जैकोबी बहुपद: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 11: Line 11:
जैकोबी बहुपदों को हाइपरज्यामितीय फलन के माध्यम से निम्नानुसार परिभाषित किया गया है:<ref>{{Abramowitz_Stegun_ref|22|561}}</ref>
जैकोबी बहुपदों को हाइपरज्यामितीय फलन के माध्यम से निम्नानुसार परिभाषित किया गया है:<ref>{{Abramowitz_Stegun_ref|22|561}}</ref>
:<math>P_n^{(\alpha,\beta)}(z)=\frac{(\alpha+1)_n}{n!}\,{}_2F_1\left(-n,1+\alpha+\beta+n;\alpha+1;\tfrac{1}{2}(1-z)\right),</math>
:<math>P_n^{(\alpha,\beta)}(z)=\frac{(\alpha+1)_n}{n!}\,{}_2F_1\left(-n,1+\alpha+\beta+n;\alpha+1;\tfrac{1}{2}(1-z)\right),</math>
जहाँ <math>(\alpha+1)_n</math> पोछाम्मेर का प्रतीक है (बढ़ते तथ्यात्मक के लिए)। इस स्थिति में, हाइपरज्यामितीय फलन के लिए श्रृंखला परिमित है, इसलिए निम्नलिखित समकक्ष अभिव्यक्ति प्राप्त होती है:
जहाँ <math>(\alpha+1)_n</math> पोछाम्मेर का प्रतीक है (बढ़ते तथ्यात्मक के लिए)। इस स्थिति में, हाइपरज्यामितीय फलन के लिए श्रृंखला परिमित है, इसलिए निम्नलिखित अनुरूप अभिव्यक्ति प्राप्त होती है:


:<math>P_n^{(\alpha,\beta)} (z) = \frac{\Gamma (\alpha+n+1)}{n!\,\Gamma (\alpha+\beta+n+1)} \sum_{m=0}^n {n\choose m} \frac{\Gamma (\alpha + \beta + n + m + 1)}{\Gamma (\alpha + m + 1)} \left(\frac{z-1}{2}\right)^m.</math>
:<math>P_n^{(\alpha,\beta)} (z) = \frac{\Gamma (\alpha+n+1)}{n!\,\Gamma (\alpha+\beta+n+1)} \sum_{m=0}^n {n\choose m} \frac{\Gamma (\alpha + \beta + n + m + 1)}{\Gamma (\alpha + m + 1)} \left(\frac{z-1}{2}\right)^m</math>




=== रोड्रिग्स का सूत्र ===
=== रोड्रिग्स का सूत्र ===
रोड्रिग्स के सूत्र द्वारा एक समतुल्य परिभाषा दी गई है:<ref name=sz/><ref>{{SpringerEOM|title=Jacobi polynomials|author=P.K. Suetin}}</ref>
रोड्रिग्स के सूत्र द्वारा एक समतुल्य परिभाषा दी गई है:<ref name=sz/><ref>{{SpringerEOM|title=Jacobi polynomials|author=P.K. Suetin}}</ref>
:<math>P_n^{(\alpha,\beta)}(z) = \frac{(-1)^n}{2^n n!} (1-z)^{-\alpha} (1+z)^{-\beta} \frac{d^n}{dz^n} \left\{ (1-z)^\alpha (1+z)^\beta \left (1 - z^2 \right )^n \right\}.</math>
:<math>P_n^{(\alpha,\beta)}(z) = \frac{(-1)^n}{2^n n!} (1-z)^{-\alpha} (1+z)^{-\beta} \frac{d^n}{dz^n} \left\{ (1-z)^\alpha (1+z)^\beta \left (1 - z^2 \right )^n \right\}</math>
अगर <math> \alpha = \beta = 0 </math>, तो यह लीजेंड्रे बहुपदों को कम कर देता है:
अगर <math> \alpha = \beta = 0 </math>, तो यह लीजेंड्रे बहुपदों को कम कर देता है:
:<math> P_{n}(z) = \frac{1 }{2^n  n! } \frac{d^n }{ d z^n }  ( z^2 - 1 )^n  \; .  </math>
:<math> P_{n}(z) = \frac{1 }{2^n  n! } \frac{d^n }{ d z^n }  ( z^2 - 1 )^n  \; .  </math>
Line 24: Line 24:


