \mbox{ for all regular } x, y \in H,</math> | #<math>\lnot(\lnot x \wedge \lnot y) = x \vee y \mbox{ for all regular } x, y \in H,</math> | ||
#<math>\lnot x \vee \lnot\lnot x = 1 \mbox{ for all } x \in H.</math> | #<math>\lnot x \vee \lnot\lnot x = 1 \mbox{ for all } x \in H.</math> | ||
शर्त 2 अन्य डी मॉर्गन नियम है। शर्त 6 कहती है कि ज्वाइन ऑपरेशन ∨<sub>reg</sub> बूलियन बीजगणित एच पर<sub>reg</sub> एच के नियमित तत्वों की संख्या एच के ऑपरेशन ∨ के साथ मेल खाती है। शर्त 7 बताती है कि प्रत्येक नियमित तत्व पूरक है, अर्थात, | शर्त 2 अन्य डी मॉर्गन नियम है। शर्त 6 कहती है कि ज्वाइन ऑपरेशन ∨<sub>reg</sub> बूलियन बीजगणित एच पर<sub>reg</sub> एच के नियमित तत्वों की संख्या एच के ऑपरेशन ∨ के साथ मेल खाती है। शर्त 7 बताती है कि प्रत्येक नियमित तत्व पूरक है, अर्थात, ''H''<sub>reg</sub> = ''H''<sub>comp</sub>. | ||
हम समानता सिद्ध करते हैं। स्पष्ट रूप से | हम समानता सिद्ध करते हैं। स्पष्ट रूप से मेटानिहितार्थ {{nowrap|1 ⇒ 2,}} {{nowrap|2 ⇒ 3}} और {{nowrap|4 ⇒ 5}} तुच्छ हैं। आगे, {{nowrap|3 ⇔ 4}} और {{nowrap|5 ⇔ 6}} केवल पहले डी मॉर्गन नियम और नियमित तत्वों की परिभाषा से परिणाम। हम वह दिखाते हैं {{nowrap|6 ⇒ 7}} 6 में x और y के स्थान पर ¬x और ¬¬x लेकर और सर्वसमिका का उपयोग करके {{nowrap|''a'' ∧ ¬''a'' {{=}} 0.}} नोटिस जो {{nowrap|2 ⇒ 1}} पहले डी मॉर्गन नियम से अनुसरण करता है, और {{nowrap|7 ⇒ 6}} इस तथ्य के परिणाम हैं कि उपबीजगणित H पर जॉइन ऑपरेशन ∨<sub>comp</sub> केवल ∨ से H तक का प्रतिबंध है<sub>comp</sub>, हमने 6 और 7 की शर्तों के बारे में बताए गए लक्षणों को ध्यान में रखते हुए मेटानिहितार्थ {{nowrap|5 ⇒ 2}} 5 में x और y के स्थान पर ¬x और ¬y लेने वाले कमजोर डी मॉर्गन नियम का तुच्छ परिणाम है। | ||
उपरोक्त गुणों को संतुष्ट करने वाले हेटिंग बीजगणित [[मध्यवर्ती तर्क]] से उसी तरह संबंधित हैं जैसे हेटिंग बीजगणित सामान्य रूप से अंतर्ज्ञानवादी तर्क से संबंधित हैं। | उपरोक्त गुणों को संतुष्ट करने वाले हेटिंग बीजगणित [[मध्यवर्ती तर्क]] से उसी तरह संबंधित हैं जैसे हेटिंग बीजगणित सामान्य रूप से अंतर्ज्ञानवादी तर्क से संबंधित हैं। | ||
== | == हेटिंग बीजगणित रूपवाद == | ||
=== परिभाषा === | === परिभाषा === | ||
दो | दो हेटिंग बीजगणित दिए गए हैं H<sub>1</sub> और वह<sub>2</sub> और मानचित्रण {{nowrap|1=''f'' : ''H''<sub>1</sub> → ''H''<sub>2</sub>,}} हम कहते हैं कि ƒ हेटिंग बीजगणित का '[[आकारिता]]' है, यदि एच में किसी भी तत्व x और y के लिए<sub>1</sub>, अपने पास: | ||
#<math>f(0) = 0,</math> | #<math>f(0) = 0,</math> | ||
#<math>f(x \land y) = f(x) \land f(y),</math> | #<math>f(x \land y) = f(x) \land f(y),</math> | ||
Line 271: | Line 277: | ||
यह पिछली तीन स्थितियों (2, 3, या 4) में से किसी से भी निकलता है कि f वर्धमान फलन है, अर्थात {{nowrap|1=''f''(''x'') ≤ ''f''(''y'')}} जब कभी भी {{nowrap|1=''x'' ≤ ''y''}}. | यह पिछली तीन स्थितियों (2, 3, या 4) में से किसी से भी निकलता है कि f वर्धमान फलन है, अर्थात {{nowrap|1=''f''(''x'') ≤ ''f''(''y'')}} जब कभी भी {{nowrap|1=''x'' ≤ ''y''}}. | ||
मान लीजिए एच<sub>1</sub> और वह<sub>2</sub> संचालन के साथ संरचनाएं हैं →, ∧, ∨ (और संभवतः ¬) और स्थिरांक 0 और 1, और एफ एच से प्रक्षेपण मानचित्रण है<sub>1</sub> एच के लिए<sub>2</sub> उपरोक्त 1 से 4 गुणों के साथ। फिर यदि | मान लीजिए एच<sub>1</sub> और वह<sub>2</sub> संचालन के साथ संरचनाएं हैं →, ∧, ∨ (और संभवतः ¬) और स्थिरांक 0 और 1, और एफ एच से प्रक्षेपण मानचित्रण है<sub>1</sub> एच के लिए<sub>2</sub> उपरोक्त 1 से 4 गुणों के साथ। फिर यदि H<sub>1</sub> हेयटिंग बीजगणित है, इसलिए एच भी है<sub>2</sub>. हेयटिंग बीजगणित के लक्षण वर्णन से यह ऑपरेशन के साथ बंधे हुए जाल (आंशिक रूप से आदेशित सेट के अतिरिक्त बीजगणितीय संरचनाओं के रूप में माना जाता है) के रूप में होता है → कुछ पहचानों को संतुष्ट करता है। | ||
=== गुण === | === गुण === | ||
पहचान मानचित्र {{nowrap|1=''f''(''x'') = ''x''}} किसी भी | पहचान मानचित्र {{nowrap|1=''f''(''x'') = ''x''}} किसी भी हेटिंग बीजगणित से अपने आप में रूपवाद, और समग्र है {{nowrap|1=''g'' ∘ ''f''}} किन्हीं दो आकारिकी f और g में से आकारिकी है। इसलिए हेटिंग बीजगणित श्रेणी (गणित) बनाते हैं। | ||
=== उदाहरण === | === उदाहरण === | ||
एक | एक हेटिंग बीजगणित एच और किसी भी उपबीजगणित एच को देखते हुए<sub>1</sub>, समावेशन मानचित्रण {{nowrap|1=''i'' : ''H''<sub>1</sub> → ''H''}} रूपवाद है। | ||
किसी भी | किसी भी हेटिंग बीजगणित H के लिए, map {{nowrap|1=''x'' ↦ ¬¬''x''}} अपने नियमित तत्वों एच के बूलियन बीजगणित पर एच से आकारिकी को परिभाषित करता है<sub>reg</sub>. यह सामान्य रूप से एच से अपने आप में रूपवाद नहीं है, क्योंकि एच के सम्मिलित होने के संचालन के बाद से<sub>reg</sub> h से भिन्न हो सकता है। | ||
== भागफल == | == भागफल == | ||
Line 287: | Line 293: | ||
#<math> \mbox{If } x \in F, \ y \in H, \ \mbox{and } x \le y \mbox{ then } y \in F.</math> | #<math> \mbox{If } x \in F, \ y \in H, \ \mbox{and } x \le y \mbox{ then } y \in F.</math> | ||
एच पर फिल्टर के किसी भी सेट का प्रतिच्छेदन फिर से फिल्टर है। इसलिए, एच के किसी भी उपसमुच्चय एस को दिए जाने पर सबसे छोटा फिल्टर होता है जिसमें एस होता है। हम इसे एस द्वारा 'उत्पन्न' फिल्टर कहते हैं। यदि एस खाली है, {{nowrap|1=''F'' = {1}.}} अन्यथा, एफ एच में एक्स के सेट के बराबर है जैसे कि उपस्थित है {{nowrap|1=''y''<sub>1</sub>, ''y''<sub>2</sub>, ..., ''y''<sub>''n''</sub> ∈ ''S''}} साथ {{nowrap|1=''y''<sub>1</sub> ∧ ''y''<sub>2</sub> ∧ ... ∧ ''y''<sub>''n''</sub> ≤ ''x''.}} | एच पर फिल्टर के किसी भी सेट का प्रतिच्छेदन फिर से फिल्टर है। इसलिए, एच के किसी भी उपसमुच्चय एस को दिए जाने पर सबसे छोटा फिल्टर होता है जिसमें एस होता है। हम इसे एस द्वारा 'उत्पन्न' फिल्टर कहते हैं। यदि एस खाली है, {{nowrap|1=''F'' = {1}.}} अन्यथा, एफ एच में एक्स के सेट के बराबर है जैसे कि उपस्थित है {{nowrap|1=''y''<sub>1</sub>, ''y''<sub>2</sub>, ..., ''y''<sub>''n''</sub> ∈ ''S''}} साथ {{nowrap|1=''y''<sub>1</sub> ∧ ''y''<sub>2</sub> ∧ ... ∧ ''y''<sub>''n''</sub> ≤ ''x''.}} | ||
यदि H हेटिंग बीजगणित है और F, H पर फ़िल्टर है, तो हम H पर संबंध ∼ को इस प्रकार परिभाषित करते हैं: हम लिखते हैं {{nowrap|1=''x'' ∼ ''y''}} जब कभी भी {{nowrap|1=''x'' → ''y''}} और {{nowrap|1=''y'' → ''x''}} दोनों F से संबंधित हैं। फिर ∼ [[तुल्यता संबंध]] है; हम लिखते हैं {{nowrap|1=''H''/''F''}} भागफल सेट के लिए। अद्वितीय | यदि H हेटिंग बीजगणित है और F, H पर फ़िल्टर है, तो हम H पर संबंध ∼ को इस प्रकार परिभाषित करते हैं: हम लिखते हैं {{nowrap|1=''x'' ∼ ''y''}} जब कभी भी {{nowrap|1=''x'' → ''y''}} और {{nowrap|1=''y'' → ''x''}} दोनों F से संबंधित हैं। फिर ∼ [[तुल्यता संबंध]] है; हम लिखते हैं {{nowrap|1=''H''/''F''}} भागफल सेट के लिए। अद्वितीय हेटिंग बीजगणित संरचना पर है {{nowrap|1=''H''/''F''}} जैसे कि विहित अनुमान {{nowrap|1=''p''<sub>''F''</sub> : ''H'' → ''H''/''F''}} हेटिंग बीजगणित रूपवाद बन जाता है। हम हेटिंग बीजगणित कहते हैं {{nowrap|1=''H''/''F''}} ''F'' द्वारा ''H'' का भागफल। | ||
