पुनरावृत्त फलन: Difference between revisions
Line 64: | Line 64: | ||
ऐसी स्थिति में, पद्धति को [[प्रवाह (गणित)|प्रवाह]] के रूप में संदर्भित किया जाता है। (cf. नीचे संयुग्मन पर अनुभाग।) | ऐसी स्थिति में, पद्धति को [[प्रवाह (गणित)|प्रवाह]] के रूप में संदर्भित किया जाता है। (cf. नीचे संयुग्मन पर अनुभाग।) | ||
ऋणात्मक पुनरावृत्त प्रकार्य व्युत्क्रम और उनकी रचनाओं के अनुरूप हैं। उदाहरण के लिए, {{math|''f''<sup> −1</sup>(''x'')}} का सामान्य प्रतिलोम है {{mvar|f}}, जबकि {{math|''f''<sup> −2</sup>(''x'')}} स्वयं से बना प्रतिलोम है, अर्थात {{math|1=''f''<sup> −2</sup>(''x'') = ''f''<sup> −1</sup>(''f''<sup> −1</sup>(''x''))}} | भिन्नात्मक ऋणात्मक पुनरावृत्त को भिन्नात्मक घनात्मक के अनुरूप परिभाषित किया जाता है; उदाहरण के लिए, {{math|''f''<sup> −1/2</sup>(''x'')}} इस प्रकार परिभाषित किया गया है कि {{math|1=''f''<sup> −1/2</sup>(''f''<sup> −1/2</sup>(''x'')) = ''f''<sup> −1</sup>(''x'')}}, या, तुल्यतः रूप से, ऐसा कि {{math|1=''f''<sup> −1/2</sup>(''f''<sup> 1/2</sup>(''x'')) = ''f''<sup> 0</sup>(''x'') = ''x''}} | | |||
=== आंशिक पुनरावृत्ति के लिए कुछ सूत्र === | === आंशिक पुनरावृत्ति के लिए कुछ सूत्र === |
Revision as of 14:41, 17 March 2023
बार-बार, स्वयं से बना,समानता F केंद्र S के सबसे छोटे समभुजकोणीय पंचकोण को क्रमिक संकेंद्रित पंचकोण में विस्तारित करता है, इस तरह से कि हर एक की रूपरेखा पिछले पंचकोण के सभी शीर्षों से होकर गुजरता है, जिनमें से यह F के नीचे का प्रतिबिम्ब है। यदि रूपांतरण F अनिश्चित पुनरावृत्त के लिए पुनरावृत्त होता है, फिर A और K दो अनंत सर्पिलों के शुरुआती बिंदु हैं। गणित में, एक पुनरावृत्त फलन एक फलन X → X (अर्थात्, कुछ समुच्चय X से स्वयं में एक फलन) जो एक अन्य फलन f : X → X को स्वयं के साथ एक निश्चित संख्या में जोड़कर प्राप्त किया जाता है। एक ही कार्य को बार-बार लागू करने की प्रक्रिया को पुनरावृत्ति कहा जाता है। इस प्रक्रिया में, किसी आरंभिक वस्तु से शुरू करके, दिए गए फलन को लागू करने के परिणाम को फिर से निविष्ट के रूप में फलन में फीड किया जाता है, और यह प्रक्रिया दोहराई जाती है। उदाहरण के लिए दाईं ओर की छवि पर:
- L = ( K ), M = ( K ) = ( K ),
फलन रचना के वृत्त के आकार के प्रतीक के साथ।
कंप्यूटर विज्ञान, भग्न, गतिकीय तंत्र, गणित और पुनर्सामान्यीकरण समूह भौतिकी में पुनरावृत्त कार्य अध्ययन की वस्तुएं हैं।
परिभाषा
समुच्चय X पर पुनरावृत्त फलन की औपचारिक परिभाषा इस प्रकार है।
मान लीजिए X एक समुच्चय हो और f: X → X एक फलन हो।
f n को f के n-वें पुनरावृति के रूप में परिभाषित करना ( हंस हेनरिक बर्मन[citation needed][1][2]और जॉन फ्रेडरिक विलियम हर्शेल द्वारा प्रस्तुत एक संकेतन [3][1][4][2]), जहां n एक गैर-ऋणात्मक पूर्णांक है, इसके द्वारा:
- (f○g)(x) = f (g(x)),
हमेशा सहयोगी।
क्योंकि अंकन f n फलन f के पुनरावृत्ति (रचना) या [[फलन के घातांक|फलन f के घातांक]] दोनों को संदर्भित कर सकता है (उत्तरार्द्ध आमतौर पर त्रिकोणमितीय में उपयोग किया जाता है), कुछ गणितज्ञ[citation needed] रचनात्मक अर्थ को दर्शाने के लिए ∘ का उपयोग करना चुनते हैं, फलन f(x) के n-वें पुनरावृत्ति के लिए f∘n(x) लिखते हैं, उदाहरण के लिए, f∘3(x) अर्थ f(f(f(x))) / इसी उद्देश्य के लिए, f [n](x) का उपयोग बेंजामिन पीयर्स द्वारा किया गया था[5][2][nb 1] जबकि अल्फ्रेड प्रिंगशाइम और जूल्स मोल्क ने इसके बजाय nf(x) का सुझाव दिया था। ।[6][2][nb 2]
एबेलियन गुण और पुनरावृत्ति अनुक्रम
सामान्य तौर पर, निम्नलिखित सर्वसमिका सभी गैर-ऋणात्मक पूर्णांकों m और n के लिए लागू होती है
यह संरचनात्मक रूप से घातांक के गुण के समान है कि aman = am + n, यानी विशेष स्थिति f(x) = ax.