=== वास्तविक तर्क के लिए वैकल्पिक अभिव्यक्ति ===
=== वास्तविक तर्क के लिए वैकल्पिक अभिव्यक्ति ===
वास्तव में <math>x</math> जैकोबी बहुपद को वैकल्पिक रूप से लिखा जा सकता है
यथार्थ <math>x</math> जैकोबी बहुपद को वैकल्पिक रूप से लिखा जा सकता है


:<math>P_n^{(\alpha,\beta)}(x)= \sum_{s=0}^n {n+\alpha\choose n-s}{n+\beta \choose s} \left(\frac{x-1}{2}\right)^{s} \left(\frac{x+1}{2}\right)^{n-s}</math>
:<math>P_n^{(\alpha,\beta)}(x)= \sum_{s=0}^n {n+\alpha\choose n-s}{n+\beta \choose s} \left(\frac{x-1}{2}\right)^{s} \left(\frac{x+1}{2}\right)^{n-s}</math>
और पूर्णांक के लिए <math>n</math>
और पूर्णांक <math>n</math> के लिए
:<math>{z \choose n} = \begin{cases} \frac{\Gamma(z+1)}{\Gamma(n+1)\Gamma(z-n+1)} & n \geq 0 \\ 0 & n < 0 \end{cases}</math>
:<math>{z \choose n} = \begin{cases} \frac{\Gamma(z+1)}{\Gamma(n+1)\Gamma(z-n+1)} & n \geq 0 \\ 0 & n < 0 \end{cases}</math>
जहाँ <math>\Gamma(z)</math> [[गामा समारोह|गामा फलन]] है।
जहाँ <math>\Gamma(z)</math> [[गामा समारोह|गामा फलन]] है।


विशेष स्थितियों में कि चार मात्राएँ <math>n</math>, <math>n+\alpha</math>, <math>n+\beta</math>, <math>n+\alpha+\beta</math>
विशेष स्थितियों में कि चार मात्राएँ <math>n</math>, <math>n+\alpha</math>, <math>n+\beta</math>, <math>n+\alpha+\beta</math> गैर-ऋणात्मक  पूर्णांक हैं, जैकोबी बहुपद को इस रूप में लिखा जा सकता है
गैर-नकारात्मक पूर्णांक हैं, जैकोबी बहुपद को इस रूप में लिखा जा सकता है


{{NumBlk|:|<math>P_n^{(\alpha,\beta)}(x)=(n+\alpha)! (n+\beta)! \sum_{s=0}^n \frac{1}{s! (n+\alpha-s)!(\beta+s)!(n-s)!} \left(\frac{x-1}{2}\right)^{n-s} \left(\frac{x+1}{2}\right)^{s}.</math>|{{EquationRef|1}}}}
{{NumBlk|:|<math>P_n^{(\alpha,\beta)}(x)=(n+\alpha)! (n+\beta)! \sum_{s=0}^n \frac{1}{s! (n+\alpha-s)!(\beta+s)!(n-s)!} \left(\frac{x-1}{2}\right)^{n-s} \left(\frac{x+1}{2}\right)^{s}</math>|{{EquationRef|1}}}}


के सभी पूर्णांक मानों पर योग का विस्तार होता है <math>s</math> जिसके लिए फैक्टोरियल्स के तर्क गैर-नकारात्मक हैं।
इस रूप में लिखा जा सकता है।
 
योग <math>s</math> के सभी पूर्णांक मानों पर विस्तृत होता है जिसके लिए भाज्य के तर्क गैर-ऋणात्मक  होते हैं।


