जैक फ़ंक्शन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Generalization of the Jack polynomial}}
{{Short description|Generalization of the Jack polynomial}}
गणित में, जैक फलन जैक [[बहुपद]] का एक सामान्यीकरण है, जिसे [[हेनरी जैक]] ने प्रस्तुत किया था। जैक बहुपद एक [[सजातीय बहुपद]], [[सममित बहुपद]] बहुपद है जो [[शूर बहुपद]] और [[आंचलिक बहुपद]] का सामान्यीकरण करता है, और इसके स्थान पर हेकमैन-ऑप्डम बहुपद और [[मैकडोनाल्ड बहुपद]] द्वारा सामान्यीकृत होता है।
गणित में, जैक फलन जैक [[बहुपद]] का एक सामान्यीकरण है, जिसे [[हेनरी जैक]] ने प्रस्तुत किया था। जैक बहुपद एक [[सजातीय बहुपद]], [[सममित बहुपद]] बहुपद है जो [[शूर बहुपद]] और [[आंचलिक बहुपद|क्षेत्रीय बहुपद]] का सामान्यीकरण करता है, और इसके स्थान पर हेकमैन-ऑप्डम बहुपद और [[मैकडोनाल्ड बहुपद]] द्वारा सामान्यीकृत होता है।


== परिभाषा ==
== परिभाषा ==
Line 44: Line 44:
* <math>T(i,j) \neq T(i',j)</math> जब कभी भी <math>i'>i.</math>
* <math>T(i,j) \neq T(i',j)</math> जब कभी भी <math>i'>i.</math>
* <math>T(i,j) \neq T(i,j-1)</math> जब कभी भी <math>j>1</math> और <math>i'<i.</math>
* <math>T(i,j) \neq T(i,j-1)</math> जब कभी भी <math>j>1</math> और <math>i'<i.</math>
एक कक्ष <math>s = (i,j) \in \lambda</math> तालिका टी के लिए महत्वपूर्ण है यदि  <math>j > 1</math> और <math>T(i,j)=T(i,j-1).</math>
तालिका T के लिए कक्ष <math>s = (i,j) \in \lambda</math> महत्वपूर्ण है यदि  <math>j > 1</math> और <math>T(i,j)=T(i,j-1)</math>
यह परिणाम [[मैकडोनाल्ड बहुपद|मैकडोनाल्ड बहुपदों]] के लिए अधिक सामान्य संयोजी सूत्र के एक विशेष मामले के रूप में देखा जा सकता है।
 
यह परिणाम [[मैकडोनाल्ड बहुपद|मैकडोनाल्ड बहुपदों]] के लिए अधिक सामान्य संयोजी सूत्र के एक विशेष स्थिति के रूप में देखा जा सकता है।


== सी सामान्यीकरण ==
== सी सामान्यीकरण ==


जैक फ़ंक्शंस आंतरिक उत्पाद के साथ सममित बहुपदों के स्थान में एक ऑर्थोगोनल आधार बनाते हैं:
जैक फलन  आंतरिक उत्पाद के साथ सममित बहुपदों के स्थान में एक लंबकोणीय आधार बनाते हैं:


:<math>\langle f,g\rangle = \int_{[0,2\pi]^n} f \left (e^{i\theta_1},\ldots,e^{i\theta_n} \right ) \overline{g \left (e^{i\theta_1},\ldots,e^{i\theta_n} \right )} \prod_{1\le j<k\le n} \left |e^{i\theta_j}-e^{i\theta_k} \right |^{\frac{2}{\alpha}} d\theta_1\cdots d\theta_n</math>
:<math>\langle f,g\rangle = \int_{[0,2\pi]^n} f \left (e^{i\theta_1},\ldots,e^{i\theta_n} \right ) \overline{g \left (e^{i\theta_1},\ldots,e^{i\theta_n} \right )} \prod_{1\le j<k\le n} \left |e^{i\theta_j}-e^{i\theta_k} \right |^{\frac{2}{\alpha}} d\theta_1\cdots d\theta_n</math>
यह ओर्थोगोनलिटी संपत्ति सामान्यीकरण से अप्रअभिव्यक्तिित है। ऊपर परिभाषित सामान्यीकरण को आमतौर पर जे सामान्यीकरण कहा जाता है। सी सामान्यीकरण के रूप में परिभाषित किया गया है
यह लंबकोणीयता गुण सामान्यीकरण से अप्रभावित है। ऊपर परिभाषित सामान्यीकरण को सामान्यतः '''J''' सामान्यीकरण कहा जाता है। '''C''' सामान्यीकरण को