सामान्य तौर पर, स्वेच्छ सामान्य (नकारात्मक, गैर-पूर्णांक, आदि) सूचकांक m और n के लिए, इस संबंध को अनुवाद कार्यात्मक समीकरण सीएफ कहा जाता है, श्रोडर का समीकरण और एबेल समीकरण। लघुगणकीय पैमाने पर, यह चेबीशेव बहुपदों के नीडन गुण को कम कर देता है, Tm(Tn(x)) = Tm n(x), चूंकि Tn(x) = cos(n arccos(x)) /
संबंध (f m)n(x) = (f n)m(x) = f mn(x) भी धारण करता है, घातांक के गुण के अनुरूप (am)n = (an)m = amn।
फलन का अनुक्रम f n को पिकार्ड अनुक्रम कहा जाता है,[7][8] जिसका नाम चार्ल्स एमिल पिकार्ड के नाम पर रखा गया है।
x में दिए गए x के लिए, मानों के अनुक्रम fn(x) को x की कक्षा कहा जाता है।
अगर f n (x) = f n+m (x) कुछ पूर्णांक के लिए m>0, कक्षा को आवर्ती कक्षा कहा जाता है। किसी दिए गए x के लिए m का ऐसा सबसे छोटा मान कक्षा का आवर्त कहलाता है। बिंदु x को ही आवर्त बिन्दु कहते हैं। कंप्यूटर विज्ञान में चक्र का पता लगाने की समस्या एक कक्षा में पहला आवर्त बिंदु और कक्षा का आवर्त खोजने की कलन विधि समस्या है।
निश्चित बिंदु
यदि x में कुछ x के लिए f(x) = x (अर्थात् x की कक्षा की आवर्त 1 है), तो x को पुनरावृत्त अनुक्रम का एक निश्चित बिंदु कहा जाता है। स्थिर बिन्दुओं के समुच्चय को प्राय: फिक्स (एफ) के रूप में दर्शाया जाता है। कई निश्चित-बिंदु प्रमेय मौजूद हैं जो विभिन्न स्थितियों में निश्चित बिंदुओं के अस्तित्व की गारंटी देते हैं, जिसमें बनच निश्चित बिंदु प्रमेय और ब्रोवर निश्चित बिंदु प्रमेय सम्मिलित हैं।
निश्चित बिंदु पुनरावृत्ति द्वारा प्रस्तुत अनुक्रमों के अभिसरण त्वरण के लिए कई प्रविधि हैं।[9] उदाहरण के लिए, ऐटकेन विधि को पुनरावृत्त निश्चित बिंदु पर लागू किया जाता है जिसे स्टीफ़ेंसन की विधि के रूप में जाना जाता है, और द्विघात अभिसरण उत्पन्न करता है।
सीमित व्यवहार
पुनरावृति पर, कोई यह पा सकता है कि ऐसे समुच्चय हैं जो संकुचित होते हैं और एक बिंदु की ओर अभिसरण करते हैं। ऐसी स्थिति में, जिस बिंदु पर अभिसरण होता है उसे एक आकर्षक निश्चित बिंदु के रूप में जाना जाता है। इसके विपरीत, पुनरावृति एक बिंदु से अलग होने वाले बिंदुओं का आभास दे सकती है; यह अस्थिर निश्चित बिंदु के स्थिति में होगा।[10] जब कक्षा के बिंदु एक या अधिक सीमाओं में अभिसरण करते हैं, तो कक्षा के संचयन बिंदुओं के समुच्चय को सीमा समुच्चय या ω-सीमा समुच्चय के रूप में जाना जाता है।
आकर्षण और प्रतिकर्षण के विचार समान रूप से सामान्य होते हैं; पुनरावृत्ति के तहत छोटे प्रतिवेश के व्यवहार के अनुसार, पुनरावृति को स्थिर समुच्चय और अस्थिर समुच्चय में वर्गीकृत किया जा सकता है। (विश्लेषणात्मक फलन की अनंत रचनाएं भी देखें।)