चलो | चलो S हेटिंग बीजगणित ''H'' का उपसमुच्चय है और ''एफ'' को ''एस'' द्वारा उत्पन्न फिल्टर होने दें। फिर ''एच''/''एफ'' निम्नलिखित सार्वभौमिक संपत्ति को संतुष्ट करता है: | ||
: | : हेटिंग बीजगणित के किसी भी रूपवाद को देखते हुए {{nowrap|1=''f'' : ''H'' → ''H′''}} संतुष्टि देने वाला {{nowrap|1=''f''(''y'') = 1}} हरएक के लिए {{nowrap|1=''y'' ∈ ''S'',}} f कारक विहित अनुमान के माध्यम से विशिष्ट रूप से {{nowrap|1=''p''<sub>''F''</sub> : ''H'' → ''H''/''F''.}} अर्थात अनोखा रूपवाद है {{nowrap|1=''f′'' : ''H''/''F'' → ''H′''}} संतुष्टि देने वाला {{nowrap|1=''f′p''<sub>''F''</sub> = ''f''.}} आकृतिवाद f′ को f से प्रेरित कहा जाता है। | ||
होने देना {{nowrap|1=''f'' : ''H''<sub>1</sub> → ''H''<sub>2</sub>}} | होने देना {{nowrap|1=''f'' : ''H''<sub>1</sub> → ''H''<sub>2</sub>}} हेटिंग बीजगणित का रूपवाद हो। ''F'' का कर्नेल, ker ''f'' लिखा हुआ, समुच्चय है {{nowrap|1=''f''<sup>−1</sup>[{1}].}} यह एच पर फिल्टर है<sub>1</sub>. (देखभाल की जानी चाहिए क्योंकि यह परिभाषा, यदि बूलियन बीजगणित के आकारिकी पर प्रयुक्त होती है, तो दोहरी होती है, जिसे अंगूठियों के आकारिकी के रूप में देखे जाने वाले आकृतिवाद का कर्नेल कहा जाएगा।) पूर्वगामी द्वारा, f आकारिकी को प्रेरित करता है। {{nowrap|1=''f′'' : ''H''<sub>1</sub>/(ker ''f'') → ''H''<sub>2</sub>.}} यह का समरूपता है {{nowrap|1=''H''<sub>1</sub>/(ker ''f'')}} उपबीजगणित f[H<sub>1</sub>] H<sub>2</sub>. | ||
== सार्वभौमिक निर्माण == | == सार्वभौमिक निर्माण == | ||
=== अंतर्ज्ञानवादी तुल्यता तक n चरों में प्रस्तावपरक सूत्रों का हेटिंग बीजगणित === | === अंतर्ज्ञानवादी तुल्यता तक n चरों में प्रस्तावपरक सूत्रों का हेटिंग बीजगणित === | ||
मेटाइम्प्लिकेशन {{nowrap|2 ⇒ 1}} अनुभाग में | मेटाइम्प्लिकेशन {{nowrap|2 ⇒ 1}} अनुभाग में या प्रामाणिक सर्वसमिकाएँ यह दिखाकर सिद्ध की जाती हैं कि निम्नलिखित निर्माण का परिणाम अपने आप में हेयटिंग बीजगणित है: | ||
# चर | # चर A में प्रस्ताव के सूत्रों के सेट L पर विचार करें<sub>1</sub>, ए<sub>2</sub>,..., ए<sub>''n''</sub>. | ||
# F≼G को परिभाषित करके L को | # F≼G को परिभाषित करके L को पूर्व आदेश ≼ प्रदान करें यदि G, F का (अंतर्ज्ञानवादी) [[तार्किक परिणाम]] है, अर्थात, यदि G F से सिद्ध किया जा सकता है। यह तत्काल है कि ≼ पूर्व आदेश है। | ||
# पूर्ववर्ती आदेश F≼G द्वारा प्रेरित तुल्यता संबंध F∼G पर विचार करें। (इसे F∼G द्वारा परिभाषित किया गया है यदि और केवल यदि F≼G और G≼F। वास्तव में, ∼ (अंतर्ज्ञानवादी) तार्किक तुल्यता का संबंध है।) | # पूर्ववर्ती आदेश F≼G द्वारा प्रेरित तुल्यता संबंध F∼G पर विचार करें। (इसे F∼G द्वारा परिभाषित किया गया है यदि और केवल यदि F≼G और G≼F। वास्तव में, ∼ (अंतर्ज्ञानवादी) तार्किक तुल्यता का संबंध है।) | ||
#चलो एच<sub>0</sub> भागफल समुच्चय L/∼ हो। यह वांछित हेटिंग बीजगणित होगा। | #चलो एच<sub>0</sub> भागफल समुच्चय L/∼ हो। यह वांछित हेटिंग बीजगणित होगा। | ||
# हम सूत्र F के तुल्यता वर्ग के लिए [F] लिखते हैं। संचालन →, ∧, ∨ और ¬ को L पर स्पष्ट विधि से परिभाषित किया गया है। सत्यापित करें कि दिए गए सूत्र F और G, तुल्यता वर्ग [F→G], [ F∧G], [F∨G] और [¬F] केवल [F] और [G] पर निर्भर करते हैं। यह संक्रियाओं को परिभाषित करता है →, ∧, ∨ और ¬ भागफल समुच्चय H पर<sub>0</sub>=एल/∼. आगे 1 को सिद्ध करने योग्य सत्य कथनों के वर्ग के रूप में परिभाषित करें, और 0=[⊥] सेट करें। | # हम सूत्र F के तुल्यता वर्ग के लिए [F] लिखते हैं। संचालन →, ∧, ∨ और ¬ को L पर स्पष्ट विधि से परिभाषित किया गया है। सत्यापित करें कि दिए गए सूत्र F और G, तुल्यता वर्ग [F→G], [ F∧G], [F∨G] और [¬F] केवल [F] और [G] पर निर्भर करते हैं। यह संक्रियाओं को परिभाषित करता है →, ∧, ∨ और ¬ भागफल समुच्चय H पर<sub>0</sub>=एल/∼. आगे 1 को सिद्ध करने योग्य सत्य कथनों के वर्ग के रूप में परिभाषित करें, और 0=[⊥] सेट करें। | ||
#सत्यापित करें कि एच<sub>0</sub>, साथ में इन संक्रियाओं के साथ, | #सत्यापित करें कि एच<sub>0</sub>, साथ में इन संक्रियाओं के साथ, हेटिंग बीजगणित है। हम हेयटिंग बीजगणित की स्वयंसिद्ध परिभाषा का उपयोग करके ऐसा करते हैं। H<sub>0</sub> शर्तों को संतुष्ट करता है THEN-1 FALSE के माध्यम से क्योंकि दिए गए रूपों के सभी सूत्र अंतर्ज्ञानवादी तर्क के स्वयंसिद्ध हैं। मोडस-पोन्स इस तथ्य से अनुसरण करते हैं कि यदि कोई सूत्र ⊤→F प्रमाणित रूप से सत्य है, जहां ⊤ सिद्ध रूप से सत्य है, तो F सिद्ध रूप से सत्य है (अनुमान मोडस पोनेन्स के नियम के अनुप्रयोग द्वारा)। अंत में, EQUIV इस तथ्य से परिणाम प्राप्त करता है कि यदि F→G और G→F दोनों प्रमाणित रूप से सत्य हैं, तो F और G दूसरे से सिद्ध किए जा सकते हैं (अनुमान मोडस पोनेंस के नियम के अनुप्रयोग द्वारा), इसलिए [F]=[G] . | ||
सदैव की तरह हेटिंग बीजगणित की स्वयंसिद्ध परिभाषा के अनुसार, हम ≤ एच पर परिभाषित करते हैं<sub>0</sub> शर्त के अनुसार x≤y यदि और केवल यदि x→y=1. चूंकि, कटौती प्रमेय द्वारा, सूत्र F→G सिद्ध रूप से सत्य है यदि और केवल यदि G, F से सिद्ध किया जा सकता है, तो यह [F]≤[G] का अनुसरण करता है यदि और केवल यदि F≼G। दूसरे शब्दों में, ≤ एल/∼ पर | सदैव की तरह हेटिंग बीजगणित की स्वयंसिद्ध परिभाषा के अनुसार, हम ≤ एच पर परिभाषित करते हैं<sub>0</sub> शर्त के अनुसार x≤y यदि और केवल यदि x→y=1. चूंकि, कटौती प्रमेय द्वारा, सूत्र F→G सिद्ध रूप से सत्य है यदि और केवल यदि G, F से सिद्ध किया जा सकता है, तो यह [F]≤[G] का अनुसरण करता है यदि और केवल यदि F≼G। दूसरे शब्दों में, ≤ एल/∼ पर आदेश संबंध है जो एल पर पूर्व आदेश≼ द्वारा प्रेरित है। | ||
=== जेनरेटर === के इच्छानुसार सेट पर मुफ्त हेटिंग बीजगणित | === जेनरेटर === के इच्छानुसार सेट पर मुफ्त हेटिंग बीजगणित | ||
वास्तव में, पूर्ववर्ती निर्माण चर के किसी भी सेट के लिए किया जा सकता है {ए<sub>''i''</sub> : i∈I} (संभवतः अनंत)। इस तरह से | |||
<li> | |||
<li>वास्तव में, पूर्ववर्ती निर्माण चर के किसी भी सेट के लिए किया जा सकता है {ए<sub>''i''</sub> : i∈I} (संभवतः अनंत)। इस तरह से चर {A पर मुफ्त हेटिंग बीजगणित प्राप्त करता है<sub>''i''</sub>}, जिसे हम फिर से H से निरूपित करेंगे<sub>0</sub>. यह इस अर्थ में मुक्त है कि किसी भी हेटिंग बीजगणित H को उसके तत्वों के परिवार के साथ दिया गया है 〈a<sub>''i''</sub>: i∈I 〉, अद्वितीय आकारिकी f:H है<sub>0</sub>→ एच संतोषजनक एफ ([ए<sub>''i''</sub>])=ए<sub>''i''</sub>. एफ की विशिष्टता को देखना कठिनाई नहीं है, और इसके अस्तित्व का परिणाम अनिवार्य रूप से मेटानिहितार्थ से होता है {{nowrap|1 ⇒ 2}} ऊपर दिए गए खंड या प्रामाणिक पहचान, इसके परिणाम के रूप में कि जब भी F और G सिद्ध रूप से समतुल्य सूत्र हैं, F(〈a<sub>''i''</sub>〉) = जी (〈ए<sub>''i''</sub>〉) तत्वों के किसी भी परिवार के लिए 〈ए<sub>''i''</sub>>एच में। | |||
===हेटिंग बीजगणित सूत्रों का सिद्धांत T=== के संबंध में समतुल्य है | ===हेटिंग बीजगणित सूत्रों का सिद्धांत T=== के संबंध में समतुल्य है | ||
हर | <li> | ||
