गेट टर्न-ऑफ थाइरिस्टर: Difference between revisions
(Created page with "{{For|other uses of the word|GTO (disambiguation)}} {{Infobox electronic component |name = Gate turn-off thyristor (GTO) |image = Image:GTO thyristor cross section.svg |image_...") |
(text) |
||
Line 1: | Line 1: | ||
{{For| | {{For|शब्द के अन्य उपयोग|जीटीओ (विसंदिग्धीकरण)}} | ||
{{Infobox electronic component | {{Infobox electronic component | ||
|name = Gate turn-off thyristor (GTO) | |name = Gate turn-off thyristor (GTO) | ||
Line 13: | Line 13: | ||
}} | }} | ||
द्वार विरक्तिकारक [[ thyristor |थाइरिस्टर]] (जीटीओ) एक विशेष प्रकार का थाइरिस्टर है, जो उच्च-शक्ति (जैसे 1200V एसी) [[ अर्धचालक उपकरण |अर्धचालक उपकरण]] है। इसका आविष्कार [[ सामान्य विद्युतीय |सामान्य विद्युतीय]] ने किया था।<ref name="hingorani">{{Cite book | last = Hingorani | first = Narain G|author2=Laszlo Gyugi | title = तथ्यों को समझना| publisher = IEEE Press | year = 2011 | location = India | pages = 41 | isbn = 978-81-265-3040-3}}</ref> जीटीओ, सामान्य थाइरिस्टर्स के विपरीत, पूरी तरह से नियंत्रणीय स्विच हैं जिन्हें उनके द्वार अग्रता द्वारा चालू और बंद किया जा सकता है। | |||
== | == उपकरण विवरण == | ||
[[File:GTO thyristor equivalent.svg|thumb|200px|right|जीटीओ थाइरिस्टर का समतुल्य सर्किट]]सामान्य थाइरिस्टर्स ([[सिलिकॉन नियंत्रित शुद्धि कारक]]) पूरी तरह से नियंत्रित करने योग्य स्विच नहीं होते हैं (पूरी तरह से नियंत्रित स्विच को इच्छानुसार चालू और बंद किया जा सकता है)। थायरिस्टर्स को केवल | [[File:GTO thyristor equivalent.svg|thumb|200px|right|जीटीओ थाइरिस्टर का समतुल्य सर्किट]]सामान्य थाइरिस्टर्स ([[सिलिकॉन नियंत्रित शुद्धि कारक]]) पूरी तरह से नियंत्रित करने योग्य स्विच नहीं होते हैं (पूरी तरह से नियंत्रित स्विच को इच्छानुसार चालू और बंद किया जा सकता है)। थायरिस्टर्स को केवल द्वार अग्रता का उपयोग करके चालू किया जा सकता है, लेकिन द्वार अग्रता का उपयोग करके इसे बंद नहीं किया जा सकता है। थायरिस्टर्स को एक [[गेट सिग्नल|द्वार संकेतक]] द्वारा चालू किया जाता है, लेकिन द्वार संकेतक के डी-एस्टर्ड (हटाए जाने, विपरीत अभिनत) होने के बाद भी, थाइरिस्टर स्थिति में तब तक बना रहता है जब तक कि विरक्तिकारक स्थिति नहीं हो जाती (जो एक उत्क्रम वोल्टता का अनुप्रयोग हो सकता है) अवसानक के लिए या एक निश्चित अवसीमा मान के नीचे अग्र धारा की कमी जिसे धारक धारा के रूप में जाना जाता है)। इस प्रकार, इसके चालू होने या निकाल दिए जाने के बाद थाइरिस्टर एक सामान्य [[अर्धचालक डायोड]] की तरह व्यवहार करता है। | ||