अन्य सीमित व्यवहार संभव हैं; उदाहरण के लिए, अस्थिर बिंदु वे बिंदु होते हैं जो दूर चले जाते हैं, और जहां से उन्होंने शुरू किया था, उसके करीब कभी वापस नहीं आते हैं।
निश्चर माप
यदि कोई व्यक्तिगत बिंदु गतिकी के बजाय घनत्व वितरण के विकास पर विचार करता है, तो सीमित व्यवहार निश्चर माप द्वारा दिया जाता है। इसे बार-बार पुनरावृत्ति के तहत बिंदु-समूह या चूर्ण-समूह के व्यवहार के रूप में देखा जा सकता है। निश्चर माप रूले-फ्रोबेनियस-पेरॉन प्रचालक या स्थानांतरण प्रचालक का एक ईजेनस्टेट है, जो 1 के ईजेनवेल्यू के अनुरूप है। छोटे ईजेनवेल्यूज अस्थिर, क्षय अवस्था के अनुरूप हैं।
सामान्य तौर पर, क्योंकि बार-बार पुनरावृत्ति एक बदलाव से मेल खाती है,और इसके सहायक,कोपमैन प्रचालक दोनों को शिफ्ट अंतरालक पर शिफ्ट प्रचालक की कार्रवाई के रूप में व्याख्या की जा सकती है। परिमित प्रकार के उपशिफ्ट का सिद्धांत कई पुनरावृत्त कार्यों में सामान्य अंतर्दृष्टि प्रदान करता है, विशेष रूप से वे जो अराजकता की ओर ले जाते हैं।
भिन्नात्मक पुनरावृति और प्रवाह, और ऋणात्मक पुनरावृति
संकेतन f1/n का उपयोग सावधानी से किया जाना चाहिए जब समीकरण gn(x) = f(x) के कई समाधान हैं, जो आम तौर पर होता है, जैसा कि बैबेज के पहचान मानचित्र के प्रकार्यात्मक मूल के समीकरण में होता है। उदाहरण के लिए, के लिए n = 2 और f(x) = 4x − 6 के लिए,दोनों g(x) = 6 − 2x और g(x) = 2x − 2 समाधान हैं; इसलिए व्यंजक f 1/2(x) किसी अद्वितीय फलन को निरूपित नहीं करता है, जैसे संख्याओं के अनेक बीजगणितीय मूल होते हैं। यह परिणाम अंकगणित में "0/0" व्यंजक के समान है। यदि f के प्रक्षेत्र को पर्याप्त रूप से बढ़ाया जा सकता है, तो f का एक तुच्छ मूल चित्र हमेशा प्राप्त किया जा सकता है, चुनी गई मूल कक्षा आमतौर पर अध्ययन के तहत से संबंधित होती हैं।
किसी फलन की भिन्नात्मक पुनरावृति को परिभाषित किया जा सकता है: उदाहरण के लिए, फलन f का अर्द्ध पुनरावृति एक फलन g है जैसे कि g(g(x)) = f(x) |[11] यह फलन g(x) को f 1/2(x) के रूप में घातांक संकेतन का उपयोग करके लिखा जा सकता है। इसी तरह , f 1/3(x) इस तरह परिभाषित फलन है कि f1/3(f1/3(f1/3(x))) = f(x), जबकि f2/3(x) को बराबर के रूप में परिभाषित किया जा सकता है f 1/3(f1/3(x)), और इसी प्रकार आगे भी, यह सब पहले बताए गए सिद्धांत पर आधारित हैं कि f m ○ f n = f m + n | इस विचार को सामान्यीकृत किया जा सकता है ताकि पुनरावृति संख्या n एक सतत अंतःखंडी अनुपात बन जाता है,एक सतत कक्षा का सतत "समय"।[12][13]
ऐसी स्थिति में, पद्धति को प्रवाह के रूप में संदर्भित किया जाता है। (cf. नीचे संयुग्मन पर अनुभाग।)