=== विशेष स्थितियां ===
=== विशेष स्थितियां ===
Line 50: Line 51:
== मूल गुण ==
== मूल गुण ==


===लंबकोणीयिटी ===
===लंबकोणीयता ===
जैकोबी बहुपद लंबकोणीयिटी की स्थिति को संतुष्ट करते हैं
जैकोबी बहुपद   लंबकोणीयता की स्थिति


:<math>\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x)\,dx =\frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \delta_{nm}, \qquad \alpha,\ \beta > -1.</math>
:<math>\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x)\,dx =\frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \delta_{nm}, \qquad \alpha,\ \beta > -1</math>  
जैसा कि परिभाषित किया गया है, प्रभाव के संबंध में उनके पास इकाई मानदंड नहीं है। इसे उपरोक्त समीकरण के दाहिने हाथ की ओर के वर्गमूल से विभाजित करके ठीक किया जा सकता है, जब <math>n=m</math>।
:को संतुष्ट करते हैं।
जैसा कि परिभाषित किया गया है, प्रभाव के संबंध में उनके समीप इकाई मानदंड नहीं है। इसे उपरोक्त समीकरण के दाहिने हाथ की ओर के वर्गमूल से विभाजित करके ठीक किया जा सकता है, जब <math>n=m</math>।


हालांकि यह एक अलौकिक आधार नहीं देता है, कभी-कभी इसकी सादगी के कारण एक वैकल्पिक सामान्यीकरण को प्राथमिकता दी जाती है:
यद्यपि  यह एक अलौकिक आधार नहीं देता है, कभी-कभी इसकी सरलता के कारण एक वैकल्पिक सामान्यीकरण को प्राथमिकता दी जाती है:


:<math>P_n^{(\alpha, \beta)} (1) = {n+\alpha\choose n}.</math>
:<math>P_n^{(\alpha, \beta)} (1) = {n+\alpha\choose n}.</math>
Line 93: Line 95:
संक्षिप्तता के लिए लिख रहा हूँ <math>a:=n + \alpha </math>, <math>b:=n + \beta</math> और  <math>c:=a+b=2n + \alpha+ \beta</math>, यह के संदर्भ में हो जाता है <math>a,b,c </math>
संक्षिप्तता के लिए लिख रहा हूँ <math>a:=n + \alpha </math>, <math>b:=n + \beta</math> और  <math>c:=a+b=2n + \alpha+ \beta</math>, यह के संदर्भ में हो जाता है <math>a,b,c </math>
:<math> 2n (c-n)(c-2) P_n^{(\alpha,\beta)}(z) =(c-1) \Big\{ c(c-2) z + (a-b)(c-2n) \Big\} P_{n-1}^{(\alpha,\beta)}(z)-2 (a-1)(b-1) c\; P_{n-2}^{(\alpha, \beta)}(z). </math>
:<math> 2n (c-n)(c-2) P_n^{(\alpha,\beta)}(z) =(c-1) \Big\{ c(c-2) z + (a-b)(c-2n) \Big\} P_{n-1}^{(\alpha,\beta)}(z)-2 (a-1)(b-1) c\; P_{n-2}^{(\alpha, \beta)}(z). </math>
चूँकि जैकोबी बहुपदों को हाइपरज्यामितीय फलन के संदर्भ में वर्णित किया जा सकता है, हाइपरज्यामितीय फलन की पुनरावृत्ति जैकोबी बहुपदों के समकक्ष पुनरावृत्ति देती है। विशेष रूप से, गॉस के सन्निहित संबंध सर्वसमिकाओं के अनुरूप हैं
चूँकि जैकोबी बहुपदों को हाइपरज्यामितीय फलन के संदर्भ में वर्णित किया जा सकता है, हाइपरज्यामितीय फलन की पुनरावृत्ति जैकोबी बहुपदों के अनुरूप पुनरावृत्ति देती है। विशेष रूप से, गॉस के सन्निहित संबंध सर्वसमिकाओं के अनुरूप हैं