<li>चर {ए में सूत्रों टी के सेट को देखते हुए<sub>''i''</sub>}, अभिगृहीत के रूप में देखे जाने पर, वही निर्माण L पर परिभाषित संबंध F≼G के संबंध में किया जा सकता था, जिसका अर्थ है कि G, F और अभिगृहीतों के समुच्चय T का सिद्ध परिणाम है। आइए हम H द्वारा निरूपित करें<sub>''T''</sub> हेटिंग बीजगणित तो प्राप्त किया। तब H<sub>''T''</sub> H के समान सार्वभौमिक संपत्ति को संतुष्ट करता है<sub>0</sub> ऊपर, किन्तु हेटिंग बीजगणित एच और तत्वों के परिवारों के संबंध में 〈A<sub>''i''</sub>〉 उस संपत्ति को संतुष्ट करना जो J(〈a<sub>''i''</sub>〉)=1 किसी भी स्वयंसिद्ध J(〈A<sub>''i''</sub>〉) t में। (आइए ध्यान दें कि एच<sub>''T''</sub>, इसके तत्वों के परिवार के साथ लिया गया 〈[a]〉, स्वयं इस संपत्ति को संतुष्ट करता है।) रूपवाद का अस्तित्व और विशिष्टता उसी तरह सिद्ध होती है जैसे एच के लिए<sub>0</sub>, सिवाय इसके कि किसी को मेटानिहितार्थ को संशोधित करना होगा {{nowrap|1 ⇒ 2}} या साध्य पहचान में जिससे 1 टी से सिद्ध रूप से सत्य को पढ़े, और 2 किसी भी तत्व को पढ़े<sub>1</sub>, a<sub>2</sub>,..., a<sub>''n''</sub> एच में टी के सूत्रों को संतुष्ट करना। | |||
हेटिंग बीजगणित h<sub>''T''</sub> जिसे हमने अभी परिभाषित किया है, मुक्त हेटिंग बीजगणित H के भागफल के रूप में देखा जा सकता है<sub>0</sub> चरों के समान समुच्चय पर, H के सार्वत्रिक गुण को प्रयुक्त करके<sub>0</sub> एच के संबंध में<sub>''T''</sub>, और इसके तत्वों का परिवार 〈[ए<sub>''i''</sub>]〉. | |||
हर हेटिंग बीजगणित फॉर्म H के लिए आइसोमोर्फिक है<sub>''T''</sub>. इसे देखने के लिए, H को कोई भी हेटिंग बीजगणित होने दें, और 〈a<sub>''i''</sub>: i∈I〉 एच उत्पन्न करने वाले तत्वों का परिवार हो (उदाहरण के लिए, कोई विशेषण परिवार)। अब सूत्रों के सेट टी पर विचार करें जे (〈ए<sub>''i''</sub>〉) चर में 〈ए<sub>''i''</sub>: i∈I〉 ऐसा है कि J(〈a<sub>''i''</sub>〉)=1. तब हमें आकारिकी f:H प्राप्त होती है<sub>''T''</sub>→h h की सार्वभौमिक संपत्ति द्वारा<sub>''T''</sub>, जो स्पष्ट रूप से विशेषण है। यह दर्शाना कठिन नहीं है कि f एकैकी है। | |||
===लिंडेनबाम बीजगणित से तुलना=== | ===लिंडेनबाम बीजगणित से तुलना=== | ||
हमने अभी-अभी जो निर्माण दिए हैं वे बूलियन बीजगणित (संरचना) के संबंध में हेटिंग बीजगणित के संबंध में लिंडेनबाउम बीजगणित के संबंध में पूरी तरह से समान भूमिका निभाते हैं। वास्तव में, लिंडनबाउम बीजगणित बी<sub>''T''</sub> चर में {ए<sub>''i''</sub>} अभिगृहीतों के संबंध में T केवल हमारा H है<sub>''T''∪''T''<sub>1</sub></उप>, जहां | हमने अभी-अभी जो निर्माण दिए हैं वे बूलियन बीजगणित (संरचना) के संबंध में हेटिंग बीजगणित के संबंध में लिंडेनबाउम बीजगणित के संबंध में पूरी तरह से समान भूमिका निभाते हैं। वास्तव में, लिंडनबाउम बीजगणित बी<sub>''T''</sub> चर में {ए<sub>''i''</sub>} अभिगृहीतों के संबंध में T केवल हमारा H है<sub>''T''∪''T''<sub>1</sub></उप>, जहां t<sub>1</sub> ¬¬F→F रूप के सभी सूत्रों का समुच्चय है, क्योंकि T के अतिरिक्त अभिगृहीत<sub>1</sub> केवल वे ही हैं जिन्हें जोड़ने की आवश्यकता है जिससे सभी मौलिक पुनरुक्ति को सिद्ध किया जा सके। | ||
== | ==अंतर्ज्ञानवादी तर्क के लिए प्रयुक्त हेयटिंग बीजगणित== | ||
यदि कोई हेटिंग बीजगणित की शर्तों के रूप में अंतर्ज्ञानवादी प्रस्तावपरक तर्क के स्वयंसिद्धों की व्याख्या करता है, तो वे सूत्र के चर के मूल्यों के किसी भी असाइनमेंट के अनुसार किसी भी हेटिंग बीजगणित में सबसे बड़े तत्व, 1 का मूल्यांकन करेंगे। उदाहरण के लिए, (P∧Q)→P छद्म-पूरक की परिभाषा के अनुसार, सबसे बड़ा तत्व x ऐसा है कि <math>P \land Q \land x \le P</math>. यह असमिका किसी भी x के लिए संतुष्ट है, इसलिए सबसे बड़ा x 1 है। | यदि कोई हेटिंग बीजगणित की शर्तों के रूप में अंतर्ज्ञानवादी प्रस्तावपरक तर्क के स्वयंसिद्धों की व्याख्या करता है, तो वे सूत्र के चर के मूल्यों के किसी भी असाइनमेंट के अनुसार किसी भी हेटिंग बीजगणित में सबसे बड़े तत्व, 1 का मूल्यांकन करेंगे। उदाहरण के लिए, (P∧Q)→P छद्म-पूरक की परिभाषा के अनुसार, सबसे बड़ा तत्व x ऐसा है कि <math>P \land Q \land x \le P</math>. यह असमिका किसी भी x के लिए संतुष्ट है, इसलिए सबसे बड़ा x 1 है। | ||
इसके अतिरिक्त, मॉडस पोनेन्स का नियम हमें फॉर्मूला क्यू को सूत्र पी और पी → क्यू से प्राप्त करने की अनुमति देता है। किन्तु किसी भी | इसके अतिरिक्त, मॉडस पोनेन्स का नियम हमें फॉर्मूला क्यू को सूत्र पी और पी → क्यू से प्राप्त करने की अनुमति देता है। किन्तु किसी भी हेटिंग बीजगणित में, यदि P का मान 1 है, और P→Q का मान 1 है, तो इसका कारण है कि <math>P \land 1 \le Q</math>, इसलिए <math>1 \land 1 \le Q</math>; यह केवल यह हो सकता है कि Q का मान 1 हो। | ||
इसका अर्थ यह है कि यदि सूत्र अंतर्ज्ञानवादी तर्क के नियमों से घटाया जा सकता है, जो मोडस पोनेन्स के नियम के माध्यम से अपने सिद्धांतों से प्राप्त किया जा रहा है, तो सूत्र के चर के मूल्यों के किसी भी | इसका अर्थ यह है कि यदि सूत्र अंतर्ज्ञानवादी तर्क के नियमों से घटाया जा सकता है, जो मोडस पोनेन्स के नियम के माध्यम से अपने सिद्धांतों से प्राप्त किया जा रहा है, तो सूत्र के चर के मूल्यों के किसी भी कार्यभार के अनुसार सभी हेटिंग बीजगणित में इसका मान सदैव 1 होगा। . चूंकि कोई हेटिंग बीजगणित का निर्माण कर सकता है जिसमें पियर्स के नियम का मान सदैव 1 नहीं होता है। 3-तत्व बीजगणित पर विचार करें {0,{{sfrac|1|2}},1} जैसा कि ऊपर दिया गया है। यदि हम आवंटित करते हैं {{sfrac|1|2}} पी और 0 से क्यू, तो पियर्स के नियम का मूल्य ((P→Q)→P)→P है {{sfrac|1|2}}. इससे यह निष्कर्ष निकलता है कि पियर्स के नियम को सहज रूप से व्युत्पन्न नहीं किया जा सकता है। [[प्रकार सिद्धांत]] में इसका क्या अर्थ है, इसके सामान्य संदर्भ के लिए करी-हावर्ड समरूपतावाद देखें। | ||
विलोम को भी सिद्ध किया जा सकता है: यदि किसी सूत्र का मान सदैव 1 होता है, तो यह अंतर्ज्ञानवादी तर्क के नियमों से घटाया जा सकता है, इसलिए अंतर्ज्ञानवादी रूप से मान्य सूत्र बिल्कुल वही होते हैं जिनका मान सदैव 1 होता है। यह धारणा के समान है मौलिक रूप से मान्य सूत्र वे सूत्र हैं जिनका सूत्र के चरों के लिए सत्य और असत्य के किसी भी संभावित | विलोम को भी सिद्ध किया जा सकता है: यदि किसी सूत्र का मान सदैव 1 होता है, तो यह अंतर्ज्ञानवादी तर्क के नियमों से घटाया जा सकता है, इसलिए अंतर्ज्ञानवादी रूप से मान्य सूत्र बिल्कुल वही होते हैं जिनका मान सदैव 1 होता है। यह धारणा के समान है मौलिक रूप से मान्य सूत्र वे सूत्र हैं जिनका सूत्र के चरों के लिए सत्य और असत्य के किसी भी संभावित कार्यभार के अनुसार [[दो-तत्व बूलियन बीजगणित]] में 1 का मान है - अर्थात, वे ऐसे सूत्र हैं जो सामान्य सत्य-तालिका अर्थों में पुनरुत्पादन हैं। हेटिंग बीजगणित, तार्किक दृष्टिकोण से, सत्य मूल्यों की सामान्य प्रणाली का सामान्यीकरण है, और इसका सबसे बड़ा तत्व 1 'सत्य' के अनुरूप है। सामान्य दो-मूल्यवान तर्क प्रणाली हेटिंग बीजगणित का विशेष मामला है, और सबसे छोटा गैर-तुच्छ है, जिसमें बीजगणित के केवल तत्व 1 (सत्य) और 0 (गलत) हैं। | ||
== निर्णय समस्याएं == | == निर्णय समस्याएं == | ||
1965 में शाऊल क्रिपके द्वारा प्रत्येक हेटिंग बीजगणित में दिए गए समीकरण की समस्या को निर्णायक होना दिखाया गया था।<ref name="Kripke63" />समस्या का स्पष्ट [[कम्प्यूटेशनल जटिलता सिद्धांत]] 1979 में [[रिचर्ड स्टेटमैन]] द्वारा स्थापित किया गया था, जिन्होंने दिखाया कि यह | 1965 में शाऊल क्रिपके द्वारा प्रत्येक हेटिंग बीजगणित में दिए गए समीकरण की समस्या को निर्णायक होना दिखाया गया था।<ref name="Kripke63" />समस्या का स्पष्ट [[कम्प्यूटेशनल जटिलता सिद्धांत]] 1979 में [[रिचर्ड स्टेटमैन]] द्वारा स्थापित किया गया था, जिन्होंने दिखाया कि यह पीस्पेस-पूर्ण था<ref>{{cite journal | last1 = Statman | first1 = R. | year = 1979 | title = Intuitionistic propositional logic is polynomial-space complete | journal = Theoretical Comput. Sci. | volume = 9 | pages = 67–72 | doi=10.1016/0304-3975(79)90006-9| hdl = 2027.42/23534 | hdl-access = free }}</ref> और इसलिए कम से कम [[बूलियन संतुष्टि समस्या]] जितनी कठिन ([[स्टीफन कुक]] द्वारा 1971 में coNP-पूर्ण दिखाया गया)<ref name="Cook71">{{Cite conference|last = Cook | first = S.A. | author-link = Stephen A. Cook | title = The complexity of theorem proving procedures | ||