ऋणात्मक पुनरावृत्त प्रकार्य व्युत्क्रम और उनकी रचनाओं के अनुरूप हैं। उदाहरण के लिए, f −1(x) का सामान्य प्रतिलोम है f, जबकि f −2(x) स्वयं से बना प्रतिलोम है, अर्थात f −2(x) = f −1(f −1(x)) | भिन्नात्मक ऋणात्मक पुनरावृत्त को भिन्नात्मक घनात्मक के अनुरूप परिभाषित किया जाता है; उदाहरण के लिए, f −1/2(x) इस प्रकार परिभाषित किया गया है कि f −1/2(f −1/2(x)) = f −1(x), या, तुल्यतः रूप से, ऐसा कि f −1/2(f 1/2(x)) = f 0(x) = x |
आंशिक पुनरावृत्ति के लिए कुछ सूत्र
भिन्नात्मक पुनरावृति के लिए एक श्रृंखला सूत्र खोजने के कई तरीकों में से एक, एक निश्चित बिंदु का उपयोग करते हुए, इस प्रकार है।[14]
- पहले फलनके लिए एक निश्चित बिंदु निर्धारित करें जैसे कि f(a) = a.
- परिभाषित करना f n(a) = a सभी n के लिए वास्तविक से संबंधित है। यह, कुछ मायनों में, भिन्नात्मक पुनरावृति पर रखने के लिए सबसे स्वाभाविक अतिरिक्त स्थिति है।
- बढ़ाना fn(x) निश्चित बिंदु के आसपास एक टेलर श्रृंखला के रूप में,
- विस्तार करें
- के लिए स्थानापन्न करें fk(a) = a, किसी भी कश्मीर के लिए,
- शर्तों को सरल बनाने के लिए ज्यामितीय प्रगति का उपयोग करें, एक विशेष मामला है जब f '(a) = 1,
यह अनिश्चित काल तक किया जा सकता है, हालांकि अक्षम रूप से, क्योंकि बाद की शर्तें तेजी से जटिल हो जाती हैं। संयुग्मता पर निम्नलिखित खंड में एक अधिक व्यवस्थित प्रक्रिया की रूपरेखा दी गई है।
उदाहरण 1
उदाहरण के लिए, सेटिंग f(x) = Cx + D निश्चित बिंदु देता है a = D/(1 − C), इसलिए उपरोक्त सूत्र सिर्फ पर समाप्त होता है
उदाहरण 2
का मान ज्ञात कीजिए जहां यह n बार किया जाता है (और संभावित रूप से इंटरपोलेटेड मान जब n पूर्णांक नहीं होता है)। अपने पास f(x) = √2x. एक स्थिर बिन्दु है a = f(2) = 2.
सो सेट x = 1 और f n (1) 2 के निश्चित बिंदु मान के चारों ओर विस्तारित तब एक अनंत श्रृंखला है,
के लिए n = −1, श्रृंखला प्रतिलोम फलन की गणना करती है 2+ln x/ln 2.
उदाहरण 3
समारोह के साथ f(x) = xb, श्रृंखला प्राप्त करने के लिए निश्चित बिंदु 1 के चारों ओर विस्तार करें
संयुग्मन
अगर f और g दो पुनरावृत्त कार्य हैं, और एक होमियोमोर्फिज्म मौजूद है h ऐसा है कि g = h−1 ○ f ○ h , तब f और g स्थलाकृतिक संयुग्मन कहा जाता है।
स्पष्ट रूप से, सामयिक संयुग्मन पुनरावृत्ति के तहत संरक्षित है, जैसा कि gn = h−1 ○ f n ○ h. इस प्रकार, यदि कोई एक पुनरावृत्त कार्य प्रणाली के लिए हल कर सकता है, तो उसके पास सभी स्थैतिक रूप से संयुग्मित प्रणालियों के लिए भी समाधान हैं। उदाहरण के लिए, टेंट का नक्शा स्थलीय रूप से रसद मानचित्र के साथ जुड़ा हुआ है। एक विशेष मामले के रूप में, लेना f(x) = x + 1, एक की पुनरावृत्ति है g(x) = h−1(h(x) + 1) जैसा
- gn(x) = h−1(h(x) + n), किसी भी समारोह के लिए h.