:<math>C_\kappa^{(\alpha)}(x_1,\ldots,x_n) = \frac{\alpha^{|\kappa|}(|\kappa|)!}{j_\kappa} J_\kappa^{(\alpha)}(x_1,\ldots,x_n),</math>
:<math>C_\kappa^{(\alpha)}(x_1,\ldots,x_n) = \frac{\alpha^{|\kappa|}(|\kappa|)!}{j_\kappa} J_\kappa^{(\alpha)}(x_1,\ldots,x_n),</math>
कहाँ
के रूप में परिभाषित किया गया है जहाँ


:<math>j_\kappa=\prod_{(i,j)\in \kappa} \left (\kappa_j'-i+\alpha \left (\kappa_i-j+1 \right ) \right ) \left (\kappa_j'-i+1+\alpha \left (\kappa_i-j \right ) \right ).</math>
:<math>j_\kappa=\prod_{(i,j)\in \kappa} \left (\kappa_j'-i+\alpha \left (\kappa_i-j+1 \right ) \right ) \left (\kappa_j'-i+1+\alpha \left (\kappa_i-j \right ) \right ).</math>
के लिए <math>\alpha=2, C_\kappa^{(2)}(x_1,\ldots,x_n)</math> द्वारा अक्सर दर्शाया जाता है <math>C_\kappa(x_1,\ldots,x_n)</math> और आंचलिक बहुपद कहा जाता है।
<math>\alpha=2, C_\kappa^{(2)}(x_1,\ldots,x_n)</math> के लिए प्रायः  <math>C_\kappa(x_1,\ldots,x_n)</math> दर्शाया जाता है और इसे  क्षेत्रीय बहुपद कहा जाता है।


== पी सामान्यीकरण ==
== P सामान्यीकरण ==


पी सामान्यीकरण पहचान द्वारा दिया जाता है <math>J_\lambda = H'_\lambda P_\lambda</math>, कहाँ
P सामान्यीकरण पहचान <math>J_\lambda = H'_\lambda P_\lambda</math> द्वारा दिया जाता है, जहाँ


:<math>H'_\lambda = \prod_{s\in \lambda} (\alpha a_\lambda(s) + l_\lambda(s) + 1)</math>
:<math>H'_\lambda = \prod_{s\in \lambda} (\alpha a_\lambda(s) + l_\lambda(s) + 1)</math>
जहां <math>a_\lambda</math> और <math>l_\lambda</math> युवा तालिका#हाथ और पैर की लंबाई क्रमशः दर्शाता है। इसलिए, के लिए <math>\alpha=1, P_\lambda</math> सामान्य शूर कार्य है।
जहां <math>a_\lambda</math> और <math>l_\lambda</math> क्रमशः  यंग तालिका को दर्शाता है। इसलिए, <math>\alpha=1, P_\lambda</math> के लिए सामान्य शूर फलन है।


शूर बहुपदों के समान, <math>P_\lambda</math> युवा तालिका के योग के रूप में व्यक्त किया जा सकता है। हालाँकि, प्रत्येक तालिका में एक अतिरिक्त वजन जोड़ने की आवश्यकता होती है जो पैरामीटर पर निर्भर करता है <math>\alpha</math>
शूर बहुपदों के समान, <math>P_\lambda</math> को यंग तालिका के योग के रूप में व्यक्त किया जा सकता है। यद्यपि , प्रत्येक तालिका में एक अतिरिक्त प्रभाव जोड़ने की आवश्यकता होती है जो पैरामीटर कि  <math>\alpha</math> पर निर्भर करता है।


इस प्रकार, एक सूत्र {{sfn|Macdonald|1995|pp=379}} जैक फलनके लिए <math>P_\lambda </math> द्वारा दिया गया है
इस प्रकार, एक सूत्र {{sfn|Macdonald|1995|pp=379}} जैक फलनके लिए <math>P_\lambda </math> द्वारा दिया गया है
Line 74: Line 75:
जहां आकार की सभी तालिका पर योग लिया जाता है <math>\lambda</math>, और <math>T(s)</math> T के कक्ष s में प्रविष्टि को दर्शाता है।
जहां आकार की सभी तालिका पर योग लिया जाता है <math>\lambda</math>, और <math>T(s)</math> T के कक्ष s में प्रविष्टि को दर्शाता है।