| book-title = Proceedings, Third Annual ACM Symposium on the Theory of Computing, ACM, New York | year = 1971 | pages = 151–158 | doi = 10.1145/800157.805047| doi-access = free}}</ref> और अधिक कठिन होने का अनुमान लगाया। | | book-title = Proceedings, Third Annual ACM Symposium on the Theory of Computing, ACM, New York | year = 1971 | pages = 151–158 | doi = 10.1145/800157.805047| doi-access = free}}</ref> और अधिक कठिन होने का अनुमान लगाया। हेटिंग बीजगणित का प्राथमिक या प्रथम-क्रम सिद्धांत अनिर्णीत है।<ref>{{cite journal | last1 = Grzegorczyk | first1 = Andrzej | author-link = Andrzej Grzegorczyk | year = 1951 | title = Undecidability of some topological theories | url =https://www.impan.pl/shop/publication/transaction/download/product/93826?download.pdf | journal = Fundamenta Mathematicae | volume = 38 | pages = 137–52 | doi = 10.4064/fm-38-1-137-152 }}</ref> यह खुला रहता है कि क्या हेटिंग बीजगणित का सार्वभौमिक हॉर्न सिद्धांत, या [[शब्द समस्या (गणित)]], निर्णायक है।<ref>Peter T. Johnstone, ''Stone Spaces'', (1982) Cambridge University Press, Cambridge, {{ISBN|0-521-23893-5}}. ''(See paragraph 4.11)''</ref> À शब्द समस्या का प्रस्ताव यह ज्ञात है कि बूलियन बीजगणित के विपरीत हेटिंग बीजगणित स्थानीय रूप से सीमित नहीं हैं (कोई हेटिंग बीजगणित सीमित गैर-खाली सेट सीमित नहीं है), जो स्थानीय रूप से सीमित हैं और जिनकी शब्द समस्या निर्णायक है। यह अज्ञात है कि जनरेटर के स्थितियों को छोड़कर मुक्त पूर्ण हेटिंग बीजगणित उपस्थित है या नहीं, जहां जनरेटर पर मुफ्त हेटिंग बीजगणित नए शीर्ष से सटे हुए तुच्छ रूप से पूर्ण है। | ||
== सामयिक प्रतिनिधित्व और द्वैत सिद्धांत == | == सामयिक प्रतिनिधित्व और द्वैत सिद्धांत == | ||
हर | हर हेटिंग बीजगणित {{math|''H''}} परिबद्ध उपजालटी के लिए स्वाभाविक रूप से समरूपीहै {{math|''L''}} टोपोलॉजिकल स्पेस के खुले सेट {{math|''X''}}, जहां निहितार्थ <math>U\to V</math> का {{math|''L''}} के आंतरिक भाग द्वारा दिया गया है <math>(X\setminus U)\cup V</math>. | ||
ज्यादा ठीक, {{math|''X''}} बंधी हुई जाली के प्रमुख [[आदर्श (आदेश सिद्धांत)]] का [[वर्णक्रमीय स्थान]] है {{math|''H''}} और {{math|''L''}} के खुले और अर्ध-कॉम्पैक्ट उपसमुच्चय की जाली है {{math|''X''}}. | ज्यादा ठीक, {{math|''X''}} बंधी हुई जाली के प्रमुख [[आदर्श (आदेश सिद्धांत)]] का [[वर्णक्रमीय स्थान]] है {{math|''H''}} और {{math|''L''}} के खुले और अर्ध-कॉम्पैक्ट उपसमुच्चय की जाली है {{math|''X''}}. | ||
अधिक सामान्यतः, हेटिंग बीजगणित की श्रेणी | अधिक सामान्यतः, हेटिंग बीजगणित की श्रेणी | ||
हेटिंग स्पेस की श्रेणी के बराबर है।<ref>see section 8.3 in * {{cite book | last1=Dickmann | first1=Max | last2=Schwartz | first2= Niels | last3=Tressl | first3= Marcus | title=Spectral Spaces| doi=10.1017/9781316543870 | year=2019 | publisher=[[Cambridge University Press]] | series=New Mathematical Monographs | volume=35 | location=Cambridge | isbn=9781107146723 | s2cid=201542298 }} </ref> इस द्वैत को हेयटिंग बीजगणित के (गैर-पूर्ण) उपश्रेणी के लिए बाध्य वितरणात्मक लैटिस के मौलिक स्टोन द्वैत के प्रतिबंध के रूप में देखा जा सकता है। | |||
<li> | |||
<li>हेटिंग स्पेस की श्रेणी के बराबर है।<ref>see section 8.3 in * {{cite book | last1=Dickmann | first1=Max | last2=Schwartz | first2= Niels | last3=Tressl | first3= Marcus | title=Spectral Spaces| doi=10.1017/9781316543870 | year=2019 | publisher=[[Cambridge University Press]] | series=New Mathematical Monographs | volume=35 | location=Cambridge | isbn=9781107146723 | s2cid=201542298 }} </ref> इस द्वैत को हेयटिंग बीजगणित के (गैर-पूर्ण) उपश्रेणी के लिए बाध्य वितरणात्मक लैटिस के मौलिक स्टोन द्वैत के प्रतिबंध के रूप में देखा जा सकता है। | |||
वैकल्पिक रूप से, हेटिंग बीजगणित की श्रेणी एसाकिया रिक्त स्थान की श्रेणी के बराबर है। इसे [[एसकिया द्वैत]] कहते हैं। | वैकल्पिक रूप से, हेटिंग बीजगणित की श्रेणी एसाकिया रिक्त स्थान की श्रेणी के बराबर है। इसे [[एसकिया द्वैत]] कहते हैं। | ||
Line 348: | Line 363: | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[अलेक्जेंडर टोपोलॉजी]] | * [[अलेक्जेंडर टोपोलॉजी]] | ||
* | * मध्यम लॉजिक | अधीक्षणवादी (एककेए मध्यम) लॉजिक | ||
* [[बूलियन बीजगणित विषयों की सूची]] | * [[बूलियन बीजगणित विषयों की सूची]] | ||
* ओखम बीजगणित | * ओखम बीजगणित | ||
Line 356: | Line 371: | ||
* F. Borceux, ''Handbook of Categorical Algebra 3'', In ''Encyclopedia of Mathematics and its Applications'', Vol. 53, Cambridge University Press, 1994. {{ISBN|0-521-44180-3}} {{OCLC|52238554}} | * F. Borceux, ''Handbook of Categorical Algebra 3'', In ''Encyclopedia of Mathematics and its Applications'', Vol. 53, Cambridge University Press, 1994. {{ISBN|0-521-44180-3}} {{OCLC|52238554}} | ||
* G. Gierz, K.H. Hoffmann, K. Keimel, J. D. Lawson, M. Mislove and [[Dana Scott|D. S. Scott]], ''Continuous Lattices and Domains'', In ''Encyclopedia of Mathematics and its Applications'', Vol. 93, Cambridge University Press, 2003. | * G. Gierz, K.H. Hoffmann, K. Keimel, J. D. Lawson, M. Mislove and [[Dana Scott|D. S. Scott]], ''Continuous Lattices and Domains'', In ''Encyclopedia of Mathematics and its Applications'', Vol. 93, Cambridge University Press, 2003. | ||
* S. Ghilardi. ''Free | * S. Ghilardi. ''Free हेटिंग algebras as bi-हेटिंग algebras'', Math. Rep. Acad. Sci. Canada XVI., 6:240–244, 1992. | ||
*{{citation|last=Heyting|first= A. | *{{citation|last=Heyting|first= A. | ||
|title=Die formalen Regeln der intuitionistischen Logik. I, II, III|jfm= 56.0823.01 | |title=Die formalen Regeln der intuitionistischen Logik. I, II, III|jfm= 56.0823.01 | ||
Line 368: | Line 383: | ||
{{Order theory}} | {{Order theory}} | ||
{{DEFAULTSORT:Heyting Algebra}} | {{DEFAULTSORT:Heyting Algebra}} | ||
[[Category: बीजगणितीय तर्क]] [[Category: निर्माणवाद (गणित)]] [[Category: जाली सिद्धांत]] | [[Category: बीजगणितीय तर्क]] | ||
[[Category: निर्माणवाद (गणित)]] | |||
[[Category: जाली सिद्धांत]] | |||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 16/02/2023]] | [[Category:Created On 16/02/2023]] |
Revision as of 23:38, 21 February 2023
