उच्च-इलेक्ट्रॉन-मोबिलिटी ट्रांजिस्टर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
[[File:HEMT-scheme-en.svg|thumb|GaAs/AlGaAs/InGaAs pHEMT का क्रॉस सेक्शन]]
[[File:HEMT-scheme-en.svg|thumb|GaAs/AlGaAs/InGaAs pHEMT का क्रॉस सेक्शन]]
[[File:HEMT-band structure scheme-en.svg|thumb|संतुलन पर GaAs/AlGaAs हेटेरोजंक्शन-आधारित HEMT का बैंड आरेख]]
[[File:HEMT-band structure scheme-en.svg|thumb|संतुलन पर GaAs/AlGaAs हेटेरोजंक्शन-आधारित HEMT का बैंड आरेख]]
एक '''उच्च-इलेक्ट्रॉन-मोबिलिटी ट्रांजिस्टर''' ( '''एचईएमटी''' ), जिसे हेटरोस्ट्रक्चर '''एफईटी''' ( '''एचएफईटी''' ) या '''मॉड्यूलेशन-''' डॉप्ड एफईटी ( '''एमओडीएफईटी''' (MODFET)) के रूप में भी जाना जाता है, एक [[:hi:क्षेत्र प्रभाव ट्रांजिस्टर|फील्ड-इफेक्ट ट्रांजिस्टर]] है जिसमें अलग-अलग [[:hi:बैण्ड अन्तराल|बैंड अंतराल]] ( जैसे [[:hi:heterojunction|हेटेरोजंक्शन]] ) के साथ दो सामग्रियों के बीच एक जंक्शन शामिल होता है। डोप किए गए क्षेत्र के बजाय चैनल के रूप में ( जैसा कि सामान्यतः MOSFET के स्थिति की में होता है)। सामान्यतः इस्तेमाल किया जाने वाला सामग्री संयोजन [[:hi:गैलियम आर्सेनाइड|GaAs]] के साथ [[:hi:एल्युमिनियम गैलियम आर्सेनाइड|AlGaAs]] है, हालांकि डिवाइस के अनुप्रयोग पर निर्भर व्यापक भिन्नता है। अधिक [[:hi:इण्डियम|इंडियम]] को शामिल करने वाले उपकरण सामान्यतः बेहतर उच्च-आवृत्ति प्रदर्शन दिखाते हैं, जबकि हाल के वर्षों में, [[:hi:गैलियम नाइट्राइड|गैलियम नाइट्राइड]] HEMTs ने अपने उच्च-शक्ति प्रदर्शन के कारण ध्यान आकर्षित किया है। अन्य [[:hi:क्षेत्र प्रभाव ट्रांजिस्टर|एफईटी]] की तरह, एचईएमटी का उपयोग [[:hi:एकीकृत परिपथ|एकीकृत सर्किट]] में डिजिटल ऑन-ऑफ स्विच के रूप में किया जाता है। FETs को नियंत्रण संकेत के रूप में एक छोटे वोल्टेज का उपयोग करके बड़ी मात्रा में करंट के लिए एम्पलीफायर के रूप में भी इस्तेमाल किया जा सकता है। इन दोनों उपयोगों को FET की [[:hi:धारा-वोल्टता अभिलक्षण|वर्तमान-वोल्टेज विशेषताओं]] द्वारा संभव बनाया गया है। HEMT ट्रांजिस्टर सामान्य ट्रांजिस्टर की तुलना में उच्च आवृत्तियों पर कार्य करने में सक्षम होते हैं, [[:hi:अत्यधिक उच्चावृत्ति (EHF)|मिलीमीटर तरंग]] आवृत्तियों तक और उच्च आवृत्ति वाले उत्पादों जैसे [[:hi:मोबाइल फ़ोन|सेल फोन]], [[:hi:सैटेलाइट टेलीविज़न|उपग्रह टेलीविजन]] रिसीवर, [[:hi:वोल्टता कन्वर्टर|वोल्टेज कन्वर्टर्स]] और [[:hi:रडार|रडार]] उपकरण में उपयोग किया जाता है। वे व्यापक रूप से उपग्रह रिसीवरों में, कम शक्ति वाले एम्पलीफायरों में और रक्षा उद्योग में उपयोग किए जाते हैं।
एक '''उच्च-इलेक्ट्रॉन-मोबिलिटी ट्रांजिस्टर''' ('''HEMT''') जिसे हेटरोस्ट्रक्चर '''FET''' ('''HFET''') या '''मॉड्यूलेशन-''' डॉप्ड '''FET''' ('''MODFET''') के रूप में भी जाना जाता है, एक [[:hi:क्षेत्र प्रभाव ट्रांजिस्टर|फील्ड-इफेक्ट ट्रांजिस्टर]] है। जिसमें अलग-अलग [[:hi:बैण्ड अन्तराल|बैंड अंतराल]] ( जैसे [[:hi:heterojunction|हेटेरोजंक्शन]] ) के साथ दो सामग्रियों के बीच एक जंक्शन शामिल होता है। डोप किए गए क्षेत्र के बजाय चैनल के रूप में ( जैसा कि सामान्यतः MOSFET के स्थिति की में होता है)। सामान्यतः इस्तेमाल किया जाने वाला सामग्री संयोजन [[:hi:गैलियम आर्सेनाइड|GaAs]] के साथ [[:hi:एल्युमिनियम गैलियम आर्सेनाइड|AlGaAs]] है, हालांकि डिवाइस के अनुप्रयोग पर निर्भर व्यापक भिन्नता है। अधिक [[:hi:इण्डियम|इंडियम]] को शामिल करने वाले उपकरण सामान्यतः बेहतर उच्च-आवृत्ति प्रदर्शन दिखाते हैं, जबकि हाल के वर्षों में, [[:hi:गैलियम नाइट्राइड|गैलियम नाइट्राइड]] HEMTs ने अपने उच्च-शक्ति प्रदर्शन के कारण ध्यान आकर्षित किया है। अन्य [[:hi:क्षेत्र प्रभाव ट्रांजिस्टर|एफईटी]] की तरह, HEMTs उपयोग [[:hi:एकीकृत परिपथ|एकीकृत सर्किट]] में डिजिटल ऑन-ऑफ स्विच के रूप में किया जाता है। FETs को नियंत्रण संकेत के रूप में एक छोटे वोल्टेज का उपयोग करके बड़ी मात्रा में करंट के लिए एम्पलीफायर के रूप में भी इस्तेमाल किया जा सकता है। इन दोनों उपयोगों को FET’s की [[:hi:धारा-वोल्टता अभिलक्षण|वर्तमान-वोल्टेज विशेषताओं]] द्वारा संभव बनाया गया है। HEMT ट्रांजिस्टर सामान्य ट्रांजिस्टर की तुलना में उच्च आवृत्तियों पर कार्य करने में सक्षम होते हैं, [[:hi:अत्यधिक उच्चावृत्ति (EHF)|मिलीमीटर तरंग]] आवृत्तियों तक और उच्च आवृत्ति वाले उत्पादों जैसे [[:hi:मोबाइल फ़ोन|सेल फोन]], [[:hi:सैटेलाइट टेलीविज़न|उपग्रह टेलीविजन]] रिसीवर, [[:hi:वोल्टता कन्वर्टर|वोल्टेज कन्वर्टर्स]] और [[:hi:रडार|रडार]] उपकरण में उपयोग किया जाता है। वे व्यापक रूप से उपग्रह रिसीवरों में, कम शक्ति वाले एम्पलीफायरों में और रक्षा उद्योग में उपयोग किए जाते हैं।


== लाभ ==
== लाभ ==
एचईएमटी के लाभ यह है कि उनके पास उच्च वृद्धि है, यह उन्हें प्रवर्धकों ( एम्पलीफायर ) के रूप में उपयोगी बनाता है। उच्च स्विचिंग गति जो प्राप्त की जाती है क्योंकि एमओडीएफईटी (MODFET) में मुख्य चार्ज वाहक बहुसंख्यक वाहक होते हैं और अल्पसंख्यक वाहक महत्वपूर्ण रूप से शामिल नहीं होते हैं और शोर बेहद कम मान के होते हैं, क्योंकि इन उपकरणों में वर्तमान भिन्नता अन्य की तुलना में कम है।
HEMTs के लाभ यह है कि उनके पास उच्च वृद्धि है, यह उन्हें प्रवर्धकों ( एम्पलीफायर ) के रूप में उपयोगी बनाता है। उच्च स्विचिंग गति जो प्राप्त की जाती है क्योंकि MODFETs में मुख्य चार्ज वाहक बहुसंख्यक वाहक होते हैं और अल्पसंख्यक वाहक महत्वपूर्ण रूप से शामिल नहीं होते हैं व ध्वनि कम मान की होती है, क्योंकि इन उपकरणों में वर्तमान भिन्नता अन्य की तुलना में कम है।