भार <math> \psi_T(\alpha) </math> निम्नलिखित फैशन में परिभाषित किया जा सकता है: आकार की प्रत्येक तालिका टी <math>\lambda</math> विभाजन के अनुक्रम के रूप में व्याख्या की जा सकती है
भार <math> \psi_T(\alpha) </math> निम्नलिखित फैशन में परिभाषित किया जा सकता है: आकार की प्रत्येक तालिका T <math>\lambda</math> विभाजन के अनुक्रम के रूप में व्याख्या की जा सकती है


:<math> \emptyset = \nu_1 \to \nu_2 \to \dots \to \nu_n = \lambda</math>
:<math> \emptyset = \nu_1 \to \nu_2 \to \dots \to \nu_n = \lambda</math>
जहां <math>\nu_{i+1}/\nu_i</math> टी में सामग्री i के साथ तिरछा आकार परिभाषित करता है। फिर
जहां <math>\nu_{i+1}/\nu_i</math> T में सामग्री i के साथ तिरछा आकार परिभाषित करता है। फिर


:<math> \psi_T(\alpha) = \prod_i \psi_{\nu_{i+1}/\nu_i}(\alpha)</math>
:<math> \psi_T(\alpha) = \prod_i \psi_{\nu_{i+1}/\nu_i}(\alpha)</math>
कहाँ
जहाँ


:<math>\psi_{\lambda/\mu}(\alpha) = \prod_{s \in R_{\lambda/\mu}-C_{\lambda/\mu} } \frac{(\alpha a_\mu(s) + l_\mu(s) +1)}{(\alpha a_\mu(s) + l_\mu(s) + \alpha)} \frac{(\alpha a_\lambda(s) + l_\lambda(s) + \alpha)}{(\alpha a_\lambda(s) + l_\lambda(s) +1)}
:<math>\psi_{\lambda/\mu}(\alpha) = \prod_{s \in R_{\lambda/\mu}-C_{\lambda/\mu} } \frac{(\alpha a_\mu(s) + l_\mu(s) +1)}{(\alpha a_\mu(s) + l_\mu(s) + \alpha)} \frac{(\alpha a_\lambda(s) + l_\lambda(s) + \alpha)}{(\alpha a_\lambda(s) + l_\lambda(s) +1)}
Line 93: Line 94:
J^{(1)}_\kappa(x_1,x_2,\ldots,x_n) = H_\kappa s_\kappa(x_1,x_2,\ldots,x_n),
J^{(1)}_\kappa(x_1,x_2,\ldots,x_n) = H_\kappa s_\kappa(x_1,x_2,\ldots,x_n),
</math>
</math>
कहाँ
जहाँ
:<math>
:<math>
H_\kappa=\prod_{(i,j)\in\kappa} h_\kappa(i,j)=
H_\kappa=\prod_{(i,j)\in\kappa} h_\kappa(i,j)=

Revision as of 10:32, 16 March 2023

गणित में, जैक फलन जैक बहुपद का एक सामान्यीकरण है, जिसे हेनरी जैक ने प्रस्तुत किया था। जैक बहुपद एक सजातीय बहुपद, सममित बहुपद बहुपद है जो शूर बहुपद और क्षेत्रीय बहुपद का सामान्यीकरण करता है, और इसके स्थान पर हेकमैन-ऑप्डम बहुपद और मैकडोनाल्ड बहुपद द्वारा सामान्यीकृत होता है।

परिभाषा

एक पूर्णांक विभाजन का , पैरामीटर , और तर्क के जैक फलन को पुनरावर्ती रूप से परिभाषित किया जा सकता है

इस प्रकार है:

एम = 1 के लिए
एम> 1 के लिए

जहां योग सभी विभाजनों पर है जैसे कि तिरछा विभाजन एक क्षैतिज पट्टी है, अर्थात्

( शून्य होना चाहिए या अन्यथा ) और

जहां बराबर है यदि और अन्यथा। अभिव्यक्ति और क्रमशः और , के संयुग्मित विभाजनों को संदर्भित करते हैं। अंकन का अर्थ है कि उत्पाद को विभाजन के यंग आरेख में बक्सों के सभी निर्देशांकों पर ले लिया गया है।

संयोजन सूत्र

1997 में, एफ. नोप और एस. साही [1] ने n चर :