गणित में, हेयटिंग बीजगणित (छद्म-बूलियन बीजगणित के रूप में भी जाना जाता है[1]) लैटिस (ऑर्डर) या बाउंडेड जाली है (जॉइन और मीट ऑपरेशंस लिखित ∨ और ∧ के साथ और कम से कम एलिमेंट 0 और सबसे बड़ा एलिमेंट 1 के साथ) बाइनरी ऑपरेशन a → b से लैस है, जैसे कि (c ∧ a) ≤ b है सी ≤ (ए → बी) के बराबर। तार्किक दृष्टिकोण से, ए → बी इस परिभाषा के अनुसार सबसे कमजोर तर्कवाक्य है जिसके लिए मूड सेट करना, अनुमान नियम ए → बी, ए ⊢ बी, ध्वनि है। बूलियन बीजगणित (संरचना) की तरह, हेयटिंग बीजगणित विविधता (सार्वभौमिक बीजगणित) बनाते हैं जो बहुत से समीकरणों के साथ स्वयंसिद्ध है। हेटिंग अलजेब्रा की प्रारंभिक किसके द्वारा की गई थी अरेंड हेटिंग (1930) अंतर्ज्ञानवादी तर्क को औपचारिक रूप देना।
जाली के रूप में, हेटिंग बीजगणित वितरित जाली हैं। प्रत्येक बूलियन बीजगणित हेटिंग बीजगणित है जब a → b को ¬a ∨ b के रूप में परिभाषित किया जाता है, जैसा कि प्रत्येक पूर्णता (आदेश सिद्धांत) वितरणात्मक जाली है जो एक तरफा वितरण (आदेश सिद्धांत) को संतुष्ट करती है या पूर्ण जाली के लिए वितरण नियम जब a → b है सभी c के समुच्चय का सर्वोच्च माना जाता है जिसके लिए c ∧ a ≤ b। सीमित स्थितियों में, प्रत्येक गैर-खाली वितरण जाली, विशेष रूप से प्रत्येक गैर-खाली सीमित कुल आदेशया चेन्स, स्वचालित रूप से पूर्ण और पूरी तरह से वितरण योग्य है, और इसलिए विषम बीजगणित है।
यह परिभाषा से अनुसरण करता है कि 1 ≤ 0 → ए, अंतर्ज्ञान के अनुरूप है कि कोई भी प्रस्ताव विरोधाभास 0 से निहित है। चूंकि नकारात्मक ऑपरेशन ¬a परिभाषा का हिस्सा नहीं है, यह → 0 के रूप में परिभाषित है। सहज ज्ञान युक्त ¬a की सामग्री वह प्रस्ताव है जो मान लेने से विरोधाभास हो जाएगा। परिभाषा का तात्पर्य है कि ∧ ¬a = 0. आगे यह दिखाया जा सकता है कि ≤ ¬¬a, चूंकि इसका विलोम, ¬¬a ≤ a, सामान्य रूप से सत्य नहीं है, अर्थात, दोहरा निषेध उन्मूलन सामान्य रूप से मान्य नहीं है हेटिंग बीजगणित में।
हेटिंग बीजगणित बूलियन बीजगणित का सामान्यीकरण इस अर्थ में करते हैं कि बूलियन बीजगणित निश्चित रूप से हेटिंग बीजगणित हैं जो ∨ ¬a = 1 (मध्य को छोड़कर), समकक्ष ¬¬a = a को संतुष्ट करते हैं। हेटिंग बीजगणित एच के फॉर्म ¬ए के वे तत्व बूलियन जाली सम्मिलित करते हैं, किन्तु सामान्यतः यह एच का उपबीजगणित नहीं है (देखें या नियमित और पूरक तत्व)।
हेटिंग बीजगणित उसी तरह से प्रस्तावपरक अंतर्ज्ञानवादी तर्क के बीजगणितीय मॉडल के रूप में काम करते हैं जैसे बूलियन बीजगणित मॉडल प्रस्तावपरक मौलिक तर्क। प्राथमिक टोपोस का आंतरिक तर्क टर्मिनल वस्तु 1 के उप-वस्तु के हेटिंग बीजगणित पर आधारित होता है, जो समावेशन द्वारा आदेशित होता है, समकक्ष रूप से 1 से उपवस्तु वर्गीकरणकर्ता Ω तक।
किसी भी संस्थानिक स्पेस के खुले सेट पूर्ण हेटिंग बीजगणित बनाते हैं। पूर्ण हेटिंग बीजगणित इस प्रकार व्यर्थ टोपोलॉजी में अध्ययन का केंद्रीय उद्देश्य बन जाता है।
प्रत्येक हेटिंग बीजगणित जिसके गैर-महानतम तत्वों के सेट में सबसे बड़ा तत्व होता है (और और हेटिंग बीजगणित बनाता है) उप-प्रत्यक्ष रूप से अलघुकरणीय बीजगणित होता है, जहां से प्रत्येक हेटिंग बीजगणित को नए महानतम तत्व से जोड़कर उप-प्रत्यक्ष रूप से अलघुकरणीय बनाया जा सकता है। यह इस प्रकार है कि सीमित हेटिंग बीजगणितों में भी असीम रूप से कई ऐसे उपस्थित हैं जो उप-प्रत्यक्ष रूप से अलघुकरणीय हैं, जिनमें से दो में समान समीकरण सिद्धांत नहीं है। इसलिए सीमित हेटिंग बीजगणित का कोई सीमित समुच्चय हेटिंग बीजगणित के गैर-नियमों के लिए सभी प्रतिउदाहरणों की आपूर्ति नहीं कर सकता है। यह बूलियन बीजगणित के बिल्कुल विपरीत है, जिसका एकमात्र उप-प्रत्यक्ष रूप से अप्रासंगिक दो-तत्व वाला है, जो अपने दम पर बूलियन बीजगणित के गैर-नियमों के लिए सभी प्रति-उदाहरणों के लिए पर्याप्त है, जो सरल सत्य तालिका निर्णय पद्धति का आधार है। फिर भी, यह निर्णायकता (तर्क) है कि क्या समीकरण सभी हेटिंग बीजगणितों को धारण करता है।[2]
हेयटिंग बीजगणित को अधिकांशतः छद्म-बूलियन बीजगणित कहा जाता है,[3] या यहां तक कि ब्रोवर जाली,[4] चूंकि बाद वाला शब्द दोहरी परिभाषा को निरूपित कर सकता है,[5] या थोड़ा और सामान्य अर्थ है।[6]
औपचारिक परिभाषा
हेटिंग बीजगणित एच जाली (आदेश) या आंशिक रूप से आदेशित सेट के रूप में है कि एच में सभी ए और बी के लिए एच का सबसे बड़ा तत्व एक्स है जैसे कि
यह तत्व बी के संबंध में ए का सापेक्ष छद्म-पूरक है, और इसे ए→बी के रूप में दर्शाया गया है। हम क्रमशः H के सबसे बड़े और सबसे छोटे अवयव के लिए 1 और 0 लिखते हैं।
किसी भी हेटिंग बीजगणित में, कोई व्यक्ति ¬a = (a→0) सेट करके किसी भी तत्व a के छद्म-पूरक ¬a को परिभाषित करता है। परिभाषा से, , और ¬a इस गुण वाला सबसे बड़ा तत्व है। चूँकि, यह सामान्य रूप से सच नहीं है , इस प्रकार ¬ केवल छद्म पूरक है, वास्तविक पूरक (सेट सिद्धांत) नहीं है, जैसा कि बूलियन बीजगणित में होता है।
पूर्ण हेटिंग बीजगणित हेटिंग बीजगणित है जो पूर्ण जाली है।
एक हेटिंग बीजगणित H का उपलजगणित उपसमुच्चय H है1 H का जिसमें 0 और 1 है और संचालन ∧, ∨ और → के अनुसार बंद है। यह इस प्रकार है कि यह भी ¬ के अनुसार बंद है। प्रेरित संक्रियाओं द्वारा उपबीजगणित को हेयटिंग बीजगणित में बनाया जाता है।
वैकल्पिक परिभाषाएँ
श्रेणी-सैद्धांतिक परिभाषा
हेटिंग बीजगणित बंधी हुई जाली है जिसमें सभी घातीय वस्तुएँ हैं।
जाली श्रेणी (गणित) के रूप में माना जाता है जहाँ
मिलना, , उत्पाद (श्रेणी सिद्धांत) है। घातीय स्थिति का अर्थ है कि किसी भी वस्तु के लिए और में घातीय विशिष्ट रूप से वस्तु के रूप में उपस्थित है .
हेटिंग निहितार्थ (अधिकांशतः उपयोग करके लिखा जाता है या उपयोग जैसे भ्रम से बचने के लिए ऑपरेटर को इंगित करने के लिए) केवल घातीय है: के लिए वैकल्पिक संकेतन है . घातीयों की परिभाषा से हमारे पास वह निहितार्थ है () मिलने के लिए दायाँ सन्निकट है (). इस संयोजन को इस प्रकार लिखा जा सकता है या अधिक पूरी तरह से:
जाली-सैद्धांतिक परिभाषाएँ
मानचित्रण पर विचार करके हेटिंग बीजगणित की समकक्ष परिभाषा दी जा सकती है:
एच में कुछ निश्चित के लिए। बंधी हुई जाली h हेटिंग बीजगणित है यदि और केवल यदि हर मानचित्रण fa एक लय गाल्वा कनेक्शन का निचला भाग है। इस स्थितियों में संबंधित ऊपरी संलग्न जीaजी द्वारा दिया जाता हैa(x) = a→x, जहाँ → ऊपर के रूप में परिभाषित किया गया है।
फिर भी और परिभाषा अवशिष्ट जाली के रूप में है जिसका मोनोइड ऑपरेशन ∧ है। मोनॉइड इकाई तब शीर्ष तत्व 1 होना चाहिए। इस मोनॉइड की क्रमविनिमेयता का अर्थ है कि दो अवशेष → बी के रूप में मेल खाते हैं।
एक निहितार्थ ऑपरेशन के साथ घिरा जाली
सबसे बड़े और सबसे छोटे तत्वों 1 और 0, और बाइनरी ऑपरेशन → के साथ बंधी हुई जाली ए को देखते हुए, ये साथ हेटिंग बीजगणित बनाते हैं यदि और केवल यदि निम्नलिखित हो:
जहाँ समीकरण 4 → के लिए वितरण नियम है।
===अंतर्ज्ञानवादी तर्क === के स्वयंसिद्धों का उपयोग करके लक्षण वर्णन
हेटिंग बीजगणित का यह लक्षण वर्णन अंतर्ज्ञानवादी प्रस्तावपरक कलन और हेटिंग बीजगणित के बीच के संबंध से संबंधित मूलभूत तथ्यों का प्रमाण तत्काल बनाता है। (इन तथ्यों के लिए, अनुभाग देखें या प्रामाणिक पहचान और या सार्वभौमिक निर्माण।) तत्व के बारे में सोचना चाहिए अर्थ के रूप में, सहज रूप से, सिद्ध रूप से सत्य। अंतर्ज्ञानवादी तर्कया अक्षीयकरण पर सिद्धांतों के साथ तुलना करें)।
सेट ए को तीन बाइनरी ऑपरेशंस →, ∧ और ∨, और दो विशिष्ट तत्वों के साथ दिया गया है और , तो ए इन परिचालनों के लिए हेटिंग बीजगणित है (और संबंध ≤ शर्त द्वारा परिभाषित किया गया है जब ए → बी = ) यदि और केवल यदि निम्नलिखित शर्तें ए के किसी भी तत्व x, y और z के लिए हैं:
अंत में, हम ¬x को x→ के रूप में परिभाषित करते हैं .