== इतिहास ==
== इतिहास ==
उच्च-इलेक्ट्रॉन-गतिशीलता ट्रांजिस्टर ( एचईएमटी ) के आविष्कार का श्रेय आमतौर पर भौतिक विज्ञानी ताकाशी मिमुरा (三村 ) को दिया जाता है, जो जापान में फुजित्सु में काम करते हैं।<ref name="Mimura2002">{{cite journal |last1=Mimura |first1=Takashi  |title=The early history of the high electron mobility transistor (HEMT) |journal=IEEE Transactions on Microwave Theory and Techniques |date=March 2002 |volume=50 |issue=3 |pages=780–782 |doi=10.1109/22.989961|bibcode=2002ITMTT..50..780M }}</ref> [[ GAAS |GAAS]] (गैलियम आर्सेनाइड) [[ MOSFET ]]( मेटल-ऑक्साइड-सेमिकंडक्टर फील्ड-इफेक्ट ट्रांजिस्टर ) था, जिसे मिमुरा 1977 से मानक [[ सिलिकॉन | सिलिकॉन]] (Si) MOSFET के विकल्प के रूप में शोध कर रहे थे। उन्होंने स्प्रिंग 1979 में एचईएमटी की कल्पना की, जब उन्होंने संयुक्त राज्य अमेरिका के[[ बेल लैब्स ]]में विकसित एक मॉड्यूलेटेड-डॉप्ड हेटेरोजंक्शन [[ सुपरलैटिस ]]के बारे में पढ़ा।<ref name="Mimura2002"/>  रे डिंगल द्वारा, [[ आर्थर गोसार्ड |आर्थर गोसार्ड]] और[[ होर्स्ट स्टॉमर | होर्स्ट स्टॉमर,]] जिन्होंने अप्रैल 1978 में [[ पेटेंट |पेटेंट]] दायर किया।<ref>{{cite patent | country=US | number=4163237 | title=High mobility multilayered heterojunction devices employing modulated doping | inventor=Ray Dingle, Arthur Gossard and Horst Störmer}}</ref> मिमुरा ने अगस्त 1979 में एक HEMT के लिए एक पेटेंट प्रकटीकरण दायर किया, और और फिर उस वर्ष के अंत में एक [[ पेटेंट ]]<ref>{{cite journal |last1=Mimura |first1=Takashi |title=Development of High Electron Mobility Transistor |journal=Japanese Journal of Applied Physics |date=8 December 2005 |volume=44 |issue=12R |pages=8263–8268 |doi=10.1143/JJAP.44.8263 |bibcode=2005JaJAP..44.8263M |s2cid=3112776 |url=http://pdfs.semanticscholar.org/f7bd/535554c853c7b2502acaed610e5bd7589a5a.pdf |archive-url=https://web.archive.org/web/20190308183933/http://pdfs.semanticscholar.org/f7bd/535554c853c7b2502acaed610e5bd7589a5a.pdf |url-status=dead |archive-date=8 March 2019 |issn=1347-4065}}</ref> दायर किया। एचईएमटी डिवाइस का पहला प्रदर्शन, डी-एचईएमटी, मई 1980 में मिमुरा और सतोशी हियामिज़ु द्वारा प्रस्तुत किया गया था, और फिर उन्होंने बाद में अगस्त 1980 में पहले -एचईएमटी का प्रदर्शन किया।<ref name="Mimura2002"/>
उच्च-इलेक्ट्रॉन-गतिशीलता ट्रांजिस्टर (HEMT) के आविष्कार का श्रेय सामान्यत: भौतिक विज्ञानी ताकाशी मिमुरा (三村 ) को दिया जाता है, जो जापान के फुजित्सु में काम करते थे।<ref name="Mimura2002">{{cite journal |last1=Mimura |first1=Takashi  |title=The early history of the high electron mobility transistor (HEMT) |journal=IEEE Transactions on Microwave Theory and Techniques |date=March 2002 |volume=50 |issue=3 |pages=780–782 |doi=10.1109/22.989961|bibcode=2002ITMTT..50..780M }}</ref> [[ GAAS |GAAS]] (गैलियम आर्सेनाइड) [[ MOSFET ]]( मेटल-ऑक्साइड-सेमिकंडक्टर फील्ड-इफेक्ट ट्रांजिस्टर ), जिसे मिमुरा 1977 से मानक [[ सिलिकॉन | सिलिकॉन]] (Si) MOSFET के विकल्प के रूप में शोध कर रहे थे। उन्होंने वसंत 1979 में HEMT की कल्पना की। जब उन्होंने संयुक्त राज्य अमेरिका के[[ बेल लैब्स ]]में विकसित एक मॉड्यूलेटेड-डॉप्ड हेटेरोजंक्शन [[ सुपरलैटिस ]]के बारे में पढ़ा।<ref name="Mimura2002"/>  रे डिंगल, [[ आर्थर गोसार्ड |आर्थर गोसार्ड]] और[[ होर्स्ट स्टॉमर | होर्स्ट स्टॉमर]] ने अप्रैल 1978 में [[ पेटेंट |पेटेंट]] दायर किया था।<ref>{{cite patent | country=US | number=4163237 | title=High mobility multilayered heterojunction devices employing modulated doping | inventor=Ray Dingle, Arthur Gossard and Horst Störmer}}</ref> मिमुरा ने अगस्त 1979 में HEMT के लिए एक पेटेंट प्रकटीकरण दायर किया और फिर उस वर्ष के अंत में एक और [[ पेटेंट ]]<ref>{{cite journal |last1=Mimura |first1=Takashi |title=Development of High Electron Mobility Transistor |journal=Japanese Journal of Applied Physics |date=8 December 2005 |volume=44 |issue=12R |pages=8263–8268 |doi=10.1143/JJAP.44.8263 |bibcode=2005JaJAP..44.8263M |s2cid=3112776 |url=http://pdfs.semanticscholar.org/f7bd/535554c853c7b2502acaed610e5bd7589a5a.pdf |archive-url=https://web.archive.org/web/20190308183933/http://pdfs.semanticscholar.org/f7bd/535554c853c7b2502acaed610e5bd7589a5a.pdf |url-status=dead |archive-date=8 March 2019 |issn=1347-4065}}</ref> दायर किया। HEMT डिवाइस का पहला प्रदर्शन, D-HEMT, मई 1980 में मिमुरा और सतोशी हियामिज़ु द्वारा प्रस्तुत किया गया और फिर उनके द्वारा बाद में अगस्त 1980 में पहले E-HEMT का प्रदर्शन किया।<ref name="Mimura2002"/>


स्वतंत्र रूप से, डेनियल डेलागेब्यूड्यूफ और ट्रान्स लिन्ह नुयेन ने फ्रांस में [[ थॉमसन-सीएसएफ ]]में काम करते हुए मार्च 1979 में इसी प्रकार के फील्ड-इफेक्ट ट्रांजिस्टर के लिए एक पेटेंट दायर किया था। यह एक प्रभाव के रूप में बेल लैब्स पेटेंट का भी हवाला देता है।<ref>{{cite patent|country=US |number=4471366 |title=Field effect transistor with high cut-off frequency and process for forming same |inventor=Daniel Delagebeaudeuf and Tranc L. Nuyen}} ([http://www.google.com/patents/us4471366 Google पेटेंट]</ref> "व्युत्क्रमित " एचईएमटी का पहला प्रदर्शन अगस्त 1980 में डेलागेब्यूड्यूफ और नुयेन द्वारा प्रस्तुत किया गया था।<ref name="Mimura2002"/>
स्वतंत्र रूप से, डेनियल डेलागेब्यूड्यूफ और ट्रान्स लिन्ह नुयेन ने फ्रांस में [[ थॉमसन-सीएसएफ ]]में काम करते हुए मार्च 1979 में इसी प्रकार के फील्ड-इफेक्ट ट्रांजिस्टर के लिए एक पेटेंट दायर किया था। यह एक प्रभाव के रूप में बेल लैब्स पेटेंट का भी हवाला देता है।<ref>{{cite patent|country=US |number=4471366 |title=Field effect transistor with high cut-off frequency and process for forming same |inventor=Daniel Delagebeaudeuf and Tranc L. Nuyen}} ([http://www.google.com/patents/us4471366 Google पेटेंट]</ref> "व्युत्क्रमित " HEMT का पहला प्रदर्शन अगस्त 1980 में डेलागेब्यूड्यूफ और नुयेन द्वारा प्रस्तुत किया गया था।<ref name="Mimura2002"/>


एक GaN-आधारित HEMT का सबसे पहला उल्लेख खान एट अल द्वारा 1993 के एप्लाइड फिजिक्स लेटर्स लेख में है।<ref>{{Cite journal|url=https://aip.scitation.org/doi/10.1063/1.109775|doi=10.1063/1.109775|title=High electron mobility transistor based on a GaN‐AlxGa1−xN heterojunction|year=1993|last1=Asif Khan|first1=M.|last2=Bhattarai|first2=A.|last3=Kuznia|first3=J. N.|last4=Olson|first4=D. T.|journal=Applied Physics Letters|volume=63|issue=9|pages=1214–1215|bibcode=1993ApPhL..63.1214A}}</ref> बाद में, 2004 में, पी.डी. ये. और बी. यांग एट अल ने एक [[ जीएएन |जीएएन]] (गैलियम नाइट्राइड) [[ मेटल-ऑक्साइड-सेमिकंडक्टर ]]( धातु-ऑक्साइड-अर्धचालक) HEMT (MOS-HEMT) का प्रदर्शन किया। इसने गेट डाइइलेक्ट्रिक और सतह निष्क्रियता दोनों के लिए [[ परमाणु परत के बयान |परमाणु परत के बयान]] ( एटॉमिक लेयर डिपोजिशन ) (ALD) [[ एल्यूमीनियम ऑक्साइड |एल्यूमीनियम ऑक्साइड]] (Al2O3) फिल्म का इस्तेमाल किया।<ref>{{CITE जर्नल |  last1 = ye |  First1 = p।D. |  last2 = यांग |  First2 = b।|  last3 = NG |  First3 = k।K. |  Last4 = Bude |  First4 = j।|  last5 = विल्क |  First5 = g।D. |  Last6 = HALDER |  First6 = s।|  last7 = hwang |  First7 = j।C. M. |  शीर्षक = GAN MOS-HEMT परमाणु परत का उपयोग करके AL2O3 गेट ढांकता हुआ और सतह पास होने के रूप में |  जर्नल = हाई स्पीड इलेक्ट्रॉनिक्स और सिस्टम्स के इंटरनेशनल जर्नल |  दिनांक = 1 सितंबर 2004 |  वॉल्यूम = 14 |  अंक = 3 |  पेज = 791-796|  doi = 10.1142/s0129156404002843 |  ISSN = 0129-1564}</ref>
एक GaN-आधारित HEMT का सबसे पहला उल्लेख खान एट अल द्वारा 1993 के एप्लाइड फिजिक्स लेटर्स लेख में है।<ref>{{Cite journal|url=https://aip.scitation.org/doi/10.1063/1.109775|doi=10.1063/1.109775|title=High electron mobility transistor based on a GaN‐AlxGa1−xN heterojunction|year=1993|last1=Asif Khan|first1=M.|last2=Bhattarai|first2=A.|last3=Kuznia|first3=J. N.|last4=Olson|first4=D. T.|journal=Applied Physics Letters|volume=63|issue=9|pages=1214–1215|bibcode=1993ApPhL..63.1214A}}</ref> बाद में, 2004 में, पी.डी. ये. और बी. यांग एट अल ने एक [[ जीएएन |जीएएन]] (गैलियम नाइट्राइड) [[ मेटल-ऑक्साइड-सेमिकंडक्टर ]]( धातु-ऑक्साइड-अर्धचालक) HEMT (MOS-HEMT) का प्रदर्शन किया। इसने गेट डाइइलेक्ट्रिक और सतह निष्क्रियता दोनों के लिए [[ परमाणु परत के बयान |परमाणु परत के बयान]] ( एटॉमिक लेयर डिपोजिशन ) (ALD) [[ एल्यूमीनियम ऑक्साइड |एल्यूमीनियम ऑक्साइड]] (Al2O3) फिल्म का इस्तेमाल किया।<ref>{{CITE जर्नल |  last1 = ye |  First1 = p।D. |  last2 = यांग |  First2 = b।|  last3 = NG |  First3 = k।K. |  Last4 = Bude |  First4 = j।|  last5 = विल्क |  First5 = g।D. |  Last6 = HALDER |  First6 = s।|  last7 = hwang |  First7 = j।C. M. |  शीर्षक = GAN MOS-HEMT परमाणु परत का उपयोग करके AL2O3 गेट ढांकता हुआ और सतह पास होने के रूप में |  जर्नल = हाई स्पीड इलेक्ट्रॉनिक्स और सिस्टम्स के इंटरनेशनल जर्नल |  दिनांक = 1 सितंबर 2004 |  वॉल्यूम = 14 |  अंक = 3 |  पेज = 791-796|  doi = 10.1142/s0129156404002843 |  ISSN = 0129-1564}</ref>