में जैक बहुपदों के लिए विशुद्ध रूप से संयोजन सूत्र दिया।

आकार और

के साथ

के सभी स्वीकार्य तालिका पर योग लिया जाता है।

आकार की एक स्वीकार्य संख्या 1,2,…,n के साथ यंग आरेख की पूर्ति है जैसे कि तालिका में किसी भी कक्ष (i,j) के लिए,

  • जब कभी भी
  • जब कभी भी और

तालिका T के लिए कक्ष महत्वपूर्ण है यदि और

यह परिणाम मैकडोनाल्ड बहुपदों के लिए अधिक सामान्य संयोजी सूत्र के एक विशेष स्थिति के रूप में देखा जा सकता है।

सी सामान्यीकरण

जैक फलन आंतरिक उत्पाद के साथ सममित बहुपदों के स्थान में एक लंबकोणीय आधार बनाते हैं:

यह लंबकोणीयता गुण सामान्यीकरण से अप्रभावित है। ऊपर परिभाषित सामान्यीकरण को सामान्यतः J सामान्यीकरण कहा जाता है। C सामान्यीकरण को

के रूप में परिभाषित किया गया है जहाँ

के लिए प्रायः दर्शाया जाता है और इसे क्षेत्रीय बहुपद कहा जाता है।

P सामान्यीकरण

P सामान्यीकरण पहचान द्वारा दिया जाता है, जहाँ

जहां और क्रमशः यंग तालिका को दर्शाता है। इसलिए, के लिए सामान्य शूर फलन है।

शूर बहुपदों के समान, को यंग तालिका के योग के रूप में व्यक्त किया जा सकता है। यद्यपि , प्रत्येक तालिका में एक अतिरिक्त प्रभाव जोड़ने की आवश्यकता होती है जो पैरामीटर कि पर निर्भर करता है।

इस प्रकार, एक सूत्र [2] जैक फलनके लिए द्वारा दिया गया है

जहां आकार की सभी तालिका पर योग लिया जाता है , और T के कक्ष s में प्रविष्टि को दर्शाता है।

भार निम्नलिखित फैशन में परिभाषित किया जा सकता है: आकार की प्रत्येक तालिका T विभाजन के अनुक्रम के रूप में व्याख्या की जा सकती है

जहां T में सामग्री i के साथ तिरछा आकार परिभाषित करता है। फिर

जहाँ

और उत्पाद केवल सभी बक्सों में लिया जाता है ऐसा है कि एस से एक कक्ष है एक ही पंक्ति में, लेकिन एक ही कॉलम में नहीं।

== शूर बहुपद == के साथ संबंध

कब जैक फलन शूर बहुपद का एक अदिश गुणक है

जहाँ

की सभी हुक लंबाई का उत्पाद है

गुण

यदि विभाजन में चर की संख्या से अधिक भाग हैं, तो जैक फ़ंक्शन 0 है:


मैट्रिक्स तर्क

कुछ ग्रंथों में, विशेष रूप से यादृच्छिक मैट्रिक्स सिद्धांत में, लेखकों ने जैक फ़ंक्शन में मैट्रिक्स तर्क का उपयोग करना अधिक सुविधाजनक पाया है। कनेक्शन सरल है। यदि eigenvalues ​​​​के साथ एक मैट्रिक्स है , तब


संदर्भ

  • Demmel, James; Koev, Plamen (2006), "Accurate and efficient evaluation of Schur and Jack functions", Mathematics of Computation, 75 (253): 223–239, CiteSeerX 10.1.1.134.5248, doi:10.1090/S0025-5718-05-01780-1, MR 2176397.
  • Jack, Henry (1970–1971), "A class of symmetric polynomials with a parameter", Proceedings of the Royal Society of Edinburgh, Section A. Mathematics, 69: 1–18, MR 0289462.
  • Knop, Friedrich; Sahi, Siddhartha (19 March 1997), "A recursion and a combinatorial formula for Jack polynomials", Inventiones Mathematicae, 128 (1): 9–22, arXiv:q-alg/9610016, Bibcode:1997InMat.128....9K, doi:10.1007/s002220050134
  • Macdonald, I. G. (1995), Symmetric functions and Hall polynomials, Oxford Mathematical Monographs (2nd ed.), New York: Oxford University Press, ISBN 978-0-19-853489-1, MR 1354144
  • Stanley, Richard P. (1989), "Some combinatorial properties of Jack symmetric functions", Advances in Mathematics, 77 (1): 76–115, doi:10.1016/0001-8708(89)90015-7, MR 1014073.


बाहरी संबंध