शर्त 1 कहती है कि समतुल्य सूत्रों की पहचान की जानी चाहिए। शर्त 2 कहती है कि सही सिद्ध करने वाले सूत्र मोडस पोनेंस के अनुसार बंद हैं। फिर शर्तें 3 और 4 शर्तें हैं। शर्तें 5, 6 और 7 हैं और शर्तें। शर्तें 8, 9 और 10 या शर्तें हैं। शर्त 11 झूठी शर्त है।
बेशक, यदि तर्क के लिए स्वयंसिद्धों का अलग सेट चुना गया था, तो हम अपने हिसाब से संशोधित कर सकते हैं।
उदाहरण
![](https://upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Rieger-Nishimura.svg/langen-gb-280px-Rieger-Nishimura.svg.png)
|
<दिव>
|
<दिव>
|
<दिव>
|
इस उदाहरण में, वह 1/2∨¬1/2 = 1/2∨(1/2 → 0) = 1/2∨0 = 1/2 बहिष्कृत मध्य के नियम को गलत सिद्ध करता है।
गुण
सामान्य गुण
आदेश हेटिंग बीजगणित एच पर ऑपरेशन से पुनर्प्राप्त किया जा सकता है → निम्नानुसार: एच के किसी भी तत्व ए, बी के लिए, यदि और केवल यदि ए → बी = 1।
कुछ बहु-मूल्यवान तर्कों के विपरीत, हेटिंग बीजगणित बूलियन बीजगणित के साथ निम्नलिखित संपत्ति साझा करते हैं: यदि निषेध का निश्चित बिंदु (गणित) है (अर्थात ¬a = कुछ a के लिए), तो हेटिंग बीजगणित तुच्छ एक-तत्व हेटिंग है बीजगणित।
साध्य पहचान
एक सूत्र दिया प्रस्तावक गणना (चरों के अतिरिक्त, संयोजकों का उपयोग करके , और स्थिरांक 0 और 1), यह तथ्य है, हेटिंग बीजगणित के किसी भी अध्ययन में जल्दी सिद्ध हुआ, कि निम्नलिखित दो स्थितियाँ समतुल्य हैं:
- फॉर्मूला एफ अंतर्ज्ञानवादी प्रस्तावक गणना में अधिक हद तक सही है।
- पहचान किसी भी हेटिंग बीजगणित H और किसी भी तत्व के लिए सत्य है .
मेटानिहितार्थ 1 ⇒ 2 अत्यंत उपयोगी है और हेयटिंग बीजगणित में सर्वसमिका सिद्ध करने का प्रमुख व्यावहारिक विधि है। व्यवहार में, ऐसे प्रमाणों में अधिकांशतः कटौती प्रमेय का उपयोग किया जाता है।
चूंकि हेटिंग बीजगणित एच में किसी भी ए और बी के लिए हमारे पास है यदि और केवल यदि a→b = 1, यह इस प्रकार है 1 ⇒ 2 कि जब भी कोई सूत्र F→G सिद्ध रूप से सत्य होता है, हमारे पास होता है किसी भी हेटिंग बीजगणित एच, और किसी भी तत्व के लिए . (कटौती प्रमेय से यह पता चलता है कि F→G साध्य है (बिना शर्त के) यदि और केवल यदि G, F से साध्य है, अर्थात, यदि G, F का साध्य परिणाम है।) विअक्षीयकरणशेष रूप से, यदि F और G सिद्ध रूप से समतुल्य हैं, तब , क्योंकि ≤ आदेश संबंध है।
1 ⇒ 2 को सबूत की प्रणाली के तार्किक स्वयंसिद्धों की जांच करके और यह सत्यापित करके सिद्ध किया जा सकता है कि किसी भी हेटिंग बीजगणित में उनका मान 1 है, और फिर यह सत्यापित करना कि हेटिंग बीजगणित में मूल्य 1 के साथ भावों के अनुमान के नियमों का प्रयोग होता है मूल्य 1 के साथ अभिव्यक्तियाँ। उदाहरण के लिए, आइए हम अनुमान के एकमात्र नियम के रूप में मॉडस पोनेन्स वाले सबूत की प्रणाली का चयन करें, और जिनके सिद्धांत हिल्बर्ट-शैली वाले हैं जो अंतर्ज्ञानवादी तर्क या अक्षीयकरण में दिए गए हैं। तत्पश्चात् सत्यापित किए जाने वाले तथ्य ऊपर दिए गए हेयटिंग बीजगणित की अभिगृहीत-जैसी परिभाषा से तुरंत अनुसरण करते हैं।
1 ⇒ 2 यह भी सिद्ध करने के लिए विधि प्रदान करता है कि मौलिक तर्क में टॉटोलॉजी (तर्क) के अतिरिक्त कुछ तर्कवाक्य सूत्र, अंतर्ज्ञानवादी तर्कवाक्य तर्क में सिद्ध नहीं किए जा सकते हैं। किसी सूत्र को सिद्ध करने के लिए साध्य नहीं है, यह हेटिंग बीजगणित एच और तत्वों को प्रदर्शित करने के लिए पर्याप्त है ऐसा है कि .
यदि कोई तर्क के उल्लेख से बचना चाहता है, तो व्यवहार में यह आवश्यक हो जाता है कि हेयटिंग बीजगणित के लिए वैध कटौती प्रमेय का संस्करण लेम्मा के रूप में सिद्ध हो: हेटिंग बीजगणित एच के किसी भी तत्व ए, बी और सी के लिए, हमारे पास है .
मेटानिहितार्थ 2 ⇒ 1 के बारे में अधिक जानकारी के लिए, नीचे या सार्वभौमिक निर्माण अनुभाग देखें।
वितरणशीलता
हेटिंग बीजगणित सदैव वितरण (आदेश सिद्धांत) होते हैं। विशेष रूप से, हमारे पास सदैव पहचान होती है
वितरणात्मक नियम को कभी-कभी स्वयंसिद्ध के रूप में कहा जाता है, किन्तु वास्तव में यह रिश्तेदार छद्म पूरक के अस्तित्व से होता है। इसका कारण यह है कि, गैलोज कनेक्शन का निचला हिस्सा होने के नाते, सीमा-संरक्षण कार्य (आदेश सिद्धांत) सभी वर्तमान उच्चतम बदले में वितरण केवल बाइनरी सुपरमा का संरक्षण है .
इसी तरह के तर्क से, निम्नलिखित अनंत वितरण नियम किसी भी पूर्ण हेटिंग बीजगणित में होता है:
एच में किसी भी तत्व एक्स और एच के किसी भी उपसमुच्चय वाई के लिए। इसके विपरीत, उपरोक्त अनंत वितरण नियम को संतुष्ट करने वाला कोई भी पूरा जाल पूर्ण हेटिंग बीजगणित है,
इसका सापेक्ष छद्म-पूरक ऑपरेशन होना।
नियमित और पूरक तत्व
एक हेटिंग बीजगणित H के तत्व x को 'नियमित' कहा जाता है यदि निम्न समतुल्य शर्तों में से कोई भी हो:
- x = ¬¬x।
- x = ¬y H में कुछ y के लिए।
इन स्थितियों की समतुल्यता को केवल पहचान ¬¬¬x = ¬x के रूप में दोहराया जा सकता है, जो H में सभी x के लिए मान्य है।
यदि x∧y = 0 और x∨y = 1 है तो हेटिंग बीजगणित H के तत्व x और y दूसरे के 'पूरक' कहलाते हैं। यदि यह उपस्थित है, तो ऐसा कोई भी y अद्वितीय है और वास्तव में ¬x के बराबर होना चाहिए। हम तत्व x को 'पूरक' कहते हैं यदि यह पूरक को स्वीकार करता है। यह सच है कि यदि x पूरक है, तो ¬x भी है, और फिर x और ¬x दूसरे के पूरक हैं। चूँकि, भ्रामक रूप से, तथापि x पूरक न हो, फिर भी ¬x में पूरक (x के बराबर नहीं) हो सकता है। किसी भी हेटिंग बीजगणित में, तत्व 0 और 1 दूसरे के पूरक हैं। उदाहरण के लिए, यह संभव है कि ¬x 0 से भिन्न प्रत्येक x के लिए 0 है, और 1 यदि x = 0 है, तो इस स्थितियों में 0 और 1 केवल नियमित तत्व हैं।
हेटिंग बीजगणित का कोई भी पूरक तत्व नियमित है, चूंकि इसका विलोम सामान्य रूप से सत्य नहीं है। विशेष रूप से, 0 और 1 सदैव नियमित होते हैं।
किसी भी हेटिंग बीजगणित H के लिए, निम्नलिखित स्थितियाँ समतुल्य हैं:
इस स्थितियों में, तत्व a→b के बराबर है ¬a ∨ b.
हेटिंग बीजगणित में डी मॉर्गन नियम
दो डी मॉर्गन नियमों में से हर हेटिंग बीजगणित में संतुष्ट है, अर्थात्
चूंकि, अन्य डी मॉर्गन नियम सदैव मान्य नहीं होता है। के अतिरिक्त हमारे पास कमजोर डी मॉर्गन नियम है:
निम्नलिखित बयान सभी हेटिंग बीजगणित एच के बराबर हैं:
- एच दोनों डी मॉर्गन नियमों को संतुष्ट करता है,
शर्त 2 अन्य डी मॉर्गन नियम है। शर्त 6 कहती है कि ज्वाइन ऑपरेशन ∨reg बूलियन बीजगणित एच परreg एच के नियमित तत्वों की संख्या एच के ऑपरेशन ∨ के साथ मेल खाती है। शर्त 7 बताती है कि प्रत्येक नियमित तत्व पूरक है, अर्थात, Hreg = Hcomp.