== वैचारिक विश्लेषण ==
== वैचारिक विश्लेषण ==
एचईएमटी [[ हेटेरोजंक्शन ]]हैं। इसका मतलब है कि इस्तेमाल किए गए अर्धचालकों में अलग-अलग [[ बैंड गैप |बैंड गैप]] ( बैंड अंतराल ) होते हैं। उदाहरण के लिए, सिलिकॉन में 1.1 [[ इलेक्ट्रॉन वोल्ट |इलेक्ट्रॉन वोल्ट]] (eV) का बैंड गैप होता है, जबकि जर्मेनियम में 0.67 eV का बैंड गैप होता है। जब एक हेटेरोजंक्शन बनता है, तो चालन बैंड और[[ वैलेंस बैंड | वैलेंस बैंड]] को पूरे सामग्री में एक निरंतर स्तर बनाने के लिए बेंड होना चाहिए।
HEMT[[ हेटेरोजंक्शन ]]हैं। इसका मतलब है कि इस्तेमाल किए गए अर्धचालकों में अलग-अलग [[ बैंड गैप |बैंड गैप]] ( बैंड अंतराल ) होते हैं। उदाहरण के लिए, सिलिकॉन में 1.1 [[ इलेक्ट्रॉन वोल्ट |इलेक्ट्रॉन वोल्ट]] (eV) का बैंड गैप होता है, जबकि जर्मेनियम में 0.67 eV का बैंड गैप होता है। जब एक हेटेरोजंक्शन बनता है, तो चालन बैंड और[[ वैलेंस बैंड | वैलेंस बैंड]] को पूरे सामग्री में एक निरंतर स्तर बनाने के लिए बेंड होना चाहिए।


एचईएमटीएस की असाधारण [[ इलेक्ट्रॉन मोबिलिटी | कैरियर मोबिलिटी]] और स्विचिंग स्पीड निम्नलिखित स्थितियों से आती है, वाइड बैंड तत्व को दाता परमाणुओं के साथ डोप किया जाता है, प्रकार इसके चालन बैंड में अतिरिक्त [[ इलेक्ट्रॉन |इलेक्ट्रॉन]] होते हैं। कम ऊर्जा वाली अवस्था की उपलब्धता के कारण ये इलेक्ट्रॉन आसन्न संकीर्ण बैंड सामग्री के चालन बैंड में फैल जाएंगे। इलेक्ट्रॉनों की गति क्षमता में परिवर्तन का कारण बनेगी और इस प्रकार सामग्री के बीच एक विद्युत क्षेत्र होगा। विद्युत क्षेत्र इलेक्ट्रॉनों को वाइड बैंड तत्व के चालन बैंड में वापस धकेल देगा। प्रसार प्रक्रिया तब तक जारी रहती है जब तक कि इलेक्ट्रॉन प्रसार और इलेक्ट्रॉन बहाव एक-दूसरे को संतुलित नहीं कर लेते, एक [[ पी -एन जंक्शन |पी -एन जंक्शन]] के समान संतुलन में एक जंक्शन बनाते हैं। ध्यान दें कि अब अनडॉप्ड संकीर्ण बैंड गैप सामग्री में अधिक बहुमत चार्ज वाहक हैं। ध्यान दें कि तथ्य यह है कि चार्ज वाहक बहुसंख्यक वाहक हैं, उच्च स्विचिंग गति उत्पन्न करते हैं और तथ्य यह है कि कम बैंड गैप सेमीकंडक्टर अनडॉप्ड है इसका मतलब है कि स्कैटरिंग का कारण बनने के लिए कोई दाता परमाणु नहीं हैं और इस प्रकार उच्च गतिशीलता उत्पन्न करते हैं।
HEMTs की असाधारण [[ इलेक्ट्रॉन मोबिलिटी | कैरियर मोबिलिटी]] और स्विचिंग स्पीड निम्नलिखित स्थितियों से आती है, वाइड बैंड तत्व को दाता परमाणुओं के साथ डोप किया जाता है, इस प्रकार इसके चालन बैंड में अतिरिक्त [[ इलेक्ट्रॉन |इलेक्ट्रॉन]] होते हैं। कम ऊर्जा वाली अवस्था की उपलब्धता के कारण ये इलेक्ट्रॉन आसन्न संकीर्ण बैंड सामग्री के चालन बैंड में फैल जाएंगे। इलेक्ट्रॉनों की गति क्षमता में परिवर्तन का कारण बनेगी और इस प्रकार सामग्री के बीच एक विद्युत क्षेत्र होगा। विद्युत क्षेत्र इलेक्ट्रॉनों को वाइड बैंड तत्व के चालन बैंड में वापस धकेल देगा। प्रसार प्रक्रिया तब तक जारी रहती है जब तक कि इलेक्ट्रॉन प्रसार और इलेक्ट्रॉन बहाव एक-दूसरे को संतुलित नहीं कर लेते, एक [[ पी -एन जंक्शन |पी -एन जंक्शन]] के समान संतुलन में एक जंक्शन बनाते हैं। ध्यान दें कि अब अनडॉप्ड संकीर्ण बैंड गैप सामग्री में अधिक बहुमत चार्ज वाहक हैं। ध्यान दें कि तथ्य यह है कि चार्ज वाहक बहुसंख्यक वाहक हैं, उच्च स्विचिंग गति उत्पन्न करते हैं और तथ्य यह है कि कम बैंड गैप सेमीकंडक्टर अनडॉप्ड है इसका मतलब है कि स्कैटरिंग का कारण बनने के लिए कोई दाता परमाणु नहीं हैं और इस प्रकार उच्च गतिशीलता उत्पन्न करते हैं।


एचईएमटी का एक महत्वपूर्ण पहलू यह है कि चालन और वैलेंस बैंड में बैंड विच्छेदन को अलग से संशोधित किया जा सकता है। यह उपकरण के अंदर और बाहर वाहक के प्रकार को नियंत्रित करने की अनुमति देता है। चूंकि एचईएमटीएस को मुख्य वाहक होने के लिए इलेक्ट्रॉनों की आवश्यकता होती है, इसलिए एक ग्रेडेड डोपिंग को एक सामग्री में से एक में लागू किया जा सकता है।  इस प्रकार चालन बैंड असंततता को छोटा कर देता है और वैलेंस बैंड असंततता को समान रखता है। वाहक के इस प्रसार से संकीर्ण बैंड गैप सामग्री के अंदर दो क्षेत्रों की सीमा के साथ इलेक्ट्रॉनों के संचय की ओर जाता है। इन उपकरणों में इलेक्ट्रॉनों के संचय से बहुत अधिक धारा प्रवाहित होती है। संचित इलेक्ट्रॉनों को [[ 2DEG ]]या दो-आयामी इलेक्ट्रॉन गैस के रूप में भी जाना जाता है।
HEMTs का एक महत्वपूर्ण पहलू यह है कि चालन और वैलेंस बैंड में बैंड विच्छेदन को अलग से संशोधित किया जा सकता है। यह उपकरण के अंदर और बाहर वाहक के प्रकार को नियंत्रित करने की अनुमति देता है। चूंकि HEMTs को मुख्य वाहक होने के लिए इलेक्ट्रॉनों की आवश्यकता होती है, इसलिए एक ग्रेडेड डोपिंग को एक सामग्री में से एक में लागू किया जा सकता है।  इस प्रकार चालन बैंड असंततता को छोटा कर देता है और वैलेंस बैंड असंततता को समान रखता है। वाहक के इस प्रसार से संकीर्ण बैंड गैप सामग्री के अंदर दो क्षेत्रों की सीमा के साथ इलेक्ट्रॉनों के संचय की ओर जाता है। इन उपकरणों में इलेक्ट्रॉनों के संचय से बहुत अधिक धारा प्रवाहित होती है। संचित इलेक्ट्रॉनों को [[ 2DEG ]]या दो-आयामी इलेक्ट्रॉन गैस के रूप में भी जाना जाता है।


शब्द [[ मॉड्यूलेशन डोपिंग |मॉड्यूलेशन डोपिंग]] इस तथ्य को संदर्भित करता है कि डोपेंट वर्तमान में ले जाने वाले इलेक्ट्रॉनों से एक अलग क्षेत्र में स्थानिक रूप से होते हैं। इस तकनीक का आविष्कार[[ होर्स्ट स्टॉमर | होर्स्ट स्टॉमर]] द्वारा[[ बेल लैब्स | बेल लैब्स]] पर किया गया था।
शब्द [[ मॉड्यूलेशन डोपिंग |मॉड्यूलेशन डोपिंग]] इस तथ्य को संदर्भित करता है कि डोपेंट वर्तमान में ले जाने वाले इलेक्ट्रॉनों से एक अलग क्षेत्र में स्थानिक रूप से होते हैं। इस तकनीक का आविष्कार[[ होर्स्ट स्टॉमर | होर्स्ट स्टॉमर]] द्वारा[[ बेल लैब्स | बेल लैब्स]] पर किया गया था।