जीटीओ को | जीटीओ को द्वार संकेतक द्वारा चालू किया जा सकता है और नकारात्मक ध्रुवीयता के द्वार संकेतक द्वारा बंद भी किया जा सकता है। | ||
द्वार और ऋणाग्र अवसानक के बीच सकारात्मक वर्तमान स्पंद द्वारा चालू किया जाता है। चूंकि द्वार-ऋणाग्र [[पीएन जंक्शन|पीएन संधिस्थल]] की तरह व्यवहार करता है, अवसानक के बीच कुछ अपेक्षाकृत कम वोल्टेज (विद्युत संचालन शक्ति) होगी। जीटीओ में आरंभन परिघटना हालांकि एससीआर (थाइरिस्टर) की तरह विश्वसनीय नहीं है, और विश्वसनीयता में सुधार के लिए चालू होने के बाद भी छोटे सकारात्मक द्वार करंट को बनाए रखा जाना चाहिए। | |||
द्वार और ऋणाग्र अवसानक के बीच एक नकारात्मक वोल्टेज स्पंद द्वारा विरक्तिकारक बंद किया जाता है। कुछ आगे का करंट (लगभग एक-तिहाई से एक-पांचवां) चोरी किया जाता है और ऋणाग्र-द्वार वोल्टेज को प्रेरित करने के लिए उपयोग किया जाता है, जिसके कारण आगे की धारा गिर जाती है और जीटीओ बंद हो जाता है (अवरुद्ध स्थिति में संक्रमण)। | |||
जीटीओ थाइरिस्टर्स लंबे | जीटीओ थाइरिस्टर्स लंबे बंद समय से ग्रस्त हैं, जिससे आगे की धारा गिरने के बाद, एक लंबी पश्चभाग का समय होता है जहां अवशिष्ट प्रवाह तब तक प्रवाहित होता रहता है जब तक कि उपकरण से सभी शेष प्रभार दूर नहीं हो जाते। यह अधिकतम स्विचिंग [[आवृत्ति]] को लगभग 1 kHz तक सीमित करता है। हालांकि, यह ध्यान दिया जा सकता है कि जीटीओ का विरक्तिकारक समय तुलनात्मक एससीआर की तुलना में लगभग दस गुना तेज है।<ref>{{Cite web|url=http://www.circuitstoday.com/gate-turn-off-switch|title = गेट बंद स्विच|date = 17 September 2009}}</ref>\ | ||
विरक्तिकारक प्रक्रिया में सहायता के लिए, जीटीओ थाइरिस्टर सामान्यतः समानांतर में जुड़े छोटे थाइरिस्टर कोशिकाओं की एक बड़ी संख्या (सैकड़ों या हजारों) से निर्मित होते हैं। | |||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ एक ही अनुमतांकन के एससीआर और जीटीओ की तुलना | ||
|- | |- | ||
! | ! विशिष्टता | ||
! | ! विवरण | ||
! | ! थाइरिस्टर(1600 V, 350 A) | ||
! | ! जीटीओ (1600 V, 350 A) | ||
|- | |- | ||
| ''V''<sub>T on</sub> | | ''V''<sub>T on</sub> | ||
| | | ऑन अवस्था वोल्टता पात | ||
| 1.5 V | | 1.5 V | ||
| 3.4 V | | 3.4 V | ||
|- | |- | ||
| ''t''<sub>on</sub>, ''I''<sub>g on</sub> | | ''t''<sub>on</sub>, ''I''<sub>g on</sub> | ||
| | | चालु करने का समय, द्वार विद्युत प्रवाह | ||
| 8 µs, 200 mA | | 8 µs, 200 mA | ||
| 2 µs, 2 A | | 2 µs, 2 A | ||
|- | |- | ||
| ''t''<sub>off</sub> | | ''t''<sub>off</sub> | ||
| | | बंद करने का समय | ||
| 150 µs | | 150 µs | ||
| 15 µs | | 15 µs | ||
|} | |} | ||