हम समानता सिद्ध करते हैं। स्पष्ट रूप से मेटानिहितार्थ 1 ⇒ 2, 2 ⇒ 3 और 4 ⇒ 5 तुच्छ हैं। आगे, 3 ⇔ 4 और 5 ⇔ 6 केवल पहले डी मॉर्गन नियम और नियमित तत्वों की परिभाषा से परिणाम। हम वह दिखाते हैं 6 ⇒ 7 6 में x और y के स्थान पर ¬x और ¬¬x लेकर और सर्वसमिका का उपयोग करके a ∧ ¬a = 0. नोटिस जो 2 ⇒ 1 पहले डी मॉर्गन नियम से अनुसरण करता है, और 7 ⇒ 6 इस तथ्य के परिणाम हैं कि उपबीजगणित H पर जॉइन ऑपरेशन ∨comp केवल ∨ से H तक का प्रतिबंध हैcomp, हमने 6 और 7 की शर्तों के बारे में बताए गए लक्षणों को ध्यान में रखते हुए मेटानिहितार्थ 5 ⇒ 2 5 में x और y के स्थान पर ¬x और ¬y लेने वाले कमजोर डी मॉर्गन नियम का तुच्छ परिणाम है।
उपरोक्त गुणों को संतुष्ट करने वाले हेटिंग बीजगणित मध्यवर्ती तर्क से उसी तरह संबंधित हैं जैसे हेटिंग बीजगणित सामान्य रूप से अंतर्ज्ञानवादी तर्क से संबंधित हैं।
हेटिंग बीजगणित रूपवाद
परिभाषा
दो हेटिंग बीजगणित दिए गए हैं H1 और वह2 और मानचित्रण f : H1 → H2, हम कहते हैं कि ƒ हेटिंग बीजगणित का 'आकारिता' है, यदि एच में किसी भी तत्व x और y के लिए1, अपने पास:
यह पिछली तीन स्थितियों (2, 3, या 4) में से किसी से भी निकलता है कि f वर्धमान फलन है, अर्थात f(x) ≤ f(y) जब कभी भी x ≤ y.
मान लीजिए एच1 और वह2 संचालन के साथ संरचनाएं हैं →, ∧, ∨ (और संभवतः ¬) और स्थिरांक 0 और 1, और एफ एच से प्रक्षेपण मानचित्रण है1 एच के लिए2 उपरोक्त 1 से 4 गुणों के साथ। फिर यदि H1 हेयटिंग बीजगणित है, इसलिए एच भी है2. हेयटिंग बीजगणित के लक्षण वर्णन से यह ऑपरेशन के साथ बंधे हुए जाल (आंशिक रूप से आदेशित सेट के अतिरिक्त बीजगणितीय संरचनाओं के रूप में माना जाता है) के रूप में होता है → कुछ पहचानों को संतुष्ट करता है।
गुण
पहचान मानचित्र f(x) = x किसी भी हेटिंग बीजगणित से अपने आप में रूपवाद, और समग्र है g ∘ f किन्हीं दो आकारिकी f और g में से आकारिकी है। इसलिए हेटिंग बीजगणित श्रेणी (गणित) बनाते हैं।
उदाहरण
एक हेटिंग बीजगणित एच और किसी भी उपबीजगणित एच को देखते हुए1, समावेशन मानचित्रण i : H1 → H रूपवाद है।
किसी भी हेटिंग बीजगणित H के लिए, map x ↦ ¬¬x अपने नियमित तत्वों एच के बूलियन बीजगणित पर एच से आकारिकी को परिभाषित करता हैreg. यह सामान्य रूप से एच से अपने आप में रूपवाद नहीं है, क्योंकि एच के सम्मिलित होने के संचालन के बाद सेreg h से भिन्न हो सकता है।
भागफल
एच को हेटिंग बीजगणित होने दें, और दें F ⊆ H. हम F को H पर 'फ़िल्टर' कहते हैं यदि यह निम्नलिखित गुणों को संतुष्ट करता है:
एच पर फिल्टर के किसी भी सेट का प्रतिच्छेदन फिर से फिल्टर है। इसलिए, एच के किसी भी उपसमुच्चय एस को दिए जाने पर सबसे छोटा फिल्टर होता है जिसमें एस होता है। हम इसे एस द्वारा 'उत्पन्न' फिल्टर कहते हैं। यदि एस खाली है, F = {1}. अन्यथा, एफ एच में एक्स के सेट के बराबर है जैसे कि उपस्थित है y1, y2, ..., yn ∈ S साथ y1 ∧ y2 ∧ ... ∧ yn ≤ x. यदि H हेटिंग बीजगणित है और F, H पर फ़िल्टर है, तो हम H पर संबंध ∼ को इस प्रकार परिभाषित करते हैं: हम लिखते हैं x ∼ y जब कभी भी x → y और y → x दोनों F से संबंधित हैं। फिर ∼ तुल्यता संबंध है; हम लिखते हैं H/F भागफल सेट के लिए। अद्वितीय हेटिंग बीजगणित संरचना पर है H/F जैसे कि विहित अनुमान pF : H → H/F हेटिंग बीजगणित रूपवाद बन जाता है। हम हेटिंग बीजगणित कहते हैं H/F F द्वारा H का भागफल।
चलो S हेटिंग बीजगणित H का उपसमुच्चय है और एफ को एस द्वारा उत्पन्न फिल्टर होने दें। फिर एच/एफ निम्नलिखित सार्वभौमिक संपत्ति को संतुष्ट करता है:
- हेटिंग बीजगणित के किसी भी रूपवाद को देखते हुए f : H → H′ संतुष्टि देने वाला f(y) = 1 हरएक के लिए y ∈ S, f कारक विहित अनुमान के माध्यम से विशिष्ट रूप से pF : H → H/F. अर्थात अनोखा रूपवाद है f′ : H/F → H′ संतुष्टि देने वाला f′pF = f. आकृतिवाद f′ को f से प्रेरित कहा जाता है।
होने देना f : H1 → H2 हेटिंग बीजगणित का रूपवाद हो। F का कर्नेल, ker f लिखा हुआ, समुच्चय है f−1[{1}]. यह एच पर फिल्टर है1. (देखभाल की जानी चाहिए क्योंकि यह परिभाषा, यदि बूलियन बीजगणित के आकारिकी पर प्रयुक्त होती है, तो दोहरी होती है, जिसे अंगूठियों के आकारिकी के रूप में देखे जाने वाले आकृतिवाद का कर्नेल कहा जाएगा।) पूर्वगामी द्वारा, f आकारिकी को प्रेरित करता है। f′ : H1/(ker f) → H2. यह का समरूपता है H1/(ker f) उपबीजगणित f[H1] H2.
सार्वभौमिक निर्माण
अंतर्ज्ञानवादी तुल्यता तक n चरों में प्रस्तावपरक सूत्रों का हेटिंग बीजगणित
मेटाइम्प्लिकेशन 2 ⇒ 1 अनुभाग में या प्रामाणिक सर्वसमिकाएँ यह दिखाकर सिद्ध की जाती हैं कि निम्नलिखित निर्माण का परिणाम अपने आप में हेयटिंग बीजगणित है:
- चर A में प्रस्ताव के सूत्रों के सेट L पर विचार करें1, ए2,..., एn.
- F≼G को परिभाषित करके L को पूर्व आदेश ≼ प्रदान करें यदि G, F का (अंतर्ज्ञानवादी) तार्किक परिणाम है, अर्थात, यदि G F से सिद्ध किया जा सकता है। यह तत्काल है कि ≼ पूर्व आदेश है।
- पूर्ववर्ती आदेश F≼G द्वारा प्रेरित तुल्यता संबंध F∼G पर विचार करें। (इसे F∼G द्वारा परिभाषित किया गया है यदि और केवल यदि F≼G और G≼F। वास्तव में, ∼ (अंतर्ज्ञानवादी) तार्किक तुल्यता का संबंध है।)
- चलो एच0 भागफल समुच्चय L/∼ हो। यह वांछित हेटिंग बीजगणित होगा।
- हम सूत्र F के तुल्यता वर्ग के लिए [F] लिखते हैं। संचालन →, ∧, ∨ और ¬ को L पर स्पष्ट विधि से परिभाषित किया गया है। सत्यापित करें कि दिए गए सूत्र F और G, तुल्यता वर्ग [F→G], [ F∧G], [F∨G] और [¬F] केवल [F] और [G] पर निर्भर करते हैं। यह संक्रियाओं को परिभाषित करता है →, ∧, ∨ और ¬ भागफल समुच्चय H पर0=एल/∼. आगे 1 को सिद्ध करने योग्य सत्य कथनों के वर्ग के रूप में परिभाषित करें, और 0=[⊥] सेट करें।
- सत्यापित करें कि एच0, साथ में इन संक्रियाओं के साथ, हेटिंग बीजगणित है। हम हेयटिंग बीजगणित की स्वयंसिद्ध परिभाषा का उपयोग करके ऐसा करते हैं। H0 शर्तों को संतुष्ट करता है THEN-1 FALSE के माध्यम से क्योंकि दिए गए रूपों के सभी सूत्र अंतर्ज्ञानवादी तर्क के स्वयंसिद्ध हैं। मोडस-पोन्स इस तथ्य से अनुसरण करते हैं कि यदि कोई सूत्र ⊤→F प्रमाणित रूप से सत्य है, जहां ⊤ सिद्ध रूप से सत्य है, तो F सिद्ध रूप से सत्य है (अनुमान मोडस पोनेन्स के नियम के अनुप्रयोग द्वारा)। अंत में, EQUIV इस तथ्य से परिणाम प्राप्त करता है कि यदि F→G और G→F दोनों प्रमाणित रूप से सत्य हैं, तो F और G दूसरे से सिद्ध किए जा सकते हैं (अनुमान मोडस पोनेंस के नियम के अनुप्रयोग द्वारा), इसलिए [F]=[G] .