== व्याख्या ==
== व्याख्या ==
चालन की अनुमति देने के लिए, अर्धचालकों को अशुद्धियों के साथ डोप किया जाता है। जो गतिशील इलेक्ट्रॉनों या [[इलेक्ट्रॉन होल|  छेद]] ( होल्स ) को दान करते हैं। हालांकि, इन इलेक्ट्रॉनों को पहले स्थान पर उत्पन्न करने के लिए उपयोग की जाने वाली अशुद्धियों ( डोपेंट्स ) के साथ टकराव के माध्यम से धीमा कर दिया जाता है। एचईएमटी उच्च गतिशीलता इलेक्ट्रॉनों के उपयोग के माध्यम से इससे बचते हैं जो एक उच्च डोप्ड विस्तृत ( वाइड) - बैंडगैप एन-टाइप डोनर-सप्लाई लेयर ( उदाहरण के लिए एल्युमिनियम गैलियम आर्सेनाइड (AlGaAs)) और एक गैर-डोप्ड संकीर्ण-बैंडगैप चैनल परत के साथ बिना किसी डोपेंट अशुद्धियों के साथ उत्पन्न होते हैं (इस मामले में GaAs)।
चालन की अनुमति देने के लिए, अर्धचालकों को अशुद्धियों के साथ डोप किया जाता है। जो गतिशील इलेक्ट्रॉनों या [[इलेक्ट्रॉन होल|  छेद]] ( होल्स ) को दान करते हैं। हालांकि, इन इलेक्ट्रॉनों को पहले स्थान पर उत्पन्न करने के लिए उपयोग की जाने वाली अशुद्धियों ( डोपेंट्स ) के साथ टकराव के माध्यम से धीमा कर दिया जाता है। HEMTs उच्च गतिशीलता इलेक्ट्रॉनों के उपयोग के माध्यम से इससे बचते हैं जो एक उच्च डोप्ड विस्तृत ( वाइड) - बैंडगैप एन-टाइप डोनर-सप्लाई लेयर ( उदाहरण के लिए एल्युमिनियम गैलियम आर्सेनाइड (AlGaAs)) और एक गैर-डोप्ड संकीर्ण-बैंडगैप चैनल परत के साथ बिना किसी डोपेंट अशुद्धियों के साथ उत्पन्न होते हैं (इस मामले में GaAs)।


पतली n-प्रकार की AlGaAs परत में उत्पन्न इलेक्ट्रॉन पूरी तरह से जीएएएस (GaAs) परत में गिरते हैं और एक क्षीण AlGaAs परत बनाते हैं, क्योंकि विभिन्न बैंड-गैप सामग्रियों द्वारा निर्मित हेटेरोजंक्शन GaAs पृष्ठ पर चालन बैंड में एक क्वांटम वेल ( एक स्टीप कैनियन ) बनाता है। जहां इलेक्ट्रॉन बिना किसी अशुद्धता के टकराए जल्दी से आगे बढ़ सकते हैं, क्योंकि GaAs परत अनडॉप्ड है जिससे वे बच नहीं सकते हैं। इसका प्रभाव बहुत उच्च सांद्रता वाले अत्यधिक मोबाइल संवाहक इलेक्ट्रॉनों की एक बहुत पतली परत बनाना है, जिससे चैनल को बहुत कम [[ प्रतिरोधकता]] या इसे दूसरे तरीके से कहें तो "उच्च इलेक्ट्रॉन गतिशीलता" मिलती है।
पतली n-प्रकार की AlGaAs परत में उत्पन्न इलेक्ट्रॉन पूरी तरह से GaAs परत में गिरते हैं और एक क्षीण AlGaAs परत बनाते हैं, क्योंकि विभिन्न बैंड-गैप सामग्रियों द्वारा निर्मित हेटेरोजंक्शन GaAs पृष्ठ पर चालन बैंड में एक क्वांटम वेल ( एक स्टीप कैनियन ) बनाता है। जहां इलेक्ट्रॉन बिना किसी अशुद्धता के टकराए जल्दी से आगे बढ़ सकते हैं, क्योंकि GaAs परत अनडॉप्ड है जिससे वे बच नहीं सकते हैं। इसका प्रभाव बहुत उच्च सांद्रता वाले अत्यधिक मोबाइल संवाहक इलेक्ट्रॉनों की एक बहुत पतली परत बनाना है, जिससे चैनल को बहुत कम [[ प्रतिरोधकता]] या इसे दूसरे तरीके से कहें तो "उच्च इलेक्ट्रॉन गतिशीलता" मिलती है।


=== इलेक्ट्रोस्टैटिक तंत्र ( मेकैनिज्म )===
=== इलेक्ट्रोस्टैटिक तंत्र ( मेकैनिज्म )===
Line 41: Line 41:


=== विकास प्रौद्योगिकी द्वारा: पीएचईएमटी (Phemt) और एमएचईएमटी (Mhemt) ===
=== विकास प्रौद्योगिकी द्वारा: पीएचईएमटी (Phemt) और एमएचईएमटी (Mhemt) ===
आदर्श रूप से, एक हेटेरोजंक्शन के लिए उपयोग की जाने वाली दो अलग-अलग सामग्रियों में एक ही [[ जाली स्थिर ]]( परमाणुओं के बीच अंतर ) होगा।अभ्यास में, जाली ( लैटिस्‌ ) स्थिरांक आमतौर पर थोड़ा अलग होते हैं ( जैसे GaAs पर AlGaAs ), जिसके परिणामस्वरूप क्रिस्टल दोष होते हैं। एक सादृश्य के रूप में, दो प्लास्टिक कंघो ( कॉम्ब्स ) को एक साथ थोड़ा अलग अंतर के साथ धकेलने की कल्पना करें। नियमित अंतराल पर, आप देखेंगे कि दो दांत आपस में टकराते हैं। अर्धचालकों में, ये असंतुलन गहरे स्तर के जाल [[ डीप-लेवल ट्रैप |डीप-लेवल ट्रैप]] बनाते हैं और डिवाइस के प्रदर्शन को बहुत कम करते हैं।
आदर्श रूप से, एक हेटेरोजंक्शन के लिए उपयोग की जाने वाली दो अलग-अलग सामग्रियों में एक ही [[ जाली स्थिर ]]( परमाणुओं के बीच अंतर ) होगा। अभ्यास में, जाली ( लैटिस्‌ ) स्थिरांक आमतौर पर थोड़ा अलग होते हैं ( जैसे GaAs पर AlGaAs ), जिसके परिणामस्वरूप क्रिस्टल दोष होते हैं। एक सादृश्य के रूप में, दो प्लास्टिक कंघो ( कॉम्ब्स ) को एक साथ थोड़ा अलग अंतर के साथ धकेलने की कल्पना करें। नियमित अंतराल पर, आप देखेंगे कि दो दांत आपस में टकराते हैं। अर्धचालकों में, ये असंतुलन गहरे स्तर के जाल [[ डीप-लेवल ट्रैप |डीप-लेवल ट्रैप]] बनाते हैं और डिवाइस के प्रदर्शन को बहुत कम करते हैं।


एक एचईएमटी जहां इस नियम का उल्लंघन किया जाता है उसे पीएचईएमटी '''(phemt)''' या स्यूडोमोर्फिक एचईएमटी '''(pseudomorphic HMET)''' कहा जाता है। यह सामग्री में से एक की एक अत्यंत पतली परत का उपयोग करके प्राप्त किया जाता है - इतना पतला कि क्रिस्टल जाली अन्य सामग्री को फिट करने के लिए बस फैल जाती है। यह तकनीक ट्रांजिस्टर के निर्माण को बड़े [[ बैंडगैप | बैंडगैप]] अंतर के साथ संभव बनाती है, जिससे उन्हें बेहतर प्रदर्शन मिलता है।<ref name=Cooke2006>{{cite web|url=http://www.semiconductor-today.com/features/Semiconductor%20Today%20-%20Transcending%20frequency%20and%20integration%20limits.pdf|title=Indium Phosphide: Transcending frequency and integration limits. Semiconductor TODAY Compounds&AdvancedSilicon • Vol. 1 • Issue 3 • September 2006}}</ref>
एक एचईएमटी जहां इस नियम का उल्लंघन किया जाता है उसे '''phemt''' या स्यूडोमोर्फिक '''HMET''' कहा जाता है। यह सामग्री में से एक की एक अत्यंत पतली परत का उपयोग करके प्राप्त किया जाता है - इतना पतला कि क्रिस्टल जाली अन्य सामग्री को फिट करने के लिए बस फैल जाती है। यह तकनीक ट्रांजिस्टर के निर्माण को बड़े [[ बैंडगैप | बैंडगैप]] अंतर के साथ संभव बनाती है, जिससे उन्हें बेहतर प्रदर्शन मिलता है।<ref name=Cooke2006>{{cite web|url=http://www.semiconductor-today.com/features/Semiconductor%20Today%20-%20Transcending%20frequency%20and%20integration%20limits.pdf|title=Indium Phosphide: Transcending frequency and integration limits. Semiconductor TODAY Compounds&AdvancedSilicon • Vol. 1 • Issue 3 • September 2006}}</ref>


विभिन्न जाली स्थिरांक की सामग्री का उपयोग करने का दूसरा तरीका उनके बीच एक प्रतिरोधी ( बफर ) परत रखना है। यह एमएचईएमटी या मेटामॉर्फिक एचईएमटी में किया जाता है जो पीएचईएमटी की उन्नति है। प्रतिरोधी ( बफर ) परत एलआईएनएएस (AlInAs) से बनी होती है, जिसमें इंडियम सांद्रता को वर्गीकृत किया जाता है ताकि यह GaAs सब्सट्रेट और GaInAs चैनल दोनों के जाली स्थिरांक से मेल खा सके। यह लाभ लाता है कि व्यावहारिक रूप से चैनल में किसी भी इंडियम एकाग्रता को महसूस किया जा सकता है, इसलिए उपकरणों को विभिन्न अनुप्रयोगों के लिए अनुकूलित किया जा सकता है ( कम इंडियम एकाग्रता कम [[ शोर (इलेक्ट्रॉनिक) | शोर]] व उच्च इंडियम एकाग्रता उच्च[[ लाभ (इलेक्ट्रॉनिक्स) देता है|    लाभ]]  प्रदान करता है )।{{cn|date=January 2016}}
विभिन्न जाली स्थिरांक की सामग्री का उपयोग करने का दूसरा तरीका उनके बीच एक प्रतिरोधी ( बफर ) परत रखना है। यह '''mHEMT''' या मेटामॉर्फिक HEMT में किया जाता है जो pHEMT की उन्नति है। प्रतिरोधी ( बफर ) परत AlInAs से बनी होती है, जिसमें इंडियम सांद्रता को वर्गीकृत किया जाता है ताकि यह GaAs सब्सट्रेट और GaInAs चैनल दोनों के जाली स्थिरांक से मेल खा सके। यह लाभ लाता है कि व्यावहारिक रूप से चैनल में किसी भी इंडियम एकाग्रता को महसूस किया जा सकता है, इसलिए उपकरणों को विभिन्न अनुप्रयोगों के लिए अनुकूलित किया जा सकता है ( कम इंडियम एकाग्रता कम [[ शोर (इलेक्ट्रॉनिक) | शोर]] व उच्च इंडियम एकाग्रता उच्च[[ लाभ (इलेक्ट्रॉनिक्स) देता है|    लाभ]]  प्रदान करता है )।{{cn|date=January 2016}}