प्रतिस्थापन बनाना x = h−1(y) = ϕ(y) पैदावार
- g(ϕ(y)) = ϕ(y+1), एबेल समीकरण के रूप में जाना जाने वाला एक रूप।
यहां तक कि एक निश्चित बिंदु के पास एक सख्त होमोमोर्फिज्म की अनुपस्थिति में, यहां पर होने के लिए लिया गया x = 0, f(0) = 0, कोई अक्सर हल कर सकता है[15] फलनΨ के लिए श्रोडर का समीकरण, जो बनाता है f(x) स्थानीय रूप से एक मात्र फैलाव के लिए संयुग्मित, g(x) = f '(0) x, वह है
- f(x) = Ψ−1(f '(0) Ψ(x)).
इस प्रकार, इसकी पुनरावृति कक्षा, या प्रवाह, उपयुक्त प्रावधानों के तहत (जैसे, f '(0) ≠ 1), मोनोमियल की कक्षा के संयुग्म के बराबर है,
- Ψ−1(f '(0)n Ψ(x)),
कहाँ n इस अभिव्यक्ति में एक सादे प्रतिपादक के रूप में कार्य करता है: कार्यात्मक पुनरावृत्ति को गुणन में घटा दिया गया है! यहाँ, हालांकि, प्रतिपादक n अब पूर्णांक या धनात्मक होने की आवश्यकता नहीं है, और पूर्ण कक्षा के लिए विकास का एक सतत समय है:[16] पिकार्ड अनुक्रम का मोनोइड (cf. परिवर्तन अर्धसमूह) एक पूर्ण निरंतर समूह के लिए सामान्यीकृत है।[17]
यह विधि (प्रिंसिपल eigenfunction Ψ, cf. कार्लमैन मैट्रिक्स का अनुगामी निर्धारण) पिछले अनुभाग के एल्गोरिथम के समतुल्य है, यद्यपि, व्यवहार में, अधिक शक्तिशाली और व्यवस्थित।
मार्कोव चेन
यदि फलनरैखिक है और एक स्टोकेस्टिक मैट्रिक्स द्वारा वर्णित किया जा सकता है, अर्थात एक मैट्रिक्स जिसकी पंक्तियों या स्तंभों का योग एक है, तो पुनरावृत्त प्रणाली को मार्कोव श्रृंखला के रूप में जाना जाता है।
उदाहरण
अराजक नक्शों की सूची है। जाने-माने पुनरावृत्त कार्यों में मैंडेलब्रॉट सेट और पुनरावृत्त फलनसिस्टम शामिल हैं।
अर्नस्ट श्रोडर (गणितज्ञ)|अर्नस्ट श्रोडर,[19] 1870 में, रसद मानचित्र के विशेष मामलों, जैसे अराजक मामले पर काम किया f(x) = 4x(1 − x), ताकि Ψ(x) = arcsin2(√x), इस तरह f n(x) = sin2(2n arcsin(√x)).
एक अराजक मामला श्रोडर ने भी अपनी पद्धति से चित्रित किया, f(x) = 2x(1 − x), प्राप्त हुआ Ψ(x) = −1/2 ln(1 − 2x), और इसलिए fn(x) = −1/2((1 − 2x)2n − 1).
