फलन प्रतिनिधित्व: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
फंक्शन प्रतिनिधित्व (एफआरईपी<ref>Shape Modeling and Computer Graphics with Real Functions, [http://www.hyperfun.org/F-rep.html FRep Home Page]</ref>) का उपयोग [[ठोस मॉडलिंग]], आयतन मॉडलिंग और [[ कंप्यूटर चित्रलेख |कंप्यूटर ग्राफिक्स]] में किया जाता है। एफआरईपी को ज्यामितीय मॉडलिंग में फंक्शन प्रतिनिधित्व: अवधारणाएँ, कार्यान्वयन और अनुप्रयोग <ref>A. Pasko, V. Adzhiev, A. Sourin, V. Savchenko, "Function representation in geometric modeling: concepts, implementation and applications", The Visual Computer, vol.11, no.8, 1995, pp.429-446.</ref> बहुआयामी ज्यामितीय वस्तुओं (आकृतियों) के प्रतिनिधित्व के रूप में प्रदर्शित किया गया है। बहुआयामी अंतरिक्ष में बिंदु के रूप में वस्तु को निरंतर वास्तविक-मूल्यवान फ़ंक्शन <math>f(X)</math> बिंदु निर्देशांक <math>X[x_1,x_2, ..., x_n]</math> द्वारा परिभाषित किया गया है। जिसका मूल्यांकन दिए गए बिंदु पर प्रक्रिया द्वारा किया जाता है, जिसमें पत्तियों में सर्वप्रथम के साथ पेड़ की संरचना को ज्ञात किया जाता है और नोड्स में संचालन किया जाता है। पेड़। के साथ अंक है- | फंक्शन प्रतिनिधित्व (एफआरईपी<ref>Shape Modeling and Computer Graphics with Real Functions, [http://www.hyperfun.org/F-rep.html FRep Home Page]</ref>) का उपयोग [[ठोस मॉडलिंग]], आयतन मॉडलिंग और [[ कंप्यूटर चित्रलेख |कंप्यूटर ग्राफिक्स]] में किया जाता है। एफआरईपी को ज्यामितीय मॉडलिंग में फंक्शन प्रतिनिधित्व: अवधारणाएँ, कार्यान्वयन और अनुप्रयोग <ref>A. Pasko, V. Adzhiev, A. Sourin, V. Savchenko, "Function representation in geometric modeling: concepts, implementation and applications", The Visual Computer, vol.11, no.8, 1995, pp.429-446.</ref> बहुआयामी ज्यामितीय वस्तुओं (आकृतियों) के प्रतिनिधित्व के रूप में प्रदर्शित किया गया है। बहुआयामी अंतरिक्ष में बिंदु के रूप में वस्तु को निरंतर वास्तविक-मूल्यवान फ़ंक्शन <math>f(X)</math> बिंदु निर्देशांक <math>X[x_1,x_2, ..., x_n]</math> द्वारा परिभाषित किया गया है। जिसका मूल्यांकन दिए गए बिंदु पर प्रक्रिया द्वारा किया जाता है, जिसमें पत्तियों में सर्वप्रथम के साथ पेड़ की संरचना को ज्ञात किया जाता है और नोड्स में संचालन किया जाता है। पेड़। के साथ अंक है- | ||
<math>f(x_1,x_2, ..., x_n) \ge 0</math> वस्तु से संबंधित है, और बिंदु के साथ होती है।<math>f(x_1,x_2, ..., x_n) < 0</math> वस्तु के बाहर | <math>f(x_1,x_2, ..., x_n) \ge 0</math> वस्तु से संबंधित है, और बिंदु के साथ होती है।<math>f(x_1,x_2, ..., x_n) < 0</math> वस्तु के बाहर सेट किया गया बिंदु हैं।<math>f(x_1,x_2, ..., x_n)=0</math> [[isosurface|आईएसओ सतह]] कहा जाता है। | ||
== ज्यामितीय डोमेन == | == ज्यामितीय डोमेन == | ||