=== विद्युत व्यवहार द्वारा: eHEMT और dHEMT ===
=== विद्युत व्यवहार द्वारा: eHEMT और dHEMT ===
सेमीकंडक्टर हेटेरो-इंटरफेस से बने एचईएमटी में इंटरफेसियल नेट पोलराइजेशन चार्ज की कमी होती है, जैसे कि AlGaAs / GaAs, को गेट की ओर इलेक्ट्रॉनों को आकर्षित करने के लिए AlGaAs बैरियर में धनात्मक गेट वोल्टेज या उपयुक्त डोनर-डोपिंग की आवश्यकता होती है, जो 2डी इलेक्ट्रॉन गैस बनाता है और इलेक्ट्रॉन धाराओं के चालन को सक्षम बनाता है। यह व्यवहार विस्तार ( एन्हांसमेंट ) मोड में आमतौर पर इस्तेमाल किए जाने वाले फ़ील्ड-इफेक्ट ट्रांजिस्टर के समान है, और ऐसे उपकरण को एन्हांसमेंट HEMT, या''' ehemt '''कहा जाता है।
सेमीकंडक्टर हेटेरो-इंटरफेस से बने HEMTs में इंटरफेसियल नेट पोलराइजेशन चार्ज की कमी होती है, जैसे कि AlGaAs / GaAs, को गेट की ओर इलेक्ट्रॉनों को आकर्षित करने के लिए AlGaAs बैरियर में धनात्मक गेट वोल्टेज या उपयुक्त डोनर-डोपिंग की आवश्यकता होती है, जो 2डी इलेक्ट्रॉन गैस बनाता है और इलेक्ट्रॉन धाराओं के चालन को सक्षम बनाता है। यह व्यवहार विस्तार ( एन्हांसमेंट ) मोड में आमतौर पर इस्तेमाल किए जाने वाले फ़ील्ड-इफेक्ट ट्रांजिस्टर के समान है, और ऐसे उपकरण को एन्हांसमेंट HEMT, या''' ehemt '''कहा जाता है।


जब एक HEMT को [[ ALGAN ]]/[[ GAN ]]से बनाया जाता है, तो उच्च शक्ति घनत्व और भंग ( ब्रेकडाउन ) वोल्टेज प्राप्त किया जा सकता है। नाइट्राइड्स में कम समरूपता के साथ अलग-अलग क्रिस्टल संरचना भी होती है, अर्थात् एक [[ Wurtzite क्रिस्टल संरचना | Wurtzite]], जिसमें अंतर्निहित विद्युत ध्रुवीकरण होता है। क्योंकि यह ध्रुवीकरण [[ GAN ]]चैनल लेयर और [[ Algan ]]बैरियर लेयर के बीच भिन्न होता है, 0.01-0.03 C/m² के क्रम में असम्पीडित चार्ज की एक शीट बनती है। क्रिस्टल ओरिएंटेशन के कारण सामान्यत: एपिटैक्सियल ग्रोथ (गैलियम-फेस) के लिए उपयोग किया जाता है और यंत्र ( डिवाइस ) ज्यामिति फैब्रिकेशन ( गेट ऑन टॉप ) के लिए अनुकूल है, यह चार्ज शीट धनात्मक है, जिससे 2 डी इलेक्ट्रॉन गैस बनती है भले ही कोई डोपिंग न हो। इस तरह के ट्रांजिस्टर सामान्य रूप से चालू होते हैं, और केवल तभी बंद होगा, जब गेट नकारात्मक रूप से बाइस्ड हो। इस प्रकार के HEMT को रिक्त HEMT, या dHEMT के रूप में जाना जाता है। स्वीकारकर्ताओं (जैसे[[ मैग्नीशियम |  mg]] ) के साथ बाधा के पर्याप्त डोपिंग द्वारा, बिल्ट-इन चार्ज को अधिक परम्परागत eHEMT ऑपरेशन को बहाल करने के लिए आपूर्ति की जाती है, हालांकि चैनल में डोपेंट प्रसार के कारण नाइट्राइड्स का उच्च-घनत्व पी-डोपिंग तकनीकी रूप से चुनौतीपूर्ण है।
जब एक HEMT को [[ ALGAN ]]/[[ GAN ]]से बनाया जाता है, तो उच्च शक्ति घनत्व और भंग ( ब्रेकडाउन ) वोल्टेज प्राप्त किया जा सकता है। नाइट्राइड्स में कम समरूपता के साथ अलग-अलग क्रिस्टल संरचना भी होती है, अर्थात् एक [[ Wurtzite क्रिस्टल संरचना | Wurtzite]], जिसमें अंतर्निहित विद्युत ध्रुवीकरण होता है। क्योंकि यह ध्रुवीकरण [[ GAN ]]चैनल लेयर और [[ Algan ]]बैरियर लेयर के बीच भिन्न होता है, 0.01-0.03 C/m² के क्रम में असम्पीडित चार्ज की एक शीट बनती है। क्रिस्टल ओरिएंटेशन के कारण सामान्यत: एपिटैक्सियल ग्रोथ (गैलियम-फेस) के लिए उपयोग किया जाता है और यंत्र ( डिवाइस ) ज्यामिति फैब्रिकेशन ( गेट ऑन टॉप ) के लिए अनुकूल है, यह चार्ज शीट धनात्मक है, जिससे 2 डी इलेक्ट्रॉन गैस बनती है भले ही कोई डोपिंग न हो। इस तरह के ट्रांजिस्टर सामान्य रूप से चालू होते हैं, और केवल तभी बंद होगा, जब गेट नकारात्मक रूप से बाइस्ड हो। इस प्रकार के HEMT को रिक्त HEMT, या dHEMT के रूप में जाना जाता है। स्वीकारकर्ताओं (जैसे[[ मैग्नीशियम |  mg]] ) के साथ बाधा के पर्याप्त डोपिंग द्वारा, बिल्ट-इन चार्ज को अधिक परम्परागत eHEMT ऑपरेशन को बहाल करने के लिए आपूर्ति की जाती है, हालांकि चैनल में डोपेंट प्रसार के कारण नाइट्राइड्स का उच्च-घनत्व पी-डोपिंग तकनीकी रूप से चुनौतीपूर्ण है।


=== प्रेरित एचईएमटी (HEMT)===
=== प्रेरित HEMT===
मॉड्यूलेशन-डॉप्ड एचईएमटी के विपरीत, एक प्रेरित उच्च इलेक्ट्रॉन गतिशीलता ट्रांजिस्टर एक शीर्ष गेट के साथ विभिन्न इलेक्ट्रॉन घनत्व को ट्यून करने के लिए लचीलापन प्रदान करता है क्योंकि चार्ज वाहक डोपेंट्स द्वारा बनाए गए [[ 2deg ]]विमान से प्रेरित होते हैं। एक डोप की गई परत की अनुपस्थिति उनके मॉड्यूलेशन-डॉप्ड समकक्षों की तुलना में इलेक्ट्रॉन की गतिशीलता को काफी बढ़ाती है। स्वच्छता का यह स्तर [[ क्वांटम अराजकता |क्वांटम अव्यवस्था]]अध्ययन, या अल्ट्रा स्थिर और अति संवेदनशील इलेक्ट्रॉनिक उपकरणों में अनुप्रयोगों के लिए [[ क्वांटम बिलियर्ड बॉल | क्वांटम बिलियर्ड]] के क्षेत्र में अनुसंधान करने के अवसर प्रदान करता है। {{cn|date=January 2016}}
मॉड्यूलेशन-डॉप्ड HEMT के विपरीत, एक प्रेरित उच्च इलेक्ट्रॉन गतिशीलता ट्रांजिस्टर एक शीर्ष गेट के साथ विभिन्न इलेक्ट्रॉन घनत्व को ट्यून करने के लिए लचीलापन प्रदान करता है क्योंकि चार्ज वाहक डोपेंट्स द्वारा बनाए गए [[ 2deg ]]विमान से प्रेरित होते हैं। एक डोप की गई परत की अनुपस्थिति उनके मॉड्यूलेशन-डॉप्ड समकक्षों की तुलना में इलेक्ट्रॉन की गतिशीलता को काफी बढ़ाती है। स्वच्छता का यह स्तर [[ क्वांटम अराजकता |क्वांटम अव्यवस्था]] अध्ययन, या अल्ट्रा स्थिर और अति संवेदनशील इलेक्ट्रॉनिक उपकरणों में अनुप्रयोगों के लिए [[ क्वांटम बिलियर्ड बॉल | क्वांटम बिलियर्ड]] के क्षेत्र में अनुसंधान करने के अवसर प्रदान करता है। {{cn|date=January 2016}}