एक वितरित | एक वितरित मध्यवर्ती द्वार विरक्तिकारक थाइरिस्टर (डीबी-जीटीओ) बहाव क्षेत्र में अतिरिक्त पीएन परतों के साथ एक थाइरिस्टर है जो अनुक्षेत्र वर्णन को दोबारा बदलने और बंद अवस्था में अवरुद्ध वोल्टेज को बढ़ाने के लिए है। पारंपरिक थाइरिस्टर की विशिष्ट पीएनपीएन संरचना की तुलना में, डीबी-जीटीओ थाइरिस्टर में पीएन-पीएन-पीएन संरचना होती है। | ||
== | == पश्चदिशिक बायस == | ||
जीटीओ थाइरिस्टर्स | जीटीओ थाइरिस्टर्स प्रतिलोम अवरोधन क्षमता के साथ या उसके बिना उपलब्ध हैं। प्रतिलोम अवरोधन क्षमता लंबे, कम अपमिश्रित P1 क्षेत्र की आवश्यकता के कारण आगे वोल्टता पात में जोड़ती है। | ||
प्रतिलोम वोल्टेज को अवरुद्ध करने में सक्षम जीटीओ थाइरिस्टर्स को सममित जीटीओ थाइरिस्टर्स, संक्षिप्त एस-जीटीओ के रूप में जाना जाता है। सामान्यतः, प्रतिलोम अवरोधन वोल्टेज अनुमतांकन और अग्र अवरोधी वोल्टेज अनुमतांकन समान होती है। सममित जीटीओ थाइरिस्टर्स के लिए विशिष्ट अनुप्रयोग वर्तमान स्रोत अंर्तवर्तक में है। | |||
प्रतिलोम वोल्टेज को अवरूध्द करने में अक्षम जीटीओ थायरिस्टर्स को असममित जीटीओ थाइरिस्टर्स, संक्षिप्त ए-जीटीओ के रूप में जाना जाता है, और सामान्यतः सममित जीटीओ थाइरिस्टर्स से अधिक सामान्य होते हैं। उनके पास सामान्यतः दसियों वोल्ट में ब्रेकडाउन वोल्टेज और अन्य अर्धचालक अनुमतांकन होती है। ए-जीटीओ थाइरिस्टर्स का उपयोग किया जाता है जहां या तो प्रतिलोम निर्देशन डायोड को समानांतर में लगाया जाता है (उदाहरण के लिए, वोल्टेज स्रोत इनवर्टर में) या जहां प्रतिलोम वोल्टेज कभी नहीं होगा (उदाहरण के लिए, स्विच-प्रणाली विद्युत् प्रदाय या डीसी संकर्षण कर्तक में)। | |||
जीटीओ थाइरिस्टर्स को उसी | जीटीओ थाइरिस्टर्स को उसी संवेष्टक में प्रतिलोम निर्देशन डायोड के साथ बनाया जा सकता है। प्रतिलोम निर्देशन जीटीओ थाइरिस्टर के लिए इन्हें आरसीजीटीओ के रूप में जाना जाता है। | ||
== सुरक्षित संचालन क्षेत्र == | == सुरक्षित संचालन क्षेत्र == | ||
{{see also|Safe operating area}} | {{see also|Safe operating area}} | ||
[[विद्युत रोधित गेट द्विध्रुवी ट्रांजिस्टर]] (आईजीबीटी) के विपरीत, जीटीओ थाइरिस्टर को | [[विद्युत रोधित गेट द्विध्रुवी ट्रांजिस्टर|विद्युत रोधित द्वार द्विध्रुवी ट्रांजिस्टर]] (आईजीबीटी) के विपरीत, जीटीओ थाइरिस्टर को उपकरण को नष्ट होने से बचाने के लिए करंट को चालू और बंद करने के लिए बाहरी उपकरणों ([[स्नबर]] सर्किट) की आवश्यकता होती है। | ||
