योज्य बहुपद: Difference between revisions
No edit summary |
No edit summary |
||
Line 30: | Line 30: | ||
:<math>k\{ \tau_p\}\,</math> | :<math>k\{ \tau_p\}\,</math> | ||
:दर्शाया गया है। | :दर्शाया गया है। | ||
यह वलय क्रमविनिमेय नहीं है जब तक कि k क्षेत्र <math>\mathbb{F}_p = \mathbf{Z}/p\mathbf{Z}</math> न हो([[मॉड्यूलर अंकगणित]] देखें)। वस्तुतः, k में गुणांक a के लिए योज्य बहुपद ax और x<sup>p</sup> पर विचार करें। संरचना के अंतर्गत उनके लिए रूपांतरण करने के लिए, हमारे | यह वलय क्रमविनिमेय नहीं है जब तक कि k क्षेत्र <math>\mathbb{F}_p = \mathbf{Z}/p\mathbf{Z}</math> न हो([[मॉड्यूलर अंकगणित]] देखें)। वस्तुतः, k में गुणांक a के लिए योज्य बहुपद ax और x<sup>p</sup> पर विचार करें। संरचना के अंतर्गत उनके लिए रूपांतरण करने के लिए, हमारे समीप <math>(ax)^p = ax^p\,</math> | ||
होना चाहिए, और इसलिए a<sup>p</sup> − a = 0। यह a के लिए असत्य है, जो इस समीकरण की मूल नहीं है, अर्थात, बाहरी <math>\mathbb{F}_p</math> के लिए। | होना चाहिए, और इसलिए a<sup>p</sup> − a = 0। यह a के लिए असत्य है, जो इस समीकरण की मूल नहीं है, अर्थात, बाहरी <math>\mathbb{F}_p</math> के लिए। |
Revision as of 10:58, 17 March 2023
गणित में, योज्य बहुपद उत्कृष्ट बीजगणितीय संख्या सिद्धांत में एक महत्वपूर्ण विषय है।
परिभाषा
मान लीजिए k अभाज्य संख्या अभिलाक्षणिक(बीजगणित) p का एक क्षेत्र(गणित) है। k में गुणांक वाले बहुपद P(x) को 'योज्य बहुपद' या 'फ्रोबेनियस एंडोमोर्फिज्म बहुपद' कहा जाता है, यदि
a और b में बहुपद के रूप में है। यह मान लेने के समतुल्य है कि यह समानता k वाले किसी अनंत क्षेत्र में सभी a और b के लिए है, जैसे कि इसका बीजगणितीय समापन।
कभी-कभी उपरोक्त स्थिति के लिए पूर्णतः योज्य ' का उपयोग किया जाता है, और 'योज्य ' का उपयोग उस कमजोर स्थिति के लिए किया जाता है कि क्षेत्र में सभी a और b के लिए P(a + b) = P(a) + P(b) है। अनंत क्षेत्रों के लिए स्थितियाँ समतुल्य हैं, परन्तु परिमित क्षेत्रों के लिए वे नहीं हैं, और कमजोर स्थिति अनुचित है क्योंकि यह ठीक व्यवहार नहीं करती है। उदाहरण के लिए, अनुक्रम q के क्षेत्र में x का कोई भी गुणक Pq − x क्षेत्र में सभी a और b के लिए P(a + b) = P(a) + P(b) को संतुष्ट करेगा, परन्तु सामान्यतः(पूर्णतः) योज्य नहीं होगा।
उदाहरण
बहुपद xp योज्य है। वस्तुतः, किसी a और b के लिए k के बीजगणितीय समापन में द्विपद प्रमेय
- होता है। चूँकि p अभाज्य है, सभी n = 1, ..., p−1 के लिए द्विपद गुणांक , p से विभाज्य है, जिसका अर्थ है कि
- a और b में बहुपद के रूप में है।
इसी प्रकार रूप के सभी बहुपद
योज्य हैं, जहाँ n एक गैर-ऋणात्मक पूर्णांक है।
परिभाषा समझ में आती है यहां तक की k विशेषता शून्य का क्षेत्र हो, परन्तु इस विषय में मात्र योज्य बहुपद वे हैं जो k में कुछ a के लिए ax के रूप में हैं।[citation needed]
योज्य बहुपदों का वलय
यह सिद्ध करना बहुत सरल है कि k में गुणांक वाले बहुपद का कोई भी रैखिक संयोजन भी एक योज्य बहुपद होता है। एक रोचक प्रश्न यह है कि क्या इन रैखिक संयोजनों को छोड़कर अन्य योज्य बहुपद हैं। इसका उत्तर है कि ये ही हैं।
कोई यह जाँच सकता है कि यदि P(x) और M(x) योज्य बहुपद हैं, तो P(x) + M(x) और P(M(x)) भी हैं। इनका अर्थ है कि योज्य बहुपद बहुपद जोड़ और कार्य संरचना के अंतर्गत एक वलय(गणित) बनाते हैं। इस वलय को
- दर्शाया गया है।
यह वलय क्रमविनिमेय नहीं है जब तक कि k क्षेत्र न हो(मॉड्यूलर अंकगणित देखें)। वस्तुतः, k में गुणांक a के लिए योज्य बहुपद ax और xp पर विचार करें। संरचना के अंतर्गत उनके लिए रूपांतरण करने के लिए, हमारे समीप
होना चाहिए, और इसलिए ap − a = 0। यह a के लिए असत्य है, जो इस समीकरण की मूल नहीं है, अर्थात, बाहरी के लिए।
योज्य बहुपदों का मौलिक प्रमेय
मान लीजिए P(x) एक बहुपद है जिसके गुणांक k में हैं, और इसकी मूलों का सम्मुचय हो। यह मानते हुए कि P(x) के मूल भिन्न हैं(अर्थात, P(x) वियोज्य बहुपद है), तो P(x) योज्य है यदि और मात्र यदि सम्मुचय क्षेत्र जोड़ के साथ एक समूह(गणित) बनाता है।
यह भी देखें
संदर्भ
- David Goss, Basic Structures of Function Field Arithmetic, 1996, Springer, Berlin. ISBN 3-540-61087-1.