== अनुप्रयोग ==
== अनुप्रयोग ==
अनुप्रयोग ( जैसे GaAs पर AlGaAs के लिए ) [[ MESFET | MESFET]] के समान हैं S-[[ माइक्रोवेव | माइक्रोवेव]] और [[ मिलीमीटर वेव |मिलीमीटर वेव]] [[ दूरसंचार |संचार]] , इमेजिंग,[[ रडार | रडार]] और [[ रेडियो खगोल विज्ञान |रेडियो खगोल विज्ञान]] , कोई भी अनुप्रयोग जहां उच्च आवृत्तियों पर उच्च लाभ और कम शोर की आवश्यकता होती है। एचईएमटी ने 600 गीगाहर्ट्ज़ से अधिक आवृत्तियों के लिए वर्तमान वृद्धि और 1 THz से अधिक आवृत्तियों के लिए बिजली वृद्धि दिखायी है।<ref>{{cite web|url=http://www.semiconductor-today.com/news_items/2014/OCT/NORTHROP-GRUMMAN_311014.shtml|title=Northrop Grumman sets record with terahertz IC amplifier|website=www.semiconductor-today.com}}</ref> ([[ हेटेरोजंक्शन बाइपोलर ट्रांजिस्टर ]]को अप्रैल 2005 में 600 गीगाहर्ट्ज़ से अधिक का वर्तमान लाभ आवृत्तियों पर प्रदर्शित किया गया था।) दुनिया भर में कई कंपनियां एचईएमटी-आधारित उपकरणों का विकास और निर्माण करती हैं।  ये असतत ट्रांजिस्टर हो सकते हैं लेकिन आमतौर पर 'मोनोलिथिक माइक्रोवेव इंटीग्रेटेड सर्किट' ([[ एमएमआईसी |एमएमआईसी]]) के रूप में होते हैं। एचईएमटी कई प्रकार के उपकरणों में पाए जाते हैं जिनमें सेलफोन और [[ डायरेक्ट ब्रॉडकास्ट सैटेलाइट | DBS]] रिसीवर से लेकर [[ इलेक्ट्रॉनिक वारफेयर |इलेक्ट्रॉनिक वारफेयर]] प्रणाली जैसे [[ रडार |रडार]] और [[ रेडियो एस्ट्रोनॉमी |रेडियो एस्ट्रोनॉमी]] तक शामिल हैं।
अनुप्रयोग ( जैसे GaAs पर AlGaAs के लिए ) [[ MESFET | MESFET]] के समान हैं S-[[ माइक्रोवेव | माइक्रोवेव]] और [[ मिलीमीटर वेव |मिलीमीटर वेव]] [[ दूरसंचार |संचार]] , इमेजिंग,[[ रडार | रडार]] और [[ रेडियो खगोल विज्ञान |रेडियो खगोल विज्ञान]] , कोई भी अनुप्रयोग जहां उच्च आवृत्तियों पर उच्च लाभ और कम शोर की आवश्यकता होती है। HEMTs ने 600 गीगाहर्ट्ज़ से अधिक आवृत्तियों के लिए वर्तमान वृद्धि और 1 THz से अधिक आवृत्तियों के लिए बिजली वृद्धि दिखायी है।<ref>{{cite web|url=http://www.semiconductor-today.com/news_items/2014/OCT/NORTHROP-GRUMMAN_311014.shtml|title=Northrop Grumman sets record with terahertz IC amplifier|website=www.semiconductor-today.com}}</ref> ([[ हेटेरोजंक्शन बाइपोलर ट्रांजिस्टर ]]को अप्रैल 2005 में 600 गीगाहर्ट्ज़ से अधिक का वर्तमान लाभ आवृत्तियों पर प्रदर्शित किया गया था।) दुनिया भर में कई कंपनियां HEMT-आधारित उपकरणों का विकास और निर्माण करती हैं।  ये असतत ट्रांजिस्टर हो सकते हैं लेकिन आमतौर पर 'मोनोलिथिक माइक्रोवेव इंटीग्रेटेड सर्किट' ([[ एमएमआईसी |एमएमआईसी]]) के रूप में होते हैं। HEMTs कई प्रकार के उपकरणों में पाए जाते हैं जिनमें सेलफोन और [[ डायरेक्ट ब्रॉडकास्ट सैटेलाइट | DBS]] रिसीवर से लेकर [[ इलेक्ट्रॉनिक वारफेयर |इलेक्ट्रॉनिक वारफेयर]] प्रणाली जैसे [[ रडार |रडार]] और [[ रेडियो एस्ट्रोनॉमी |रेडियो एस्ट्रोनॉमी]] तक शामिल हैं।


इसके अलावा, सिलिकॉन सब्सट्रेट पर गैलियम नाइट्राइड एचईएमटी का उपयोग वोल्टेज कनवर्टर अनुप्रयोगों के लिए पावर स्विचिंग ट्रांजिस्टर के रूप में किया जाता है। सिलिकॉन पावर ट्रांजिस्टर की तुलना में गैलियम नाइट्राइड एचईएमटी में व्यापक बैंडगैप गुणों के कारण कम ऑन-स्टेट प्रतिरोध और {{ill|switching loss|lt=switching losses|de|Schaltverluste}} होते हैं। गैलियम नाइट्राइड पावर एचईएमटी व्यावसायिक रूप से 200 वी-600 वी के वोल्टेज तक उपलब्ध हैं।
इसके अलावा, सिलिकॉन सब्सट्रेट पर गैलियम नाइट्राइड HEMTs का उपयोग वोल्टेज कनवर्टर अनुप्रयोगों के लिए पावर स्विचिंग ट्रांजिस्टर के रूप में किया जाता है। सिलिकॉन पावर ट्रांजिस्टर की तुलना में गैलियम नाइट्राइड HEMTs में व्यापक बैंडगैप गुणों के कारण कम ऑन-स्टेट प्रतिरोध और {{ill|switching loss|lt=switching losses|de|Schaltverluste}} होते हैं। गैलियम नाइट्राइड पावर HEMTs व्यावसायिक रूप से 200 वी-600 वी के वोल्टेज तक उपलब्ध हैं।


==यह भी देखें==
==यह भी देखें==

Revision as of 21:55, 25 August 2022

[[Category:articles with long short description]]

GaAs/AlGaAs/InGaAs pHEMT का क्रॉस सेक्शन
संतुलन पर GaAs/AlGaAs हेटेरोजंक्शन-आधारित HEMT का बैंड आरेख

एक उच्च-इलेक्ट्रॉन-मोबिलिटी ट्रांजिस्टर (HEMT) जिसे हेटरोस्ट्रक्चर FET (HFET) या मॉड्यूलेशन- डॉप्ड FET (MODFET) के रूप में भी जाना जाता है, एक फील्ड-इफेक्ट ट्रांजिस्टर है। जिसमें अलग-अलग बैंड अंतराल ( जैसे हेटेरोजंक्शन ) के साथ दो सामग्रियों के बीच एक जंक्शन शामिल होता है। डोप किए गए क्षेत्र के बजाय चैनल के रूप में ( जैसा कि सामान्यतः MOSFET के स्थिति की में होता है)। सामान्यतः इस्तेमाल किया जाने वाला सामग्री संयोजन GaAs के साथ AlGaAs है, हालांकि डिवाइस के अनुप्रयोग पर निर्भर व्यापक भिन्नता है। अधिक इंडियम को शामिल करने वाले उपकरण सामान्यतः बेहतर उच्च-आवृत्ति प्रदर्शन दिखाते हैं, जबकि हाल के वर्षों में, गैलियम नाइट्राइड HEMTs ने अपने उच्च-शक्ति प्रदर्शन के कारण ध्यान आकर्षित किया है। अन्य एफईटी की तरह, HEMTs उपयोग एकीकृत सर्किट में डिजिटल ऑन-ऑफ स्विच के रूप में किया जाता है। FETs को नियंत्रण संकेत के रूप में एक छोटे वोल्टेज का उपयोग करके बड़ी मात्रा में करंट के लिए एम्पलीफायर के रूप में भी इस्तेमाल किया जा सकता है। इन दोनों उपयोगों को FET’s की वर्तमान-वोल्टेज विशेषताओं द्वारा संभव बनाया गया है। HEMT ट्रांजिस्टर सामान्य ट्रांजिस्टर की तुलना में उच्च आवृत्तियों पर कार्य करने में सक्षम होते हैं, मिलीमीटर तरंग आवृत्तियों तक और उच्च आवृत्ति वाले उत्पादों जैसे सेल फोन, उपग्रह टेलीविजन रिसीवर, वोल्टेज कन्वर्टर्स और रडार उपकरण में उपयोग किया जाता है। वे व्यापक रूप से उपग्रह रिसीवरों में, कम शक्ति वाले एम्पलीफायरों में और रक्षा उद्योग में उपयोग किए जाते हैं।

लाभ

HEMTs के लाभ यह है कि उनके पास उच्च वृद्धि है, यह उन्हें प्रवर्धकों ( एम्पलीफायर ) के रूप में उपयोगी बनाता है। उच्च स्विचिंग गति जो प्राप्त की जाती है क्योंकि MODFETs में मुख्य चार्ज वाहक बहुसंख्यक वाहक होते हैं और अल्पसंख्यक वाहक महत्वपूर्ण रूप से शामिल नहीं होते हैं व ध्वनि कम मान की होती है, क्योंकि इन उपकरणों में वर्तमान भिन्नता अन्य की तुलना में कम है।

इतिहास

उच्च-इलेक्ट्रॉन-गतिशीलता ट्रांजिस्टर (HEMT) के आविष्कार का श्रेय सामान्यत: भौतिक विज्ञानी ताकाशी मिमुरा (三村 ) को दिया जाता है, जो जापान के फुजित्सु में काम करते थे।[1] GAAS (गैलियम आर्सेनाइड) MOSFET ( मेटल-ऑक्साइड-सेमिकंडक्टर फील्ड-इफेक्ट ट्रांजिस्टर ), जिसे मिमुरा 1977 से मानक सिलिकॉन (Si) MOSFET के विकल्प के रूप में शोध कर रहे थे। उन्होंने वसंत 1979 में HEMT की कल्पना की। जब उन्होंने संयुक्त राज्य अमेरिका केबेल लैब्स में विकसित एक मॉड्यूलेटेड-डॉप्ड हेटेरोजंक्शन सुपरलैटिस के बारे में पढ़ा।[1] रे डिंगल, आर्थर गोसार्ड और होर्स्ट स्टॉमर ने अप्रैल 1978 में पेटेंट दायर किया था।[2] मिमुरा ने अगस्त 1979 में HEMT के लिए एक पेटेंट प्रकटीकरण दायर किया और फिर उस वर्ष के अंत में एक और पेटेंट [3] दायर किया। HEMT डिवाइस का पहला प्रदर्शन, D-HEMT, मई 1980 में मिमुरा और सतोशी हियामिज़ु द्वारा प्रस्तुत किया गया और फिर उनके द्वारा बाद में अगस्त 1980 में पहले E-HEMT का प्रदर्शन किया।[1]

स्वतंत्र रूप से, डेनियल डेलागेब्यूड्यूफ और ट्रान्स लिन्ह नुयेन ने फ्रांस में थॉमसन-सीएसएफ में काम करते हुए मार्च 1979 में इसी प्रकार के फील्ड-इफेक्ट ट्रांजिस्टर के लिए एक पेटेंट दायर किया था। यह एक प्रभाव के रूप में बेल लैब्स पेटेंट का भी हवाला देता है।[4] "व्युत्क्रमित " HEMT का पहला प्रदर्शन अगस्त 1980 में डेलागेब्यूड्यूफ और नुयेन द्वारा प्रस्तुत किया गया था।[1]