अगर f एक सेट पर समूह तत्व की समूह क्रिया (गणित) है, तो पुनरावृत्त फलनएक मुक्त समूह से मेल खाता है।
अधिकांश कार्यों में एन-वें पुनरावृत्त के लिए स्पष्ट सामान्य बंद-रूप अभिव्यक्ति नहीं होती है। नीचे दी गई तालिका कुछ सूचीबद्ध करती है[19]यह काम करता है। ध्यान दें कि ये सभी भाव गैर-पूर्णांक और ऋणात्मक n के साथ-साथ गैर-ऋणात्मक पूर्णांक n के लिए भी मान्य हैं।
(see note) |
where: |
(see note) |
where: |
(rational difference equation)[20] | where: |
(generic Abel equation) | |
(Chebyshev polynomial for integer m) |
नोट: के ये दो विशेष मामले ax2 + bx + c केवल ऐसे मामले हैं जिनका एक बंद-रूप समाधान है। क्रमशः b = 2 = -a और b = 4 = -a चुनने से, उन्हें तालिका से पहले चर्चा किए गए गैर-अराजक और अराजक रसद मामलों में कम कर दिया जाता है।
इनमें से कुछ उदाहरण आपस में सरल संयुग्मन द्वारा संबंधित हैं। कुछ और उदाहरण, अनिवार्य रूप से श्रोडर के उदाहरणों की सरल संयुग्मन के लिए रेफ में पाए जा सकते हैं।[21]
अध्ययन के साधन
पुनरावृत्त कार्यों का अध्ययन आर्टिन-मज़ूर जेटा फलनऔर स्थानांतरण ऑपरेटरों के साथ किया जा सकता है।
कंप्यूटर विज्ञान में
कंप्यूटर विज्ञान में, पुनरावृत्त कार्य पुनरावर्तन (कंप्यूटर विज्ञान) के एक विशेष मामले के रूप में होते हैं, जो बदले में लैम्ब्डा कैलकुस, या संकुचित वाले जैसे व्यापक विषयों के अध्ययन को एंकर करते हैं, जैसे कंप्यूटर प्रोग्राम के सांकेतिक शब्दार्थ
पुनरावृत्त कार्यों के संदर्भ में परिभाषाएँ
दो महत्वपूर्ण कार्यात्मक (गणित) को पुनरावृत्त कार्यों के संदर्भ में परिभाषित किया जा सकता है। ये योग हैं:
और समकक्ष उत्पाद:
कार्यात्मक व्युत्पन्न
पुनरावृत्त फलनका कार्यात्मक व्युत्पन्न पुनरावर्ती सूत्र द्वारा दिया जाता है:
झूठ का डेटा परिवहन समीकरण
संयुक्त कार्यों के श्रृंखला विस्तार में इटरेटेड फ़ंक्शंस फ़सल होते हैं, जैसे g(f(x)).
कोएनिग्स फलनको देखते हुए # यूनिवेलेंट सेमिग्रुप्स की संरचना, या बीटा फलन(भौतिकी),
- के लिए nवें समारोह की पुनरावृति f, अपने पास[22]
उदाहरण के लिए, कठोर संवहन के लिए, यदि f(x) = x + t, तब v(x) = t. फलस्वरूप, g(x + t) = exp(t ∂/∂x) g(x), प्लेन शिफ्ट ऑपरेटर द्वारा कार्रवाई।
इसके विपरीत, कोई निर्दिष्ट कर सकता है f(x) एक मनमाना दिया v(x), ऊपर चर्चा किए गए सामान्य एबेल समीकरण के माध्यम से,
कहाँ
यह बात नोट करने से पता चलता है
निरंतर पुनरावृत्ति सूचकांक के लिए t, फिर, अब एक सबस्क्रिप्ट के रूप में लिखा गया है, यह एक सतत समूह के झूठ की प्रसिद्ध घातीय प्राप्ति के बराबर है,
प्रारंभिक प्रवाह वेग v पूरे प्रवाह को निर्धारित करने के लिए पर्याप्त है, इस घातीय अहसास को देखते हुए जो स्वचालित रूप से अनुवाद कार्यात्मक समीकरण का सामान्य समाधान प्रदान करता है,[23] :
यह भी देखें
- तर्कहीन घुमाव
- पुनरावृत्त समारोह प्रणाली
- पुनरावर्ती विधि
- घूर्णन संख्या
- सरकोवस्की की प्रमेय
- भिन्नात्मक कलन
- पुनरावृत्ति संबंध
- श्रोडर का समीकरण
- कार्यात्मक वर्गमूल
- हाबिल समारोह
- विश्लेषणात्मक कार्यों की अनंत रचनाएँ
- प्रवाह (गणित)
- टेट्रेशन
- कार्यात्मक समीकरण
टिप्पणियाँ
- ↑ while f (n) is taken for the [[Derivative#Lagrange's notation|nth derivative]]
- ↑ Alfred Pringsheim's and Jules Molk's (1907) notation nf(x) to denote function compositions must not be confused with Rudolf von Bitter Rucker's (1982) notation nx, introduced by Hans Maurer (1901) and Reuben Louis Goodstein (1947) for tetration, or with David Patterson Ellerman's (1995) nx pre-superscript notation for roots.