3डी अंतरिक्ष में एफआरईपी के ज्यामितीय डोमेन में फ़ंक्शन के शून्य मान द्वारा परिभाषित [[गैर-कई गुना मॉडल]] और निम्न-आयामी संस्थाओं (सतहों, वक्रों, बिंदुओं) के साथ ठोस सम्मलित हैं। सर्वप्रथम समीकरण को "ब्लैक बॉक्स" प्रक्रिया द्वारा परिभाषित किया जा सकता है, जो बिंदु निर्देशांक को फ़ंक्शन मान में परिवर्तित करता है। बीज गणितीय सतहों, स्केलेटन-आधारित [[निहित सतह|निहित सतहों]], और कनवल्शन सतहों, साथ ही प्रक्रियात्मक वस्तुओं (जैसे ठोस), और स्वर वस्तुओं से घिरे हुए ठोस पदार्थों को सर्वप्रथम (निर्माण वृक्ष की पत्तियां) के रूप में उपयोग किया जा सकता है। वोक्सल सर्वप्रथम (असतत क्षेत्र) की हानि में, इसे निरंतर वास्तविक कार्य में परिवर्तित किया जाना चाहिए, उदाहरण के लिए, ट्रिलिनियर या उच्च-क्रम प्रक्षेप को प्रारम्भ किया जाता है। | |||
सेट-सैद्धांतिक, सम्मिश्रण, ऑफसेटिंग, प्रक्षेपण, गैर-रैखिक विकृति, | सेट-सैद्धांतिक, सम्मिश्रण, ऑफसेटिंग, प्रक्षेपण, गैर-रैखिक विकृति, परिवर्तन, व्यापक, हाइपरटेक्स्चरिंग और अन्य जैसे कई संचालन इस प्रतिनिधित्व के लिए इस प्रकार से तैयार किए गए हैं कि वे आउटपुट के रूप में निरंतर वास्तविक-मूल्यवान कार्य करते हैं, इस प्रकार प्रतिनिधित्व की बंद संपत्ति की गारंटी होती है। [[आर समारोह|आर फंक्शन]] मूल रूप से वी.एल. में प्रस्तुत किए गए थे। रवाचेव के कुछ ज्यामितीय वस्तुओं के विश्लेषणात्मक विवरण पर,<ref>V.L. Rvachev, "On the analytical description of some geometric objects", Reports of Ukrainian Academy of Sciences, vol. 153, no. 4, 1963, pp. 765-767 (in Russian).</ref> प्रदान करते हैं। | ||
<math>C^k</math> सेट-सैद्धांतिक संचालन को परिभाषित करने वाले कार्यों के लिए [[चिकना कार्य|निरंतरता]] (न्यूनतम/अधिकतम कार्य विशेष स्थिति है)। इस संपत्ति के कारण, किसी समर्थित ऑपरेशन के परिणाम के पश्चात इनपुट के रूप में माना जा सकता है; इस प्रकार कार्यात्मक अभिव्यक्ति से इस प्रकार अधिक जटिल मॉडल बनाए जा सकते हैं। एफआरईपी मॉडलिंग विशेष उद्देश्य वाली भाषा [[HyperFun|हाइपरफन]] द्वारा समर्थित है। | |||
== आकृति मॉडल == | == आकृति मॉडल == |
Revision as of 20:22, 4 March 2023
फंक्शन प्रतिनिधित्व (एफआरईपी[1]) का उपयोग ठोस मॉडलिंग, आयतन मॉडलिंग और कंप्यूटर ग्राफिक्स में किया जाता है। एफआरईपी को ज्यामितीय मॉडलिंग में फंक्शन प्रतिनिधित्व: अवधारणाएँ, कार्यान्वयन और अनुप्रयोग [2] बहुआयामी ज्यामितीय वस्तुओं (आकृतियों) के प्रतिनिधित्व के रूप में प्रदर्शित किया गया है। बहुआयामी अंतरिक्ष में बिंदु के रूप में वस्तु को निरंतर वास्तविक-मूल्यवान फ़ंक्शन बिंदु निर्देशांक द्वारा परिभाषित किया गया है। जिसका मूल्यांकन दिए गए बिंदु पर प्रक्रिया द्वारा किया जाता है, जिसमें पत्तियों में सर्वप्रथम के साथ पेड़ की संरचना को ज्ञात किया जाता है और नोड्स में संचालन किया जाता है। पेड़। के साथ अंक है-
वस्तु से संबंधित है, और बिंदु के साथ होती है। वस्तु के बाहर सेट किया गया बिंदु हैं। आईएसओ सतह कहा जाता है।
ज्यामितीय डोमेन
3डी अंतरिक्ष में एफआरईपी के ज्यामितीय डोमेन में फ़ंक्शन के शून्य मान द्वारा परिभाषित गैर-कई गुना मॉडल और निम्न-आयामी संस्थाओं (सतहों, वक्रों, बिंदुओं) के साथ ठोस सम्मलित हैं। सर्वप्रथम समीकरण को "ब्लैक बॉक्स" प्रक्रिया द्वारा परिभाषित किया जा सकता है, जो बिंदु निर्देशांक को फ़ंक्शन मान में परिवर्तित करता है। बीज गणितीय सतहों, स्केलेटन-आधारित निहित सतहों, और कनवल्शन सतहों, साथ ही प्रक्रियात्मक वस्तुओं (जैसे ठोस), और स्वर वस्तुओं से घिरे हुए ठोस पदार्थों को सर्वप्रथम (निर्माण वृक्ष की पत्तियां) के रूप में उपयोग किया जा सकता है। वोक्सल सर्वप्रथम (असतत क्षेत्र) की हानि में, इसे निरंतर वास्तविक कार्य में परिवर्तित किया जाना चाहिए, उदाहरण के लिए, ट्रिलिनियर या उच्च-क्रम प्रक्षेप को प्रारम्भ किया जाता है।