एक GaN-आधारित HEMT का सबसे पहला उल्लेख खान एट अल द्वारा 1993 के एप्लाइड फिजिक्स लेटर्स लेख में है।[5] बाद में, 2004 में, पी.डी. ये. और बी. यांग एट अल ने एक जीएएन (गैलियम नाइट्राइड) मेटल-ऑक्साइड-सेमिकंडक्टर ( धातु-ऑक्साइड-अर्धचालक) HEMT (MOS-HEMT) का प्रदर्शन किया। इसने गेट डाइइलेक्ट्रिक और सतह निष्क्रियता दोनों के लिए परमाणु परत के बयान ( एटॉमिक लेयर डिपोजिशन ) (ALD) एल्यूमीनियम ऑक्साइड (Al2O3) फिल्म का इस्तेमाल किया।[6]

वैचारिक विश्लेषण

HEMTहेटेरोजंक्शन हैं। इसका मतलब है कि इस्तेमाल किए गए अर्धचालकों में अलग-अलग बैंड गैप ( बैंड अंतराल ) होते हैं। उदाहरण के लिए, सिलिकॉन में 1.1 इलेक्ट्रॉन वोल्ट (eV) का बैंड गैप होता है, जबकि जर्मेनियम में 0.67 eV का बैंड गैप होता है। जब एक हेटेरोजंक्शन बनता है, तो चालन बैंड और वैलेंस बैंड को पूरे सामग्री में एक निरंतर स्तर बनाने के लिए बेंड होना चाहिए।

HEMTs की असाधारण कैरियर मोबिलिटी और स्विचिंग स्पीड निम्नलिखित स्थितियों से आती है, वाइड बैंड तत्व को दाता परमाणुओं के साथ डोप किया जाता है, इस प्रकार इसके चालन बैंड में अतिरिक्त इलेक्ट्रॉन होते हैं। कम ऊर्जा वाली अवस्था की उपलब्धता के कारण ये इलेक्ट्रॉन आसन्न संकीर्ण बैंड सामग्री के चालन बैंड में फैल जाएंगे। इलेक्ट्रॉनों की गति क्षमता में परिवर्तन का कारण बनेगी और इस प्रकार सामग्री के बीच एक विद्युत क्षेत्र होगा। विद्युत क्षेत्र इलेक्ट्रॉनों को वाइड बैंड तत्व के चालन बैंड में वापस धकेल देगा। प्रसार प्रक्रिया तब तक जारी रहती है जब तक कि इलेक्ट्रॉन प्रसार और इलेक्ट्रॉन बहाव एक-दूसरे को संतुलित नहीं कर लेते, एक पी -एन जंक्शन के समान संतुलन में एक जंक्शन बनाते हैं। ध्यान दें कि अब अनडॉप्ड संकीर्ण बैंड गैप सामग्री में अधिक बहुमत चार्ज वाहक हैं। ध्यान दें कि तथ्य यह है कि चार्ज वाहक बहुसंख्यक वाहक हैं, उच्च स्विचिंग गति उत्पन्न करते हैं और तथ्य यह है कि कम बैंड गैप सेमीकंडक्टर अनडॉप्ड है इसका मतलब है कि स्कैटरिंग का कारण बनने के लिए कोई दाता परमाणु नहीं हैं और इस प्रकार उच्च गतिशीलता उत्पन्न करते हैं।

HEMTs का एक महत्वपूर्ण पहलू यह है कि चालन और वैलेंस बैंड में बैंड विच्छेदन को अलग से संशोधित किया जा सकता है। यह उपकरण के अंदर और बाहर वाहक के प्रकार को नियंत्रित करने की अनुमति देता है। चूंकि HEMTs को मुख्य वाहक होने के लिए इलेक्ट्रॉनों की आवश्यकता होती है, इसलिए एक ग्रेडेड डोपिंग को एक सामग्री में से एक में लागू किया जा सकता है। इस प्रकार चालन बैंड असंततता को छोटा कर देता है और वैलेंस बैंड असंततता को समान रखता है। वाहक के इस प्रसार से संकीर्ण बैंड गैप सामग्री के अंदर दो क्षेत्रों की सीमा के साथ इलेक्ट्रॉनों के संचय की ओर जाता है। इन उपकरणों में इलेक्ट्रॉनों के संचय से बहुत अधिक धारा प्रवाहित होती है। संचित इलेक्ट्रॉनों को 2DEG या दो-आयामी इलेक्ट्रॉन गैस के रूप में भी जाना जाता है।

शब्द मॉड्यूलेशन डोपिंग इस तथ्य को संदर्भित करता है कि डोपेंट वर्तमान में ले जाने वाले इलेक्ट्रॉनों से एक अलग क्षेत्र में स्थानिक रूप से होते हैं। इस तकनीक का आविष्कार होर्स्ट स्टॉमर द्वारा बेल लैब्स पर किया गया था।

व्याख्या

चालन की अनुमति देने के लिए, अर्धचालकों को अशुद्धियों के साथ डोप किया जाता है। जो गतिशील इलेक्ट्रॉनों या छेद ( होल्स ) को दान करते हैं। हालांकि, इन इलेक्ट्रॉनों को पहले स्थान पर उत्पन्न करने के लिए उपयोग की जाने वाली अशुद्धियों ( डोपेंट्स ) के साथ टकराव के माध्यम से धीमा कर दिया जाता है। HEMTs उच्च गतिशीलता इलेक्ट्रॉनों के उपयोग के माध्यम से इससे बचते हैं जो एक उच्च डोप्ड विस्तृत ( वाइड) - बैंडगैप एन-टाइप डोनर-सप्लाई लेयर ( उदाहरण के लिए एल्युमिनियम गैलियम आर्सेनाइड (AlGaAs)) और एक गैर-डोप्ड संकीर्ण-बैंडगैप चैनल परत के साथ बिना किसी डोपेंट अशुद्धियों के साथ उत्पन्न होते हैं (इस मामले में GaAs)।

पतली n-प्रकार की AlGaAs परत में उत्पन्न इलेक्ट्रॉन पूरी तरह से GaAs परत में गिरते हैं और एक क्षीण AlGaAs परत बनाते हैं, क्योंकि विभिन्न बैंड-गैप सामग्रियों द्वारा निर्मित हेटेरोजंक्शन GaAs पृष्ठ पर चालन बैंड में एक क्वांटम वेल ( एक स्टीप कैनियन ) बनाता है। जहां इलेक्ट्रॉन बिना किसी अशुद्धता के टकराए जल्दी से आगे बढ़ सकते हैं, क्योंकि GaAs परत अनडॉप्ड है जिससे वे बच नहीं सकते हैं। इसका प्रभाव बहुत उच्च सांद्रता वाले अत्यधिक मोबाइल संवाहक इलेक्ट्रॉनों की एक बहुत पतली परत बनाना है, जिससे चैनल को बहुत कम प्रतिरोधकता या इसे दूसरे तरीके से कहें तो "उच्च इलेक्ट्रॉन गतिशीलता" मिलती है।

इलेक्ट्रोस्टैटिक तंत्र ( मेकैनिज्म )

चूंकि GAAS में इलेक्ट्रॉन बंधुता अधिक है, इसलिए AlGaAs परत में मुक्त इलेक्ट्रॉनों को अनडॉप्ड GAAS परत में स्थानांतरित किया जाता है, जहां वे इंटरफ़ेस के 100 एंगस्ट्रॉम (10 NM ) के अंदर दो आयामी उच्च गतिशीलता इलेक्ट्रॉन गैस बनाते हैं। एचईएमटी की N- प्रकार का AlGaAs परत पूरी तरह से दो रिक्तीकरण तंत्रों के माध्यम से समाप्त हो जाती है।

  • सतही अवस्थाओं द्वारा मुक्त इलेक्ट्रॉनों के फंसने से सतह का ह्रास होता है।
  • अनडॉप्ड GaAs परत में इलेक्ट्रॉनों का स्थानांतरण इंटरफ़ेस में कमी लाता है।

गेट मेटल का फर्मी स्तर फर्मी स्तर पिनिंग पॉइंट से मेल खाता है, जो चालन बैंड के नीचे 1.2 ईवी है। कम हुई AlGaAs परत की मोटाई के साथ, AlGaAs परत में दाताओं द्वारा आपूर्ति किए गए इलेक्ट्रॉन परत को पिन करने के लिए अपर्याप्त हैं। परिणामत:, बैंड बेंडिंग ऊपर की ओर बढ़ रही है और द्वि-आयामी इलेक्ट्रॉन गैस दिखाई नहीं देती है। जब गेट पर थ्रेशोल्ड वोल्टेज से अधिक धनात्मक वोल्टेज लगाया जाता है, तो इलेक्ट्रॉन इंटरफेस पर जमा होते हैं और दो-आयामी इलेक्ट्रॉन गैस बनाते हैं।

निर्माण

MODFETs का निर्माण एक तनावपूर्ण SIGE परत के एपिटैक्सियल ग्रोथ द्वारा किया जा सकता है। तनावपूर्ण परत में, जर्मेनियम सामग्री रैखिक रूप से लगभग 40-50% तक बढ़ जाती है। जर्मेनियम की यह सांद्रता एक उच्च चालन बैंड ऑफसेट और बहुत गतिशील चार्ज वाहक के उच्च घनत्व के साथ क्वांटम अच्छी संरचना के गठन की अनुमति देती है। अंतिम परिणाम अल्ट्रा-हाई स्विचिंग स्पीड और कम शोर के साथ एक एफईटी (FET) है। INGAAS /ALGAAS , ALGAN /INGAN , और अन्य यौगिकों का उपयोग SIGE के स्थान पर भी किया जाता है। INP और GAN अपने बेहतर शोर और बिजली अनुपात के कारण MODFET में आधार सामग्री के रूप में SIGE को बदलना शुरू कर देते हैं।

एचईएमटी के संस्करण

विकास प्रौद्योगिकी द्वारा: पीएचईएमटी (Phemt) और एमएचईएमटी (Mhemt)

आदर्श रूप से, एक हेटेरोजंक्शन के लिए उपयोग की जाने वाली दो अलग-अलग सामग्रियों में एक ही जाली स्थिर ( परमाणुओं के बीच अंतर ) होगा। अभ्यास में, जाली ( लैटिस्‌ ) स्थिरांक आमतौर पर थोड़ा अलग होते हैं ( जैसे GaAs पर AlGaAs ), जिसके परिणामस्वरूप क्रिस्टल दोष होते हैं। एक सादृश्य के रूप में, दो प्लास्टिक कंघो ( कॉम्ब्स ) को एक साथ थोड़ा अलग अंतर के साथ धकेलने की कल्पना करें। नियमित अंतराल पर, आप देखेंगे कि दो दांत आपस में टकराते हैं। अर्धचालकों में, ये असंतुलन गहरे स्तर के जाल डीप-लेवल ट्रैप बनाते हैं और डिवाइस के प्रदर्शन को बहुत कम करते हैं।