संदर्भ
- ↑ 1.0 1.1 Herschel, John Frederick William (1820). "Part III. Section I. Examples of the Direct Method of Differences". A Collection of Examples of the Applications of the Calculus of Finite Differences. Cambridge, UK: Printed by J. Smith, sold by J. Deighton & sons. pp. 1–13 [5–6]. Archived from the original on 2020-08-04. Retrieved 2020-08-04. [1] (NB. Inhere, Herschel refers to his 1813 work and mentions Hans Heinrich Bürmann's older work.)
- ↑ 2.0 2.1 2.2 2.3 Cajori, Florian (1952) [March 1929]. "§472. The power of a logarithm / §473. Iterated logarithms / §533. John Herschel's notation for inverse functions / §535. Persistence of rival notations for inverse functions / §537. Powers of trigonometric functions". A History of Mathematical Notations. Vol. 2 (3rd corrected printing of 1929 issue, 2nd ed.). Chicago, USA: Open court publishing company. pp. 108, 176–179, 336, 346. ISBN 978-1-60206-714-1. Retrieved 2016-01-18.
[…] §473. Iterated logarithms […] We note here the symbolism used by Pringsheim and Molk in their joint Encyclopédie article: "2logb a = logb (logb a), …, k+1logb a = logb (klogb a)."[a] […] §533. John Herschel's notation for inverse functions, sin−1 x, tan−1 x, etc., was published by him in the Philosophical Transactions of London, for the year 1813. He says (p. 10): "This notation cos.−1 e must not be understood to signify 1/cos. e, but what is usually written thus, arc (cos.=e)." He admits that some authors use cos.m A for (cos. A)m, but he justifies his own notation by pointing out that since d2 x, Δ3 x, Σ2 x mean dd x, ΔΔΔ x, ΣΣ x, we ought to write sin.2 x for sin. sin. x, log.3 x for log. log. log. x. Just as we write d−n V=∫n V, we may write similarly sin.−1 x=arc (sin.=x), log.−1 x.=cx. Some years later Herschel explained that in 1813 he used fn(x), f−n(x), sin.−1 x, etc., "as he then supposed for the first time. The work of a German Analyst, Burmann, has, however, within these few months come to his knowledge, in which the same is explained at a considerably earlier date. He[Burmann], however, does not seem to have noticed the convenience of applying this idea to the inverse functions tan−1, etc., nor does he appear at all aware of the inverse calculus of functions to which it gives rise." Herschel adds, "The symmetry of this notation and above all the new and most extensive views it opens of the nature of analytical operations seem to authorize its universal adoption."[b] […] §535. Persistence of rival notations for inverse function.— […] The use of Herschel's notation underwent a slight change in Benjamin Peirce's books, to remove the chief objection to them; Peirce wrote: "cos[−1] x," "log[−1] x."[c] […] §537. Powers of trigonometric functions.—Three principal notations have been used to denote, say, the square of sin x, namely, (sin x)2, sin x2, sin2 x. The prevailing notation at present is sin2 x, though the first is least likely to be misinterpreted. In the case of sin2 x two interpretations suggest themselves; first, sin x · sin x; second,[d] sin (sin x). As functions of the last type do not ordinarily present themselves, the danger of misinterpretation is very much less than in case of log2 x, where log x · log x and log (log x) are of frequent occurrence in analysis. […] The notation sinn x for (sin x)n has been widely used and is now the prevailing one. […]
(xviii+367+1 pages including 1 addenda page) (NB. ISBN and link for reprint of 2nd edition by Cosimo, Inc., New York, USA, 2013.) - ↑ Herschel, John Frederick William (1813) [1812-11-12]. "On a Remarkable Application of Cotes's Theorem". Philosophical Transactions of the Royal Society of London. London: Royal Society of London, printed by W. Bulmer and Co., Cleveland-Row, St. James's, sold by G. and W. Nicol, Pall-Mall. 103 (Part 1): 8–26 [10]. doi:10.1098/rstl.1813.0005. JSTOR 107384. S2CID 118124706.
- ↑ Peano, Giuseppe (1903). Formulaire mathématique (in français). Vol. IV. p. 229.
- ↑ Peirce, Benjamin (1852). Curves, Functions and Forces. Vol. I (new ed.). Boston, USA. p. 203.
{{cite book}}
: CS1 maint: location missing publisher (link) - ↑ Pringsheim, Alfred; Molk, Jules (1907). Encyclopédie des sciences mathématiques pures et appliquées (in français). Vol. I. p. 195. Part I.
- ↑ Kuczma, Marek (1968). एक चर में कार्यात्मक समीकरण. Monografie Matematyczne. Warszawa: PWN – Polish Scientific Publishers.