:<math>
:<math>

Revision as of 20:45, 15 March 2023

गणित में, जैकोबी बहुपद (कभी-कभी अतिज्यामितीय बहुपद कहा जाता है) शास्त्रीय लंबकोणीय बहुपदों का एक वर्ग हैं। वे अंतराल पर प्रभाव के संबंध में लंबकोणीय हैं। गेंगेंबोइर बहुपद, और इस प्रकार लेजेंड्रे बहुपद, ज़र्निके बहुपद और चेबिशेव बहुपद, जैकोबी बहुपद के विशेष स्थितियां हैं।[1]

जैकोबी बहुपद कार्ल गुस्ताव जैकब जैकोबी द्वारा प्रस्तुत किए गए थे।

परिभाषाएँ

हाइपरज्यामितीय फलन के माध्यम से

जैकोबी बहुपदों को हाइपरज्यामितीय फलन के माध्यम से निम्नानुसार परिभाषित किया गया है:[2]

जहाँ पोछाम्मेर का प्रतीक है (बढ़ते तथ्यात्मक के लिए)। इस स्थिति में, हाइपरज्यामितीय फलन के लिए श्रृंखला परिमित है, इसलिए निम्नलिखित अनुरूप अभिव्यक्ति प्राप्त होती है:


रोड्रिग्स का सूत्र

रोड्रिग्स के सूत्र द्वारा एक समतुल्य परिभाषा दी गई है:[1][3]

अगर , तो यह लीजेंड्रे बहुपदों को कम कर देता है:


वास्तविक तर्क के लिए वैकल्पिक अभिव्यक्ति

यथार्थ जैकोबी बहुपद को वैकल्पिक रूप से लिखा जा सकता है

और पूर्णांक के लिए

जहाँ गामा फलन है।

विशेष स्थितियों में कि चार मात्राएँ , , , गैर-ऋणात्मक पूर्णांक हैं, जैकोबी बहुपद को इस रूप में लिखा जा सकता है

 

 

 

 

(1)

इस रूप में लिखा जा सकता है।

योग के सभी पूर्णांक मानों पर विस्तृत होता है जिसके लिए भाज्य के तर्क गैर-ऋणात्मक होते हैं।

विशेष स्थितियां


मूल गुण

लंबकोणीयता

जैकोबी बहुपद लंबकोणीयता की स्थिति

को संतुष्ट करते हैं।

जैसा कि परिभाषित किया गया है, प्रभाव के संबंध में उनके समीप इकाई मानदंड नहीं है। इसे उपरोक्त समीकरण के दाहिने हाथ की ओर के वर्गमूल से विभाजित करके ठीक किया जा सकता है, जब

यद्यपि यह एक अलौकिक आधार नहीं देता है, कभी-कभी इसकी सरलता के कारण एक वैकल्पिक सामान्यीकरण को प्राथमिकता दी जाती है:


सममिति संबंध

बहुपदों में सममिति संबंध होता है

इस प्रकार अन्य टर्मिनल मान है


=== संजात === वें> वें व्युत्पन्न स्पष्ट अभिव्यक्ति की ओर जाता है


विभेदक समीकरण

जैकोबी बहुपद दूसरे क्रम के रैखिक सजातीय अंतर समीकरण का एक समाधान है[1]


पुनरावृत्ति संबंध

लंबकोणीय बहुपद # स्थिर के जैकोबी बहुपदों के लिए पुनरावृत्ति संबंध , है:[1]

के लिए । संक्षिप्तता के लिए लिख रहा हूँ , और , यह के संदर्भ में हो जाता है

चूँकि जैकोबी बहुपदों को हाइपरज्यामितीय फलन के संदर्भ में वर्णित किया जा सकता है, हाइपरज्यामितीय फलन की पुनरावृत्ति जैकोबी बहुपदों के अनुरूप पुनरावृत्ति देती है। विशेष रूप से, गॉस के सन्निहित संबंध सर्वसमिकाओं के अनुरूप हैं