Classical Banach spaces
|
|
Dual space |
Reflexive |
weakly sequentially complete |
Norm |
Notes
|
|
![{\displaystyle \mathbb {F} ^{n}}](/index.php?title=Special:MathShowImage&hash=2c3a85a8a3be627804cdc48c487da763&mode=mathml) |
Yes |
Yes
|
|
|
Euclidean space
|
|
![{\displaystyle \ell _{q}^{n}}](/index.php?title=Special:MathShowImage&hash=dd727df8641a26717ce2e8351955b5af&mode=mathml) |
Yes |
Yes
|
|
|
|
|
![{\displaystyle \ell _{1}^{n}}](/index.php?title=Special:MathShowImage&hash=9cabf1db75e15dd4f94abcb479c3a880&mode=mathml) |
Yes |
Yes
|
|
|
|
|
![{\displaystyle \ell ^{q}}](/index.php?title=Special:MathShowImage&hash=e1a11b86e3994137e1e83e097d38a016&mode=mathml) |
Yes |
Yes
|
|
|
|
|
![{\displaystyle \ell ^{\infty }}](/index.php?title=Special:MathShowImage&hash=e42a2b0653982afe962005659f8f3566&mode=mathml) |
No |
Yes
|
|
|
|
|
![{\displaystyle \operatorname {ba} }](/index.php?title=Special:MathShowImage&hash=468267d7d974ef57a71d82524ae18d05&mode=mathml) |
No |
No
|
|
|
|
|
![{\displaystyle \ell ^{1}}](/index.php?title=Special:MathShowImage&hash=69ec75aeec0eee7a7d40b8088a423379&mode=mathml) |
No |
No
|
|
|
|
|
![{\displaystyle \ell ^{1}}](/index.php?title=Special:MathShowImage&hash=69ec75aeec0eee7a7d40b8088a423379&mode=mathml) |
No |
No
|
|
|
Isomorphic but not isometric to
|
|
![{\displaystyle \ell ^{\infty }}](/index.php?title=Special:MathShowImage&hash=e42a2b0653982afe962005659f8f3566&mode=mathml) |
No |
Yes
|
|
|
Isometrically isomorphic to
|
|
![{\displaystyle \ell ^{\infty }}](/index.php?title=Special:MathShowImage&hash=e42a2b0653982afe962005659f8f3566&mode=mathml) |
No |
Yes
|
|
|
Isometrically isomorphic to
|
|
![{\displaystyle \operatorname {ba} }](/index.php?title=Special:MathShowImage&hash=468267d7d974ef57a71d82524ae18d05&mode=mathml) |
No |
No
|
|
|
Isometrically isomorphic to
|
|
![{\displaystyle \ell ^{1}}](/index.php?title=Special:MathShowImage&hash=69ec75aeec0eee7a7d40b8088a423379&mode=mathml) |
No |
No
|
|
|
Isometrically isomorphic to
|
|
![{\displaystyle \operatorname {ba} (\Xi )}](/index.php?title=Special:MathShowImage&hash=dafb3c75134dd2077e536fe26ce55978&mode=mathml) |
No |
No
|
|
|
|
|
![{\displaystyle \operatorname {rca} (K)}](/index.php?title=Special:MathShowImage&hash=f79b4f32e5fa04c6209b0cba594516c3&mode=mathml) |
No |
No
|
|
|
|
|
? |
No |
Yes
|
|
|
|
|
? |
No |
Yes
|
|
|
A closed subspace of
|
|
? |
No |
Yes
|
|
|
A closed subspace of
|
|
![{\displaystyle L^{q}(\mu )}](/index.php?title=Special:MathShowImage&hash=3d7df09a6c35b5f1fd7e3221a3c49ab5&mode=mathml) |
Yes |
Yes
|
|
|
|
|
![{\displaystyle L^{\infty }(\mu )}](/index.php?title=Special:MathShowImage&hash=d5c6a5d420df3bbf14f348c4e6392c0e&mode=mathml) |
No |
Yes
|
|
|
The dual is if is -finite.
|
|
? |
No |
Yes
|
|
|
is the total variation of
|
|
? |
No |
Yes
|
|
|
consists of functions such that
|
|
![{\displaystyle \mathbb {F} +L^{\infty }([a,b])}](/index.php?title=Special:MathShowImage&hash=bd874d5dd221a7f99db6e60e705acdc4&mode=mathml) |
No |
Yes
|
|
|
Isomorphic to the Sobolev space
|
|
![{\displaystyle \operatorname {rca} ([a,b])}](/index.php?title=Special:MathShowImage&hash=8e208412c93a08eb769a9333ce5f7c09&mode=mathml) |
No |
No
|
|
|
Isomorphic to essentially by Taylor's theorem.
|