सेट-सैद्धांतिक, सम्मिश्रण, ऑफसेटिंग, प्रक्षेपण, गैर-रैखिक विकृति, परिवर्तन, व्यापक, हाइपरटेक्स्चरिंग और अन्य जैसे कई संचालन इस प्रतिनिधित्व के लिए इस प्रकार से तैयार किए गए हैं कि वे आउटपुट के रूप में निरंतर वास्तविक-मूल्यवान कार्य करते हैं, इस प्रकार प्रतिनिधित्व की बंद संपत्ति की गारंटी होती है। आर फंक्शन मूल रूप से वी.एल. में प्रस्तुत किए गए थे। रवाचेव के कुछ ज्यामितीय वस्तुओं के विश्लेषणात्मक विवरण पर,[3] प्रदान करते हैं।
सेट-सैद्धांतिक संचालन को परिभाषित करने वाले कार्यों के लिए निरंतरता (न्यूनतम/अधिकतम कार्य विशेष स्थिति है)। इस संपत्ति के कारण, किसी समर्थित ऑपरेशन के परिणाम के पश्चात इनपुट के रूप में माना जा सकता है; इस प्रकार कार्यात्मक अभिव्यक्ति से इस प्रकार अधिक जटिल मॉडल बनाए जा सकते हैं। एफआरईपी मॉडलिंग विशेष उद्देश्य वाली भाषा हाइपरफन द्वारा समर्थित है।
आकृति मॉडल
FRep विभिन्न आकार के मॉडल को जोड़ता है और सामान्य करता है जैसे
- बीजगणितीय सतहें
- कंकाल आधारित अंतर्निहित सतहें
- सेट-सैद्धांतिक ठोस या सीएसजी (रचनात्मक ठोस ज्यामिति)
- झाडू
- वॉल्यूमेट्रिक ऑब्जेक्ट्स
- पैरामीट्रिक मॉडल
- प्रक्रियात्मक मॉडल
अधिक सामान्य रचनात्मक हाइपरवॉल्यूम[4] विशेषताओं के साथ बहुआयामी बिंदु सेट मॉडलिंग के लिए अनुमति देता है (3डी केस में वॉल्यूम मॉडल)। बिंदु सेट ज्यामिति और विशेषताओं का स्वतंत्र प्रतिनिधित्व होता है लेकिन समान रूप से व्यवहार किया जाता है। मनमाना आयाम के ज्यामितीय स्थान में सेट वास्तविक वस्तु का FRep आधारित ज्यामितीय मॉडल है। विशेषता जो वास्तविक-मूल्यवान फ़ंक्शन (आवश्यक नहीं कि निरंतर) द्वारा भी प्रस्तुत की जाती है, मनमाना प्रकृति (सामग्री, फोटोमेट्रिक, भौतिक, चिकित्सा, आदि) की वस्तु संपत्ति का गणितीय मॉडल है। विषम वस्तुओं के सेलुलर-कार्यात्मक मॉडलिंग में प्रस्तावित अंतर्निहित परिसर की अवधारणा[5] विषम वस्तु के ल सेलुलर-कार्यात्मक मॉडल में बहुभुज, पैरामीट्रिक और FRep घटकों को जोड़कर विभिन्न आयामों के ज्यामितीय तत्वों को सम्मलित करने के लिए ढांचा प्रदान करता है।
यह भी देखें
- सीमा प्रतिनिधित्व
- रचनात्मक ठोस ज्यामिति
- ठोस मॉडलिंग
- आइसोसफेस
- हस्ताक्षरित दूरी फंक्शन
- हाइपरफन
- डिजिटल भौतिककरण
संदर्भ
- ↑ Shape Modeling and Computer Graphics with Real Functions, FRep Home Page
- ↑ A. Pasko, V. Adzhiev, A. Sourin, V. Savchenko, "Function representation in geometric modeling: concepts, implementation and applications", The Visual Computer, vol.11, no.8, 1995, pp.429-446.
- ↑ V.L. Rvachev, "On the analytical description of some geometric objects", Reports of Ukrainian Academy of Sciences, vol. 153, no. 4, 1963, pp. 765-767 (in Russian).
- ↑ A. Pasko, V. Adzhiev, B. Schmitt, C. Schlick, "Constructive hypervolume modelling", Graphical Models, 63(6), 2001, pp. 413-442.
- ↑ V. Adzhiev, E. Kartasheva, T. Kunii, A. Pasko, B. Schmitt, "Cellular-functional modeling of heterogeneous objects", Proc. 7th ACM Symposium on Solid Modeling and Applications, Saarbrücken, Germany, ACM Press, 2002, pp. 192-203. 3-540-65620-0