चालू करने के दौरान, | चालू करने के दौरान, उपकरण में अधिकतम dI/dt अनुमतांकन होती है जो करंट के बढ़ने को सीमित करती है। यह उपकरण के पूरे बल्क को पूर्ण वर्तमान तक पहुंचने से पहले चालू होने की अनुमति देने के लिए है। यदि यह अनुमतांकन पार हो जाती है, तो द्वार कॉन्टैक्ट्स के निकटतम उपकरण का क्षेत्र ज़्यादा गरम हो जाएगा और अधिक करंट से पिघल जाएगा। dI/dt की दर को सामान्यतः एक [[संतृप्त रिएक्टर]] (टर्न-ऑन स्नबर) जोड़कर नियंत्रित किया जाता है, हालांकि GTO थाइरिस्टर्स के साथ टर्न-ऑन dI/dt सामान्य थाइरिस्टर्स की तुलना में कम गंभीर बाधा है, क्योंकि जिस तरह से GTO है समानांतर में कई छोटे थाइरिस्टर कोशिकाओं से निर्मित। संतृप्त रिएक्टर का रीसेट सामान्यतः जीटीओ आधारित सर्किट पर न्यूनतम समय की आवश्यकता रखता है। | ||
टर्न ऑफ के दौरान, | टर्न ऑफ के दौरान, उपकरण का फॉरवर्ड वोल्टेज तब तक सीमित होना चाहिए जब तक कि करंट टेल ऑफ न हो जाए। सीमा सामान्यतः आगे अवरुद्ध वोल्टेज अनुमतांकन का लगभग 20% है। यदि वोल्टेज बंद होने पर बहुत तेजी से बढ़ता है, तो सभी उपकरण बंद नहीं होंगे और उपकरण के एक छोटे से हिस्से पर केंद्रित उच्च वोल्टेज और करंट के कारण GTO अक्सर विस्फोटक रूप से विफल हो जाएगा। बंद होने पर वोल्टेज के उदय को सीमित करने के लिए उपकरण के चारों ओर पर्याप्त स्नबर सर्किट जोड़े जाते हैं। स्नबर सर्किट को रीसेट करना सामान्यतः जीटीओ आधारित सर्किट पर न्यूनतम समय की आवश्यकता रखता है। | ||
डीसी मोटर हेलिकॉप्टर सर्किट में न्यूनतम और उच्चतम कर्तव्य चक्र पर एक चर स्विचिंग आवृत्ति का उपयोग करके न्यूनतम चालू और बंद समय को नियंत्रित किया जाता है। यह कर्षण अनुप्रयोगों में देखा जा सकता है जहां मोटर शुरू होने पर आवृत्ति बढ़ जाएगी, फिर आवृत्ति अधिकांश गति सीमाओं पर स्थिर रहती है, फिर आवृत्ति पूरी गति से शून्य हो जाती है। | डीसी मोटर हेलिकॉप्टर सर्किट में न्यूनतम और उच्चतम कर्तव्य चक्र पर एक चर स्विचिंग आवृत्ति का उपयोग करके न्यूनतम चालू और बंद समय को नियंत्रित किया जाता है। यह कर्षण अनुप्रयोगों में देखा जा सकता है जहां मोटर शुरू होने पर आवृत्ति बढ़ जाएगी, फिर आवृत्ति अधिकांश गति सीमाओं पर स्थिर रहती है, फिर आवृत्ति पूरी गति से शून्य हो जाती है। | ||
Line 73: | Line 74: | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
मुख्य अनुप्रयोग चर-गति मोटर ड्राइव, उच्च-शक्ति इनवर्टर और [[ट्रैक्शन (इंजीनियरिंग)]] में हैं। जीटीओ को तेजी से [[एकीकृत गेट-कम्यूटेटेड थाइरिस्टर]]्स (आईजीसीटी) द्वारा प्रतिस्थापित किया जा रहा है, जो जीटीओ का एक विकासवादी विकास है, और [[विद्युत रोधित | मुख्य अनुप्रयोग चर-गति मोटर ड्राइव, उच्च-शक्ति इनवर्टर और [[ट्रैक्शन (इंजीनियरिंग)]] में हैं। जीटीओ को तेजी से [[एकीकृत गेट-कम्यूटेटेड थाइरिस्टर|एकीकृत द्वार-कम्यूटेटेड थाइरिस्टर]]्स (आईजीसीटी) द्वारा प्रतिस्थापित किया जा रहा है, जो जीटीओ का एक विकासवादी विकास है, और [[विद्युत रोधित द्वार द्विध्रुवी [[ट्रांजिस्टर]]]] (आईजीबीटी), जो ट्रांजिस्टर परिवार के सदस्य हैं। | ||