सदैव की तरह हेटिंग बीजगणित की स्वयंसिद्ध परिभाषा के अनुसार, हम ≤ एच पर परिभाषित करते हैं0 शर्त के अनुसार x≤y यदि और केवल यदि x→y=1. चूंकि, कटौती प्रमेय द्वारा, सूत्र F→G सिद्ध रूप से सत्य है यदि और केवल यदि G, F से सिद्ध किया जा सकता है, तो यह [F]≤[G] का अनुसरण करता है यदि और केवल यदि F≼G। दूसरे शब्दों में, ≤ एल/∼ पर आदेश संबंध है जो एल पर पूर्व आदेश≼ द्वारा प्रेरित है।
=== जेनरेटर === के इच्छानुसार सेट पर मुफ्त हेटिंग बीजगणित
लिंडेनबाम बीजगणित से तुलना
हमने अभी-अभी जो निर्माण दिए हैं वे बूलियन बीजगणित (संरचना) के संबंध में हेटिंग बीजगणित के संबंध में लिंडेनबाउम बीजगणित के संबंध में पूरी तरह से समान भूमिका निभाते हैं। वास्तव में, लिंडनबाउम बीजगणित बीT चर में {एi} अभिगृहीतों के संबंध में T केवल हमारा H हैT∪T1</उप>, जहां t1 ¬¬F→F रूप के सभी सूत्रों का समुच्चय है, क्योंकि T के अतिरिक्त अभिगृहीत1 केवल वे ही हैं जिन्हें जोड़ने की आवश्यकता है जिससे सभी मौलिक पुनरुक्ति को सिद्ध किया जा सके।
अंतर्ज्ञानवादी तर्क के लिए प्रयुक्त हेयटिंग बीजगणित
यदि कोई हेटिंग बीजगणित की शर्तों के रूप में अंतर्ज्ञानवादी प्रस्तावपरक तर्क के स्वयंसिद्धों की व्याख्या करता है, तो वे सूत्र के चर के मूल्यों के किसी भी असाइनमेंट के अनुसार किसी भी हेटिंग बीजगणित में सबसे बड़े तत्व, 1 का मूल्यांकन करेंगे। उदाहरण के लिए, (P∧Q)→P छद्म-पूरक की परिभाषा के अनुसार, सबसे बड़ा तत्व x ऐसा है कि . यह असमिका किसी भी x के लिए संतुष्ट है, इसलिए सबसे बड़ा x 1 है।
इसके अतिरिक्त, मॉडस पोनेन्स का नियम हमें फॉर्मूला क्यू को सूत्र पी और पी → क्यू से प्राप्त करने की अनुमति देता है। किन्तु किसी भी हेटिंग बीजगणित में, यदि P का मान 1 है, और P→Q का मान 1 है, तो इसका कारण है कि , इसलिए ; यह केवल यह हो सकता है कि Q का मान 1 हो।
इसका अर्थ यह है कि यदि सूत्र अंतर्ज्ञानवादी तर्क के नियमों से घटाया जा सकता है, जो मोडस पोनेन्स के नियम के माध्यम से अपने सिद्धांतों से प्राप्त किया जा रहा है, तो सूत्र के चर के मूल्यों के किसी भी कार्यभार के अनुसार सभी हेटिंग बीजगणित में इसका मान सदैव 1 होगा। . चूंकि कोई हेटिंग बीजगणित का निर्माण कर सकता है जिसमें पियर्स के नियम का मान सदैव 1 नहीं होता है। 3-तत्व बीजगणित पर विचार करें {0,1/2,1} जैसा कि ऊपर दिया गया है। यदि हम आवंटित करते हैं 1/2 पी और 0 से क्यू, तो पियर्स के नियम का मूल्य ((P→Q)→P)→P है 1/2. इससे यह निष्कर्ष निकलता है कि पियर्स के नियम को सहज रूप से व्युत्पन्न नहीं किया जा सकता है। प्रकार सिद्धांत में इसका क्या अर्थ है, इसके सामान्य संदर्भ के लिए करी-हावर्ड समरूपतावाद देखें।
विलोम को भी सिद्ध किया जा सकता है: यदि किसी सूत्र का मान सदैव 1 होता है, तो यह अंतर्ज्ञानवादी तर्क के नियमों से घटाया जा सकता है, इसलिए अंतर्ज्ञानवादी रूप से मान्य सूत्र बिल्कुल वही होते हैं जिनका मान सदैव 1 होता है। यह धारणा के समान है मौलिक रूप से मान्य सूत्र वे सूत्र हैं जिनका सूत्र के चरों के लिए सत्य और असत्य के किसी भी संभावित कार्यभार के अनुसार दो-तत्व बूलियन बीजगणित में 1 का मान है - अर्थात, वे ऐसे सूत्र हैं जो सामान्य सत्य-तालिका अर्थों में पुनरुत्पादन हैं। हेटिंग बीजगणित, तार्किक दृष्टिकोण से, सत्य मूल्यों की सामान्य प्रणाली का सामान्यीकरण है, और इसका सबसे बड़ा तत्व 1 'सत्य' के अनुरूप है। सामान्य दो-मूल्यवान तर्क प्रणाली हेटिंग बीजगणित का विशेष मामला है, और सबसे छोटा गैर-तुच्छ है, जिसमें बीजगणित के केवल तत्व 1 (सत्य) और 0 (गलत) हैं।
निर्णय समस्याएं
1965 में शाऊल क्रिपके द्वारा प्रत्येक हेटिंग बीजगणित में दिए गए समीकरण की समस्या को निर्णायक होना दिखाया गया था।[2]समस्या का स्पष्ट कम्प्यूटेशनल जटिलता सिद्धांत 1979 में रिचर्ड स्टेटमैन द्वारा स्थापित किया गया था, जिन्होंने दिखाया कि यह पीस्पेस-पूर्ण था[11] और इसलिए कम से कम बूलियन संतुष्टि समस्या जितनी कठिन (स्टीफन कुक द्वारा 1971 में coNP-पूर्ण दिखाया गया)[12] और अधिक कठिन होने का अनुमान लगाया। हेटिंग बीजगणित का प्राथमिक या प्रथम-क्रम सिद्धांत अनिर्णीत है।[13] यह खुला रहता है कि क्या हेटिंग बीजगणित का सार्वभौमिक हॉर्न सिद्धांत, या शब्द समस्या (गणित), निर्णायक है।[14] À शब्द समस्या का प्रस्ताव यह ज्ञात है कि बूलियन बीजगणित के विपरीत हेटिंग बीजगणित स्थानीय रूप से सीमित नहीं हैं (कोई हेटिंग बीजगणित सीमित गैर-खाली सेट सीमित नहीं है), जो स्थानीय रूप से सीमित हैं और जिनकी शब्द समस्या निर्णायक है। यह अज्ञात है कि जनरेटर के स्थितियों को छोड़कर मुक्त पूर्ण हेटिंग बीजगणित उपस्थित है या नहीं, जहां जनरेटर पर मुफ्त हेटिंग बीजगणित नए शीर्ष से सटे हुए तुच्छ रूप से पूर्ण है।
सामयिक प्रतिनिधित्व और द्वैत सिद्धांत
हर हेटिंग बीजगणित H परिबद्ध उपजालटी के लिए स्वाभाविक रूप से समरूपीहै L टोपोलॉजिकल स्पेस के खुले सेट X, जहां निहितार्थ का L के आंतरिक भाग द्वारा दिया गया है . ज्यादा ठीक, X बंधी हुई जाली के प्रमुख आदर्श (आदेश सिद्धांत) का वर्णक्रमीय स्थान है H और L के खुले और अर्ध-कॉम्पैक्ट उपसमुच्चय की जाली है X.
अधिक सामान्यतः, हेटिंग बीजगणित की श्रेणी
टिप्पणियाँ
- ↑ "Pseudo-Boolean algebra - Encyclopedia of Mathematics".
- ↑ 2.0 2.1 Kripke, S. A.: 1965, 'Semantical analysis of intuitionistic logic I'. In: J. N. Crossley and M. A. E. Dummett (eds.): Formal Systems and Recursive Functions. Amsterdam: North-Holland, pp. 92–130.
- ↑ Helena Rasiowa; Roman Sikorski (1963). The Mathematics of Metamathematics. Państwowe Wydawnictwo Naukowe (PWN). pp. 54–62, 93–95, 123–130.
- ↑ A. G. Kusraev; Samson Semenovich Kutateladze (1999). Boolean valued analysis. Springer. p. 12. ISBN 978-0-7923-5921-0.
- ↑ Yankov, V.A. (2001) [1994], "Brouwer lattice", Encyclopedia of Mathematics, EMS Press
- ↑ Thomas Scott Blyth (2005). Lattices and ordered algebraic structures. Springer. p. 151. ISBN 978-1-85233-905-0.
- ↑ Georgescu, G. (2006). "N-Valued Logics and Łukasiewicz–Moisil Algebras". Axiomathes. 16 (1–2): 123–136. doi:10.1007/s10516-005-4145-6. S2CID 121264473., Theorem 3.6
- ↑ Iorgulescu, A.: Connections between MVn-algebras and n-valued Łukasiewicz–Moisil algebras—I. Discrete Math. 181, 155–177 (1998) doi:10.1016/S0012-365X(97)00052-6
- ↑ Rutherford (1965), Th.26.2 p.78.
- ↑ Rutherford (1965), Th.26.1 p.78.
- ↑ Statman, R. (1979). "Intuitionistic propositional logic is polynomial-space complete". Theoretical Comput. Sci. 9: 67–72. doi:10.1016/0304-3975(79)90006-9. hdl:2027.42/23534.
- ↑ Cook, S.A. (1971). "The complexity of theorem proving procedures". Proceedings, Third Annual ACM Symposium on the Theory of Computing, ACM, New York. pp. 151–158. doi:10.1145/800157.805047.
- ↑ Grzegorczyk, Andrzej (1951). "Undecidability of some topological theories" (PDF). Fundamenta Mathematicae. 38: 137–52. doi:10.4064/fm-38-1-137-152.
- ↑ Peter T. Johnstone, Stone Spaces, (1982) Cambridge University Press, Cambridge, ISBN 0-521-23893-5. (See paragraph 4.11)
- ↑ see section 8.3 in * Dickmann, Max; Schwartz, Niels; Tressl, Marcus (2019). Spectral Spaces. New Mathematical Monographs. Vol. 35. Cambridge: Cambridge University Press. doi:10.1017/9781316543870. ISBN 9781107146723. S2CID 201542298.
यह भी देखें
- अलेक्जेंडर टोपोलॉजी
- मध्यम लॉजिक | अधीक्षणवादी (एककेए मध्यम) लॉजिक
- बूलियन बीजगणित विषयों की सूची
- ओखम बीजगणित
संदर्भ
- Rutherford, Daniel Edwin (1965). Introduction to Lattice Theory. Oliver and Boyd. OCLC 224572.
- F. Borceux, Handbook of Categorical Algebra 3, In Encyclopedia of Mathematics and its Applications, Vol. 53, Cambridge University Press, 1994. ISBN 0-521-44180-3 OCLC 52238554
- G. Gierz, K.H. Hoffmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, Continuous Lattices and Domains, In Encyclopedia of Mathematics and its Applications, Vol. 93, Cambridge University Press, 2003.
- S. Ghilardi. Free हेटिंग algebras as bi-हेटिंग algebras, Math. Rep. Acad. Sci. Canada XVI., 6:240–244, 1992.
- Heyting, A. (1930), "Die formalen Regeln der intuitionistischen Logik. I, II, III", Sitzungsberichte Akad. Berlin: 42–56, 57–71, 158–169, JFM 56.0823.01
- Dickmann, Max; Schwartz, Niels; Tressl, Marcus (2019). Spectral Spaces. New Mathematical Monographs. Vol. 35. Cambridge: Cambridge University Press. doi:10.1017/9781316543870. ISBN 9781107146723. S2CID 201542298.