एक एचईएमटी जहां इस नियम का उल्लंघन किया जाता है उसे phemt या स्यूडोमोर्फिक HMET कहा जाता है। यह सामग्री में से एक की एक अत्यंत पतली परत का उपयोग करके प्राप्त किया जाता है - इतना पतला कि क्रिस्टल जाली अन्य सामग्री को फिट करने के लिए बस फैल जाती है। यह तकनीक ट्रांजिस्टर के निर्माण को बड़े बैंडगैप अंतर के साथ संभव बनाती है, जिससे उन्हें बेहतर प्रदर्शन मिलता है।[7]

विभिन्न जाली स्थिरांक की सामग्री का उपयोग करने का दूसरा तरीका उनके बीच एक प्रतिरोधी ( बफर ) परत रखना है। यह mHEMT या मेटामॉर्फिक HEMT में किया जाता है जो pHEMT की उन्नति है। प्रतिरोधी ( बफर ) परत AlInAs से बनी होती है, जिसमें इंडियम सांद्रता को वर्गीकृत किया जाता है ताकि यह GaAs सब्सट्रेट और GaInAs चैनल दोनों के जाली स्थिरांक से मेल खा सके। यह लाभ लाता है कि व्यावहारिक रूप से चैनल में किसी भी इंडियम एकाग्रता को महसूस किया जा सकता है, इसलिए उपकरणों को विभिन्न अनुप्रयोगों के लिए अनुकूलित किया जा सकता है ( कम इंडियम एकाग्रता कम शोर व उच्च इंडियम एकाग्रता उच्च लाभ प्रदान करता है )।[citation needed]

विद्युत व्यवहार द्वारा: eHEMT और dHEMT

सेमीकंडक्टर हेटेरो-इंटरफेस से बने HEMTs में इंटरफेसियल नेट पोलराइजेशन चार्ज की कमी होती है, जैसे कि AlGaAs / GaAs, को गेट की ओर इलेक्ट्रॉनों को आकर्षित करने के लिए AlGaAs बैरियर में धनात्मक गेट वोल्टेज या उपयुक्त डोनर-डोपिंग की आवश्यकता होती है, जो 2डी इलेक्ट्रॉन गैस बनाता है और इलेक्ट्रॉन धाराओं के चालन को सक्षम बनाता है। यह व्यवहार विस्तार ( एन्हांसमेंट ) मोड में आमतौर पर इस्तेमाल किए जाने वाले फ़ील्ड-इफेक्ट ट्रांजिस्टर के समान है, और ऐसे उपकरण को एन्हांसमेंट HEMT, या ehemt कहा जाता है।

जब एक HEMT को ALGAN /GAN से बनाया जाता है, तो उच्च शक्ति घनत्व और भंग ( ब्रेकडाउन ) वोल्टेज प्राप्त किया जा सकता है। नाइट्राइड्स में कम समरूपता के साथ अलग-अलग क्रिस्टल संरचना भी होती है, अर्थात् एक Wurtzite, जिसमें अंतर्निहित विद्युत ध्रुवीकरण होता है। क्योंकि यह ध्रुवीकरण GAN चैनल लेयर और Algan बैरियर लेयर के बीच भिन्न होता है, 0.01-0.03 C/m² के क्रम में असम्पीडित चार्ज की एक शीट बनती है। क्रिस्टल ओरिएंटेशन के कारण सामान्यत: एपिटैक्सियल ग्रोथ (गैलियम-फेस) के लिए उपयोग किया जाता है और यंत्र ( डिवाइस ) ज्यामिति फैब्रिकेशन ( गेट ऑन टॉप ) के लिए अनुकूल है, यह चार्ज शीट धनात्मक है, जिससे 2 डी इलेक्ट्रॉन गैस बनती है भले ही कोई डोपिंग न हो। इस तरह के ट्रांजिस्टर सामान्य रूप से चालू होते हैं, और केवल तभी बंद होगा, जब गेट नकारात्मक रूप से बाइस्ड हो। इस प्रकार के HEMT को रिक्त HEMT, या dHEMT के रूप में जाना जाता है। स्वीकारकर्ताओं (जैसे mg ) के साथ बाधा के पर्याप्त डोपिंग द्वारा, बिल्ट-इन चार्ज को अधिक परम्परागत eHEMT ऑपरेशन को बहाल करने के लिए आपूर्ति की जाती है, हालांकि चैनल में डोपेंट प्रसार के कारण नाइट्राइड्स का उच्च-घनत्व पी-डोपिंग तकनीकी रूप से चुनौतीपूर्ण है।

प्रेरित HEMT

मॉड्यूलेशन-डॉप्ड HEMT के विपरीत, एक प्रेरित उच्च इलेक्ट्रॉन गतिशीलता ट्रांजिस्टर एक शीर्ष गेट के साथ विभिन्न इलेक्ट्रॉन घनत्व को ट्यून करने के लिए लचीलापन प्रदान करता है क्योंकि चार्ज वाहक डोपेंट्स द्वारा बनाए गए 2deg विमान से प्रेरित होते हैं। एक डोप की गई परत की अनुपस्थिति उनके मॉड्यूलेशन-डॉप्ड समकक्षों की तुलना में इलेक्ट्रॉन की गतिशीलता को काफी बढ़ाती है। स्वच्छता का यह स्तर क्वांटम अव्यवस्था अध्ययन, या अल्ट्रा स्थिर और अति संवेदनशील इलेक्ट्रॉनिक उपकरणों में अनुप्रयोगों के लिए क्वांटम बिलियर्ड के क्षेत्र में अनुसंधान करने के अवसर प्रदान करता है।[citation needed]

अनुप्रयोग

अनुप्रयोग ( जैसे GaAs पर AlGaAs के लिए ) MESFET के समान हैं S- माइक्रोवेव और मिलीमीटर वेव संचार , इमेजिंग, रडार और रेडियो खगोल विज्ञान , कोई भी अनुप्रयोग जहां उच्च आवृत्तियों पर उच्च लाभ और कम शोर की आवश्यकता होती है। HEMTs ने 600 गीगाहर्ट्ज़ से अधिक आवृत्तियों के लिए वर्तमान वृद्धि और 1 THz से अधिक आवृत्तियों के लिए बिजली वृद्धि दिखायी है।[8] (हेटेरोजंक्शन बाइपोलर ट्रांजिस्टर को अप्रैल 2005 में 600 गीगाहर्ट्ज़ से अधिक का वर्तमान लाभ आवृत्तियों पर प्रदर्शित किया गया था।) दुनिया भर में कई कंपनियां HEMT-आधारित उपकरणों का विकास और निर्माण करती हैं। ये असतत ट्रांजिस्टर हो सकते हैं लेकिन आमतौर पर 'मोनोलिथिक माइक्रोवेव इंटीग्रेटेड सर्किट' (एमएमआईसी) के रूप में होते हैं। HEMTs कई प्रकार के उपकरणों में पाए जाते हैं जिनमें सेलफोन और DBS रिसीवर से लेकर इलेक्ट्रॉनिक वारफेयर प्रणाली जैसे रडार और रेडियो एस्ट्रोनॉमी तक शामिल हैं।

इसके अलावा, सिलिकॉन सब्सट्रेट पर गैलियम नाइट्राइड HEMTs का उपयोग वोल्टेज कनवर्टर अनुप्रयोगों के लिए पावर स्विचिंग ट्रांजिस्टर के रूप में किया जाता है। सिलिकॉन पावर ट्रांजिस्टर की तुलना में गैलियम नाइट्राइड HEMTs में व्यापक बैंडगैप गुणों के कारण कम ऑन-स्टेट प्रतिरोध और switching losses [de] होते हैं। गैलियम नाइट्राइड पावर HEMTs व्यावसायिक रूप से 200 वी-600 वी के वोल्टेज तक उपलब्ध हैं।

यह भी देखें

हेटेरोजंक्शन द्विध्रुवी ट्रांजिस्टर का उपयोग गीगाहर्ट्ज़ अनुप्रयोगों के लिए किया जा सकता है।

संदर्भ

  1. 1.0 1.1 1.2 1.3 Mimura, Takashi (March 2002). "The early history of the high electron mobility transistor (HEMT)". IEEE Transactions on Microwave Theory and Techniques. 50 (3): 780–782. Bibcode:2002ITMTT..50..780M. doi:10.1109/22.989961.
  2. US 4163237, Ray Dingle, Arthur Gossard and Horst Störmer, "High mobility multilayered heterojunction devices employing modulated doping" 
  3. Mimura, Takashi (8 December 2005). "Development of High Electron Mobility Transistor" (PDF). Japanese Journal of Applied Physics. 44 (12R): 8263–8268. Bibcode:2005JaJAP..44.8263M. doi:10.1143/JJAP.44.8263. ISSN 1347-4065. S2CID 3112776. Archived from the original (PDF) on 8 March 2019.
  4. US 4471366, Daniel Delagebeaudeuf and Tranc L. Nuyen, "Field effect transistor with high cut-off frequency and process for forming same"  (Google पेटेंट
  5. Asif Khan, M.; Bhattarai, A.; Kuznia, J. N.; Olson, D. T. (1993). "High electron mobility transistor based on a GaN‐AlxGa1−xN heterojunction". Applied Physics Letters. 63 (9): 1214–1215. Bibcode:1993ApPhL..63.1214A. doi:10.1063/1.109775.
  6. {{CITE जर्नल | last1 = ye | First1 = p।D. | last2 = यांग | First2 = b।| last3 = NG | First3 = k।K. | Last4 = Bude | First4 = j।| last5 = विल्क | First5 = g।D. | Last6 = HALDER | First6 = s।| last7 = hwang | First7 = j।C. M. | शीर्षक = GAN MOS-HEMT परमाणु परत का उपयोग करके AL2O3 गेट ढांकता हुआ और सतह पास होने के रूप में | जर्नल = हाई स्पीड इलेक्ट्रॉनिक्स और सिस्टम्स के इंटरनेशनल जर्नल | दिनांक = 1 सितंबर 2004 | वॉल्यूम = 14 | अंक = 3 | पेज = 791-796| doi = 10.1142/s0129156404002843 | ISSN = 0129-1564}
  7. "Indium Phosphide: Transcending frequency and integration limits. Semiconductor TODAY Compounds&AdvancedSilicon • Vol. 1 • Issue 3 • September 2006" (PDF).
  8. "Northrop Grumman sets record with terahertz IC amplifier". www.semiconductor-today.com.

बाहरी संबंध ( लिंक्स )