उनका उपयोग [[फ्लोरोसेंट लैंप]] के लिए स्टार्टर सर्किट में भी किया जाता है। | उनका उपयोग [[फ्लोरोसेंट लैंप]] के लिए स्टार्टर सर्किट में भी किया जाता है। |
Revision as of 17:55, 14 March 2023
प्रकार | active |
---|---|
आविष्कार किया | General Electric |
Pin configuration | anode, gate, cathode |
Electronic symbol | |
द्वार विरक्तिकारक थाइरिस्टर (जीटीओ) एक विशेष प्रकार का थाइरिस्टर है, जो उच्च-शक्ति (जैसे 1200V एसी) अर्धचालक उपकरण है। इसका आविष्कार सामान्य विद्युतीय ने किया था।[1] जीटीओ, सामान्य थाइरिस्टर्स के विपरीत, पूरी तरह से नियंत्रणीय स्विच हैं जिन्हें उनके द्वार अग्रता द्वारा चालू और बंद किया जा सकता है।
उपकरण विवरण
सामान्य थाइरिस्टर्स (सिलिकॉन नियंत्रित शुद्धि कारक) पूरी तरह से नियंत्रित करने योग्य स्विच नहीं होते हैं (पूरी तरह से नियंत्रित स्विच को इच्छानुसार चालू और बंद किया जा सकता है)। थायरिस्टर्स को केवल द्वार अग्रता का उपयोग करके चालू किया जा सकता है, लेकिन द्वार अग्रता का उपयोग करके इसे बंद नहीं किया जा सकता है। थायरिस्टर्स को एक द्वार संकेतक द्वारा चालू किया जाता है, लेकिन द्वार संकेतक के डी-एस्टर्ड (हटाए जाने, विपरीत अभिनत) होने के बाद भी, थाइरिस्टर स्थिति में तब तक बना रहता है जब तक कि विरक्तिकारक स्थिति नहीं हो जाती (जो एक उत्क्रम वोल्टता का अनुप्रयोग हो सकता है) अवसानक के लिए या एक निश्चित अवसीमा मान के नीचे अग्र धारा की कमी जिसे धारक धारा के रूप में जाना जाता है)। इस प्रकार, इसके चालू होने या निकाल दिए जाने के बाद थाइरिस्टर एक सामान्य अर्धचालक डायोड की तरह व्यवहार करता है।
जीटीओ को द्वार संकेतक द्वारा चालू किया जा सकता है और नकारात्मक ध्रुवीयता के द्वार संकेतक द्वारा बंद भी किया जा सकता है।
द्वार और ऋणाग्र अवसानक के बीच सकारात्मक वर्तमान स्पंद द्वारा चालू किया जाता है। चूंकि द्वार-ऋणाग्र पीएन संधिस्थल की तरह व्यवहार करता है, अवसानक के बीच कुछ अपेक्षाकृत कम वोल्टेज (विद्युत संचालन शक्ति) होगी। जीटीओ में आरंभन परिघटना हालांकि एससीआर (थाइरिस्टर) की तरह विश्वसनीय नहीं है, और विश्वसनीयता में सुधार के लिए चालू होने के बाद भी छोटे सकारात्मक द्वार करंट को बनाए रखा जाना चाहिए।
द्वार और ऋणाग्र अवसानक के बीच एक नकारात्मक वोल्टेज स्पंद द्वारा विरक्तिकारक बंद किया जाता है। कुछ आगे का करंट (लगभग एक-तिहाई से एक-पांचवां) चोरी किया जाता है और ऋणाग्र-द्वार वोल्टेज को प्रेरित करने के लिए उपयोग किया जाता है, जिसके कारण आगे की धारा गिर जाती है और जीटीओ बंद हो जाता है (अवरुद्ध स्थिति में संक्रमण)।
