साधारण वलय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
Line 1: Line 1:
अमूर्त बीजगणित में, गणित की एक शाखा एक साधारण वलय एक गैर-शून्य वलय (गणित) है। जिसमें [[शून्य आदर्श]] और स्वयं के अलावा कोई दो तरफा आदर्श (वलय सिद्धांत) नहीं है। विशेष रूप से, क्रमविनिमेय वलय साधारण वलय है यदि और केवल यदि यह एक [[क्षेत्र (गणित)]] है।
अमूर्त बीजगणित में, गणित की एक शाखा एक '''साधारण वलय''' एक गैर-शून्य वलय (गणित) है। जिसमें [[शून्य आदर्श]] और स्वयं के अलावा कोई दो तरफा आदर्श (वलय सिद्धांत) नहीं है। विशेष रूप से, क्रमविनिमेय वलय साधारण वलय है यदि और केवल यदि यह एक [[क्षेत्र (गणित)]] है।


साधारण वलय का केंद्र (वलय सिद्धांत) आवश्यक रूप से क्षेत्र है। यह इस प्रकार है कि साधारण वलय इस क्षेत्र पर [[साहचर्य बीजगणित]] है। तो, सरल बीजगणित और ''सरल वलय''  पर्यायवाची हैं।
साधारण वलय का केंद्र (वलय सिद्धांत) आवश्यक रूप से क्षेत्र है। यह इस प्रकार है कि साधारण वलय इस क्षेत्र पर [[साहचर्य बीजगणित]] है। तो, सरल बीजगणित और ''सरल वलय''  पर्यायवाची हैं।

Latest revision as of 16:54, 2 November 2023

अमूर्त बीजगणित में, गणित की एक शाखा एक साधारण वलय एक गैर-शून्य वलय (गणित) है। जिसमें शून्य आदर्श और स्वयं के अलावा कोई दो तरफा आदर्श (वलय सिद्धांत) नहीं है। विशेष रूप से, क्रमविनिमेय वलय साधारण वलय है यदि और केवल यदि यह एक क्षेत्र (गणित) है।

साधारण वलय का केंद्र (वलय सिद्धांत) आवश्यक रूप से क्षेत्र है। यह इस प्रकार है कि साधारण वलय इस क्षेत्र पर साहचर्य बीजगणित है। तो, सरल बीजगणित और सरल वलय पर्यायवाची हैं।

कई संदर्भों (जैसे, लैंग (2002) या बॉरबाकी (2012)) को इसके अतिरिक्त एक साधारण वलय बाएं या दाएं आर्टिनियन (या समकक्ष अर्ध-सरल वलय) आवश्यकता होती है। इस प्रकार की शब्दावली के तहत गैर-शून्य वलय जिसमें कोई गैर-तुच्छ दो तरफा आदर्श नहीं है, उन्हें अर्ध-सरल कहा जाता है।

वलय जो वलयों के रूप में सरल हैं लेकिन स्वयं पर साधारण मॉड्यूल नहीं हैं, वे मौजूद हैं: एक क्षेत्र पर एक आव्यूह वलय में कोई भी गैर -आदर्श आदर्श नहीं होता है (चूंकि का कोई भी आदर्श के साथ का एक आदर्श है, लेकिन का एक आदर्श है), लेकिन गैर-तुच्छ बाएं आदर्श (उदाहरण के लिए, आव्यूह के समुच्चय जिनमें कुछ निश्चित शून्य स्तम्भ हैं) हैं।

आर्टिन-वेडरबर्न प्रमेय के अनुसार, प्रत्येक साधारण वलय जो बाएं या दाएं आर्टिनियन वलय है, एक विभाजन वलय के ऊपर आव्यूह वलय है। विशेष रूप से, केवल सरल वलय जो वास्तविक संख्याओं पर परिमित-आयामी सदिश स्थान हैं, वास्तविक संख्याओं, जटिल संख्याओं, या चतुष्कोणों पर आव्यूह के वलय हैं।

साधारण वलय का उदाहरण जो विभाजन वलय के ऊपर आव्यूह वलय नहीं है, वेइल बीजगणित है।

विशेषता

अशून्य वलय (गणित) सरल बीजगणित है यदि इसमें शून्य आदर्श और स्वयं वलय के अलावा कोई दो तरफा आदर्श (वलय सिद्धांत) नहीं है।

सरल बीजगणित का तत्काल उदाहरण विभाजन बीजगणित है, जहां प्रत्येक गैर-शून्य तत्व में गुणक व्युत्क्रम होता है, उदाहरण के लिए, चतुष्कोणों का वास्तविक बीजगणित। साथ ही किसी के लिए , का बीजगणित विभाजन वलय में प्रविष्टियों के साथ आव्यूह सरल है। वास्तविक में, यह समरूपता तक सभी परिमित-आयामी सरल बीजगणित की विशेषता है, अर्थात, कोई भी सरल बीजगणित जो कि इसके केंद्र पर परिमित-आयामी है, कुछ विभाजन वलय पर आव्यूह बीजगणित के लिए समरूप है। यह 1907 में जोसेफ वेडरबर्न द्वारा अपने डॉक्टरेट अभिधारणा, अतिमिश्र संख्या में सिद्ध किया गया था, जो लंदन मैथमेटिकल सोसाइटी की कार्यवाही में दिखाई दिया। वेडरबर्न की अभिधारणा ने सरल और अर्ध-सरल बीजगणित को वर्गीकृत किया था। सरल बीजगणित, अर्ध-सरल बीजगणित के निर्माण खंड हैं: कोई भी परिमित-आयामी अर्ध-सरल बीजगणित, बीजगणित के अर्थ में, सरल बीजगणित का कार्तीय उत्पाद है।