- ↑ Kuczma, M., Choczewski B., and Ger, R. (1990). पुनरावृत्त कार्यात्मक समीकरण. Cambridge University Press. ISBN 0-521-35561-3.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ↑ Carleson, L.; Gamelin, T. D. W. (1993). जटिल गतिकी. Universitext: Tracts in Mathematics. Springer-Verlag. ISBN 0-387-97942-5.
- ↑ Istratescu, Vasile (1981). Fixed Point Theory, An Introduction, D. Reidel, Holland. ISBN 90-277-1224-7.
- ↑ "Finding f such that f(f(x))=g(x) given g". MathOverflow.
- ↑ Aldrovandi, R.; Freitas, L. P. (1998). "डायनेमिकल मैप्स का निरंतर परिवर्तन". J. Math. Phys. 39 (10): 5324. arXiv:physics/9712026. Bibcode:1998JMP....39.5324A. doi:10.1063/1.532574. hdl:11449/65519. S2CID 119675869.
- ↑ Berkolaiko, G.; Rabinovich, S.; Havlin, S. (1998). "विश्लेषणात्मक पुनरावर्तन के कार्लमैन प्रतिनिधित्व का विश्लेषण". J. Math. Anal. Appl. 224: 81–90. doi:10.1006/jmaa.1998.5986.
- ↑ "तेतरतीओं.ऑर्ग".
- ↑ Kimura, Tosihusa (1971). "On the Iteration of Analytic Functions", Funkcialaj Ekvacioj Archived 2012-04-26 at the Wayback Machine 14, 197-238.
- ↑ Curtright, T. L.; Zachos, C. K. (2009). "विकास प्रोफाइल और कार्यात्मक समीकरण". Journal of Physics A. 42 (48): 485208. arXiv:0909.2424. Bibcode:2009JPhA...42V5208C. doi:10.1088/1751-8113/42/48/485208. S2CID 115173476.
- ↑ For explicit instance, example 2 above amounts to just f n(x) = Ψ−1((ln 2)n Ψ(x)), for any n, not necessarily integer, where Ψ is the solution of the relevant Schröder's equation, Ψ(√2x) = ln 2 Ψ(x). This solution is also the infinite m limit of (f m(x) − 2)/(ln 2)m.
- ↑ Curtright, T. L. Evolution surfaces and Schröder functional methods.
- ↑ 19.0 19.1 Schröder, Ernst (1870). "पुनरावृत्त कार्यों के बारे में". Math. Ann. 3 (2): 296–322. doi:10.1007/BF01443992. S2CID 116998358.
- ↑ Brand, Louis, "A sequence defined by a difference equation," American Mathematical Monthly 62, September 1955, 489–492. online
- ↑ Katsura, S.; Fukuda, W. (1985). "अराजक व्यवहार दिखाने वाले सटीक रूप से हल करने योग्य मॉडल". Physica A: Statistical Mechanics and Its Applications. 130 (3): 597. Bibcode:1985PhyA..130..597K. doi:10.1016/0378-4371(85)90048-2.
- ↑ Berkson, E.; Porta, H. (1978). "विश्लेषणात्मक कार्यों और संरचना ऑपरेटरों के सेमिग्रुप". The Michigan Mathematical Journal. 25: 101–115. doi:10.1307/mmj/1029002009. Curtright, T. L.; Zachos, C. K. (2010). "Chaotic maps, Hamiltonian flows and holographic methods". Journal of Physics A: Mathematical and Theoretical. 43 (44): 445101. arXiv:1002.0104. Bibcode:2010JPhA...43R5101C. doi:10.1088/1751-8113/43/44/445101. S2CID 115176169.
- ↑ Aczel, J. (2006), Lectures on Functional Equations and Their Applications (Dover Books on Mathematics, 2006), Ch. 6, ISBN 978-0486445236.
बाहरी कड़ियाँ
Gill, John (January 2017). "कॉम्प्लेक्स फ़ंक्शंस की अनंत रचनाओं के प्राथमिक सिद्धांत पर एक प्राइमर". Colorado State University.
श्रेणी:गतिशील प्रणालियाँ श्रेणी:भग्न श्रेणी:अनुक्रम और श्रृंखला श्रेणी:निश्चित अंक (गणित) श्रेणी:कार्य और मानचित्रण श्रेणी:कार्यात्मक समीकरण