जीटीओ थाइरिस्टर्स लंबे बंद समय से ग्रस्त हैं, जिससे आगे की धारा गिरने के बाद, एक लंबी पश्चभाग का समय होता है जहां अवशिष्ट प्रवाह तब तक प्रवाहित होता रहता है जब तक कि उपकरण से सभी शेष प्रभार दूर नहीं हो जाते। यह अधिकतम स्विचिंग आवृत्ति को लगभग 1 kHz तक सीमित करता है। हालांकि, यह ध्यान दिया जा सकता है कि जीटीओ का विरक्तिकारक समय तुलनात्मक एससीआर की तुलना में लगभग दस गुना तेज है।[2]\
विरक्तिकारक प्रक्रिया में सहायता के लिए, जीटीओ थाइरिस्टर सामान्यतः समानांतर में जुड़े छोटे थाइरिस्टर कोशिकाओं की एक बड़ी संख्या (सैकड़ों या हजारों) से निर्मित होते हैं।
विशिष्टता | विवरण | थाइरिस्टर(1600 V, 350 A) | जीटीओ (1600 V, 350 A) |
---|---|---|---|
VT on | ऑन अवस्था वोल्टता पात | 1.5 V | 3.4 V |
ton, Ig on | चालु करने का समय, द्वार विद्युत प्रवाह | 8 µs, 200 mA | 2 µs, 2 A |
toff | बंद करने का समय | 150 µs | 15 µs |
एक वितरित मध्यवर्ती द्वार विरक्तिकारक थाइरिस्टर (डीबी-जीटीओ) बहाव क्षेत्र में अतिरिक्त पीएन परतों के साथ एक थाइरिस्टर है जो अनुक्षेत्र वर्णन को दोबारा बदलने और बंद अवस्था में अवरुद्ध वोल्टेज को बढ़ाने के लिए है। पारंपरिक थाइरिस्टर की विशिष्ट पीएनपीएन संरचना की तुलना में, डीबी-जीटीओ थाइरिस्टर में पीएन-पीएन-पीएन संरचना होती है।
पश्चदिशिक बायस
जीटीओ थाइरिस्टर्स प्रतिलोम अवरोधन क्षमता के साथ या उसके बिना उपलब्ध हैं। प्रतिलोम अवरोधन क्षमता लंबे, कम अपमिश्रित P1 क्षेत्र की आवश्यकता के कारण आगे वोल्टता पात में जोड़ती है।
प्रतिलोम वोल्टेज को अवरुद्ध करने में सक्षम जीटीओ थाइरिस्टर्स को सममित जीटीओ थाइरिस्टर्स, संक्षिप्त एस-जीटीओ के रूप में जाना जाता है। सामान्यतः, प्रतिलोम अवरोधन वोल्टेज अनुमतांकन और अग्र अवरोधी वोल्टेज अनुमतांकन समान होती है। सममित जीटीओ थाइरिस्टर्स के लिए विशिष्ट अनुप्रयोग वर्तमान स्रोत अंर्तवर्तक में है।
प्रतिलोम वोल्टेज को अवरूध्द करने में अक्षम जीटीओ थायरिस्टर्स को असममित जीटीओ थाइरिस्टर्स, संक्षिप्त ए-जीटीओ के रूप में जाना जाता है, और सामान्यतः सममित जीटीओ थाइरिस्टर्स से अधिक सामान्य होते हैं। उनके पास सामान्यतः दसियों वोल्ट में ब्रेकडाउन वोल्टेज और अन्य अर्धचालक अनुमतांकन होती है। ए-जीटीओ थाइरिस्टर्स का उपयोग किया जाता है जहां या तो प्रतिलोम निर्देशन डायोड को समानांतर में लगाया जाता है (उदाहरण के लिए, वोल्टेज स्रोत इनवर्टर में) या जहां प्रतिलोम वोल्टेज कभी नहीं होगा (उदाहरण के लिए, स्विच-प्रणाली विद्युत् प्रदाय या डीसी संकर्षण कर्तक में)।
जीटीओ थाइरिस्टर्स को उसी संवेष्टक में प्रतिलोम निर्देशन डायोड के साथ बनाया जा सकता है। प्रतिलोम निर्देशन जीटीओ थाइरिस्टर के लिए इन्हें आरसीजीटीओ के रूप में जाना जाता है।
सुरक्षित संचालन क्षेत्र
विद्युत रोधित द्वार द्विध्रुवी ट्रांजिस्टर (आईजीबीटी) के विपरीत, जीटीओ थाइरिस्टर को उपकरण को नष्ट होने से बचाने के लिए करंट को चालू और बंद करने के लिए बाहरी उपकरणों (स्नबर सर्किट) की आवश्यकता होती है।