वेडरबर्न के परिणाम को बाद में आर्टिन-वेडरबर्न प्रमेय में अर्धसरल वलय के लिए सामान्यीकृत किया गया था।

उदाहरण

मानो वास्तविक संख्या का क्षेत्र, जटिल संख्याओं का क्षेत्र, और चतुष्कोण क्षेत्र है।

  • के ऊपर हर परिमित-आयामी सरल बीजगणित , , या के ऊपर एक आव्यूह वलय के लिए आइसोमोर्फिक है। पर हर केंद्रीय सरल बीजगणित हर केंद्रीय सरल बीजगणित या पर एक मैट्रिक्स रिंग के लिए आइसोमोर्फिक है। ये परिणाम फ्रोबेनियस प्रमेय (वास्तविक विभाजन बीजगणित) से अनुसरण करते हैं।
  • हर परिमित-आयामी सरल बीजगणित केंद्रीय सरल बीजगणित है, और के ऊपर एक आव्यूह वलय के लिए आइसोमोर्फिक हैं।
  • परिमित क्षेत्र पर प्रत्येक परिमित-आयामी केंद्रीय सरल बीजगणित उस क्षेत्र पर आव्यूह वलय के लिए आइसोमॉर्फिक है।
  • क्रमविनिमेय वलय के लिए, निम्नलिखित चार गुण अर्धसरल वलय के समतुल्य हैं; जो आर्टिनियन वलय हैं और क्रुल आयाम 0 की कम नोथेरियन वलय होने और क्षेत्रों के एक परिमित प्रत्यक्ष उत्पाद के लिए आइसोमोर्फिक होने के संबंधी कम हो जाते हैं।

वेडरबर्न का प्रमेय

वेडरबर्न की प्रमेय इकाई और न्यूनतम बाएं आदर्श के साथ सरल वलयों की विशेषता बताती है। (बायां आर्टिनियन स्थिति दूसरी धारणा का सामान्यीकरण है।) अर्थात् यह कहता है कि ऐसी प्रत्येक वलय, समरूपता तक, एक विभाजन वलय पर आव्यूह का एक वलय हैं।

मान लो विभाजन की वलय हो और में प्रविष्टियों के साथ आव्यूह की वलय बनता हैं। यह दिखाना कठिन नहीं है कि में प्रत्येक बाएं आदर्श निम्नलिखित रूप लेता है:

,

कुछ निश्चित उपसमुच्चय के लिए . तो न्यूनतम आदर्श स्वरूप का है

,

किसी प्रदत्त के लिए . दूसरे शब्दों में, यदि न्यूनतम बाएं आदर्श है, तब , जहाँ में 1 के साथ प्रवेश और शून्य कहीं और इडेम्पोटेन्ट आव्यूह है। इसके अतिरिक्त, के लिए आइसोमॉर्फिक से है। बाएंपंथी आदर्श सही मॉड्यूल ओवर के रूप में देखा जा सकता है, और वलय इस मॉड्यूल पर मॉड्यूल समरूपता के बीजगणित के लिए स्पष्ट रूप से आइसोमोर्फिक है।

उपरोक्त उदाहरण निम्नलिखित लेम्मा का सुझाव देता है:

लेम्मा।[dubious ] पहचान के साथ वलय है और इडेम्पोटेन्ट तत्व हैं, जहाँ है। मान लो बाएं आदर्श बने, सही मॉड्यूल ओवर के रूप में माना जाता है। तब , होमोमोर्फिज्म के बीजगणित के लिए आइसोमोर्फिक है, जिसे द्वारा निरूपित किया गया है।

प्रमाण: हम बाएं नियमित प्रतिनिधित्व द्वारा के लिए को परिभाषित करते है। तब इंजेक्शन है क्योंकि यदि , तब , जिसका तात्पर्य है।

विशेषण के लिए, माना है। तब से , यूनिट को के रूप में व्यक्त किया जा सकता है। इसलिए

.

अभिव्यक्ति के बाद से पर निर्भर नहीं है , विशेषण है। यह लेम्मा सिद्ध करता है।

वेडरबर्न की प्रमेय लेम्मा से आसानी से अनुसरण करती है।

प्रमेय (वेडरबर्न)। यदि इकाई के साथ साधारण वलय है और न्यूनतम बाएं आदर्श हैं, तब विभाजन वलय पर आव्यूह की अंगूठी के लिए आइसोमॉर्फिक है।

किसी को लेम्मा होल्ड की मान्यताओं को सत्यापित करना होगा, अर्थात् एक इडेम्पोटेन्ट खोजें जैसे कि , और फिर उसे दिखाएँ कि एक विभाजन वलय है। अभिधारणा के सरल होने के कारण अनुसरण करता है।

यह भी देखें

संदर्भ

  • A. A. Albert, Structure of algebras, Colloquium publications 24, American Mathematical Society, 2003, ISBN 0-8218-1024-3. P.37.
  • Bourbaki, Nicolas (2012), Algèbre Ch. 8 (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-35315-7
  • Henderson, D.W. (1965). "A short proof of Wedderburn's theorem". Amer. Math. Monthly. 72: 385–386. doi:10.2307/2313499.
  • Lam, Tsit-Yuen (2001), A First Course in Noncommutative Rings (2nd ed.), Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4419-8616-0, ISBN 978-0-387-95325-0, MR 1838439
  • Lang, Serge (2002), Algebra (3rd ed.), Berlin, New York: Springer-Verlag, ISBN 978-0387953854
  • Jacobson, Nathan (1989), Basic algebra II (2nd ed.), W. H. Freeman, ISBN 978-0-7167-1933-5