चालू करने के दौरान, उपकरण में अधिकतम dI/dt अनुमतांकन होती है जो करंट के बढ़ने को सीमित करती है। यह उपकरण के पूरे बल्क को पूर्ण वर्तमान तक पहुंचने से पहले चालू होने की अनुमति देने के लिए है। यदि यह अनुमतांकन पार हो जाती है, तो द्वार कॉन्टैक्ट्स के निकटतम उपकरण का क्षेत्र ज़्यादा गरम हो जाएगा और अधिक करंट से पिघल जाएगा। dI/dt की दर को सामान्यतः एक संतृप्त रिएक्टर (टर्न-ऑन स्नबर) जोड़कर नियंत्रित किया जाता है, हालांकि GTO थाइरिस्टर्स के साथ टर्न-ऑन dI/dt सामान्य थाइरिस्टर्स की तुलना में कम गंभीर बाधा है, क्योंकि जिस तरह से GTO है समानांतर में कई छोटे थाइरिस्टर कोशिकाओं से निर्मित। संतृप्त रिएक्टर का रीसेट सामान्यतः जीटीओ आधारित सर्किट पर न्यूनतम समय की आवश्यकता रखता है।
टर्न ऑफ के दौरान, उपकरण का फॉरवर्ड वोल्टेज तब तक सीमित होना चाहिए जब तक कि करंट टेल ऑफ न हो जाए। सीमा सामान्यतः आगे अवरुद्ध वोल्टेज अनुमतांकन का लगभग 20% है। यदि वोल्टेज बंद होने पर बहुत तेजी से बढ़ता है, तो सभी उपकरण बंद नहीं होंगे और उपकरण के एक छोटे से हिस्से पर केंद्रित उच्च वोल्टेज और करंट के कारण GTO अक्सर विस्फोटक रूप से विफल हो जाएगा। बंद होने पर वोल्टेज के उदय को सीमित करने के लिए उपकरण के चारों ओर पर्याप्त स्नबर सर्किट जोड़े जाते हैं। स्नबर सर्किट को रीसेट करना सामान्यतः जीटीओ आधारित सर्किट पर न्यूनतम समय की आवश्यकता रखता है।
डीसी मोटर हेलिकॉप्टर सर्किट में न्यूनतम और उच्चतम कर्तव्य चक्र पर एक चर स्विचिंग आवृत्ति का उपयोग करके न्यूनतम चालू और बंद समय को नियंत्रित किया जाता है। यह कर्षण अनुप्रयोगों में देखा जा सकता है जहां मोटर शुरू होने पर आवृत्ति बढ़ जाएगी, फिर आवृत्ति अधिकांश गति सीमाओं पर स्थिर रहती है, फिर आवृत्ति पूरी गति से शून्य हो जाती है।
अनुप्रयोग
मुख्य अनुप्रयोग चर-गति मोटर ड्राइव, उच्च-शक्ति इनवर्टर और ट्रैक्शन (इंजीनियरिंग) में हैं। जीटीओ को तेजी से एकीकृत द्वार-कम्यूटेटेड थाइरिस्टर्स (आईजीसीटी) द्वारा प्रतिस्थापित किया जा रहा है, जो जीटीओ का एक विकासवादी विकास है, और [[विद्युत रोधित द्वार द्विध्रुवी ट्रांजिस्टर]] (आईजीबीटी), जो ट्रांजिस्टर परिवार के सदस्य हैं।
उनका उपयोग फ्लोरोसेंट लैंप के लिए स्टार्टर सर्किट में भी किया जाता है।
संदर्भ
- ↑ Hingorani, Narain G; Laszlo Gyugi (2011). तथ्यों को समझना. India: IEEE Press. p. 41. ISBN 978-81-265-3040-3.
- ↑ "गेट बंद स्विच". 17 September 2009.
- Shah, P. B. Electronics Letters, vol. 36, p. 2108, (2000).
- Shah, P. B., Geil, B. R., Ervin, M. E. et al. IEEE Trans. Power Elect., vol. 17, p. 1073, (2002).